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Abstract: Although immunotherapy has led to durable responses in diverse cancers, unfortunately,
there has been limited efficacy and clinical response rates due to primary or acquired resistance
to immunotherapy. To maximize the potential of immunotherapy, combination therapy with
antiangiogenic drugs seems to be promising. Some phase III trials showed superiority for survival
with the combination of immunotherapy and antiangiogenic therapy. In this study, we describe
a synergistic mechanism of immunotherapy and antiangiogenic therapy and summarize current
clinical trials of these combinations.
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1. Introduction

For many years, traditional cancer treatments include surgery, radiotherapy and chemotherapy [1].
Recently, cancer immunotherapy, particularly immune checkpoint therapy targeting programmed cell
death-1 (PD-1), PD-1-ligand-1 (PD-L1), and cytotoxic T-lymphocyte antigen 4 (CTLA-4), has become a
new treatment option for various types of cancers [2,3]. Immunotherapy has shown dramatic effects and
demonstrated long-term survival benefits in some cancers, such as lung cancer [4] and renal cancer [5];
therefore, it has become the first-line treatment for these advanced cancers. However, immunotherapy
is not effective for all cancer patients, and even if it is effective at first, some patients experience therapy
resistance; therefore, it is necessary to increase the antitumor effect of immune checkpoint inhibitors
and overcome resistance. Based on the above findings, combination therapies with immunotherapy
and other treatments, such as antiangiogenic therapy, radiation therapy, chemotherapy and surgery,
are attracting attention.

Antiangiogenic therapy is a notable strategy for cancer. Tumor cells need additional oxygen and
nutrition from vessels as they grow; hence, it is necessary for tumor cells to induce new vessels from the
surrounding vasculature, and this process is called angiogenesis [6]. Angiogenesis is strongly associated
with hypoxia and is regulated by various growth factors and receptors, including hypoxia-inducible
factor (HIF), vascular endothelial growth factor (VEGF), VEGF receptor (VEGFR), platelet-derived
growth factor (PDGF), and fibroblast growth factor-2 (FGF2) [7]. Therefore, it was proposed that the
inhibition of these signaling pathways and angiogenesis is effective and promising for cancer treatment,
and particularly, the VEGF family has been focused on as a key driver of angiogenesis because it
is frequently overexpressed in various cancers [8]. Recently, it has become clear that some kinds of
VEGF receptors are expressed in macrophages, lymphocytes and dendritic cells [9], and those VEGF
signals may lead to immunosuppression [10]. Therefore, VEGF inhibitors are used not only to prevent
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angiogenesis and normalize vascular permeability in the tumor microenvironment, [11] but also to
promote the differentiation and function of immune cells [12–14].

As described above, both of these two treatments are remarkable cancer treatments and have
begun to be used together to increase the antitumor effect of immunotherapy. Therefore, we review a
mechanism of the combination of immunotherapy and antiangiogenic therapy and summarize current
clinical trials of these treatments while focusing on the possibilities of combination therapy.

2. Cancer Immunotherapy

Since the beginning of the 21st century, cancer immunotherapy has revolutionized cancer
treatments, showing dramatic effects in some cancers. This treatment has evolved from the hypothesis
of “immune surveillance”, which is the mechanism by which cancer cells are recognized and killed by
host immune systems. However, during the development of cancer cells, they grow through the immune
surveillance system and emerge as cancer. For this reason, the new hypothesis of “cancer immune
editing” was proposed by Dunn et al., which consists of three phases [15]: the “elimination phase”
in which cancer cells are eliminated by host immune systems, the “equilibrium phase” in which the
immune system is antagonized with cancer cells that are not eliminated, and the “escape phase” in
which cancer cells acquire mechanisms that allow them to escape the immune surveillance system and
begin to proliferate [16]. This phenomenon has been termed adaptive immune resistance. Therefore,
it is considered that the presence of overt tumors means the state of “cancer immune escape” or
“adaptive immune resistance”, where cancers form an immunosuppressive environment and change
their phenotypes in response to the attack of host immune cells [17].

The immune surveillance mechanism of cancer cells involves various immune cells, particularly
cytotoxic T lymphocytes (CTLs), which have an important role in recognizing various antigens,
especially those expressed on cancer cells, and directly eliminating them via the T cell receptor (TCR).
However, CTLs also express immune checkpoint molecules to prevent autoimmune disease damage,
which can be utilized by cancers to suppress T cells and escape immune surveillance. Although there
are several other types of effective cancer immunotherapies, such as oncolytic viruses, cancer vaccines,
adoptive cell transfer, monoclonal antibodies, and immune checkpoint inhibitors (ICIs) [18–21],
overcoming this suppression mechanism of T cells is the most important common goal, and ICIs have
been investigated with the most interest and are now widely used in clinical practice [22].

Immune checkpoint molecules such as PD-1 [23], CTLA-4 [24], T cell immunoglobulin and
mucin domain-3 (TIM-3) [25], and lymphocyte-associated gene 3 (LAG-3) [26] have been found
to be expressed in several immune cell types, including T cells, natural killer (NK) cells, B cells,
dendritic cells, tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs).
Among these immune cells, T cells, especially CTLs, are exhausted, and the anticancer functions of
the immune system are weakened by these negative costimulatory molecules binding with ligands
of cancers, including PD-L1 and B7 (CD80/CD86), of which ICIs act as negative regulators, resulting
in the reactivation of anticancer functions and the infiltration of immune cells into tumors. In 2011,
the U.S. The Food and Drug Administration (FDA) approved ipilimumab for the treatment of advanced
melanoma, followed by pembrolizumab and nivolumab in 2014. Since then, ICIs have provided
durable clinical benefits in diverse cancer patients, including breast, lung, kidney, bladder and prostate
cancers, as well as melanoma and lymphoma [27,28]. Currently, there are seven ICIs that can be used in
clinical practice: anti-CTLA-4 antibody (ipilimumab), anti-PD-1 antibody (pembrolizumab, nivolumab
and cemiplimab), and anti-PD-L1 antibody (atezolizumab, durvalumab and avelumab). Table 1 shows
the ICIs that can be used for each type of cancer.
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Table 1. The Food and Drug Administration (FDA) -approved target cancers of immune
checkpoint inhibitors.

ICIs Target Molecules Target Cancers

Ipilimumab CTLA-4 Colorectal cancer, HCC, Melanoma, NSCLC, RCC

Pembrolizumab PD-1

Cervical cancer, Classic Hodgkin lymphoma, Cutaneous squamous
cell carcinoma,

Endometrial carcinoma, Gastric cancer, Gastroesophageal junction
cancer, HCC,

Melanoma, Merkel cell carcinoma, Microsatellite instability-high cancer,
Mismatch repair deficient cancer, NSCLC, Primary mediastinal large

B-cell lymphoma,
RCC, SCLC, Solid tumors, Squamous cell carcinoma of the esophagus,
Squamous cell carcinoma of the head and neck, Urothelial carcinoma

Nivolumab PD-1

Classic Hodgkin lymphoma, Colorectal cancer, HCC, Melanoma,
NSCLC, RCC, SCLC,

Squamous cell carcinoma of the esophagus, Squamous cell carcinoma of
the head and neck,

Urothelial carcinoma
Cemiplimab PD-1 Cutaneous squamous cell carcinoma

Atezolizumab PD-L1 Breast cancer, HCC, NSCLC, SCLC, Urothelial carcinoma
Durvalumab PD-L1 NSCLC, SCLC, Urothelial carcinoma

Avelumab PD-L1 Merkel cell carcinoma, RCC, Urothelial carcinoma

Abbreviations: FDA, Food and Drug Administration; HCC, hepatocellular carcinoma; ICI, Immune checkpoint
inhibitor; NSCLC, non-small cell lung cancer; RCC, renal cell carcinoma; SCC, squamous cell carcinoma; SCLC,
small cell lung cancer.

3. Tumor Immune Microenvironment (TIME)

Although ICIs have provided durable clinical benefit in diverse cancer patients, unfortunately,
limited efficacy and clinical response rates have been achieved in cancer patients due to primary or
acquired resistance to ICIs [29]. To overcome this tumor resistance, it is vital to understand the tumor
immune microenvironment (TIME), which shows an immunosuppressive effect and plays crucial roles
in tumor growth, angiogenesis and metastasis, leading to cancer evasion and resistance to ICIs [30–34].
The TIME refers to the local biological environment around solid tumors, which consists of immune
cells, microvessels, lymphatic channels, stromal cells, endothelial cells, extracellular matrix, fibroblasts
and some signaling molecules, such as chemokines. Immune cells include T and B lymphocytes,
NK cells and TAMs. Among them, immune cells and microvessels are key components of the TIME
and are responsible for cancer invasion [35].

It has been proposed that the TIME can be classified into four types based on the presence of
tumor-infiltrating lymphocytes (TILs) and PD-L1 expression [36]. Type I is the stage of PD-L1 positivity
with TILs driving adaptive immune resistance, type II is the state of PD-L1 negativity with no TILs
indicating immune ignorance (immunologic ignorance), type III is the state of PD-L1 positivity with
no TILs indicating intrinsic induction, and type IV is the state of PD-L1 negativity with TILs indicating
the role of other suppressors in promoting immune resistance [2,37]. Among these types, cancers in
types I and IV are described as the “T cell-inflamed phenotype” or "hot tumors", in which lymphocyte
infiltration is common and leads to enhanced therapeutic effects of ICIs [38]. On the other hand,
cancers in the other types are described as the “non-T cell-inflamed phenotype” or "cold tumors",
in which there is a lack of lymphocyte infiltration but the presence of other immune populations
or myeloid cells, leading to diminished effects of ICIs. Actually, "immunoscore" has recently been
proposed as a new concept of tumor immunity to quantify TILs in the tumor center and around the
tumor, and it has been reported to have a strong association with the prognosis mainly in colorectal
cancer [39,40]. Considering this, it is useful to convert immunologically cold tumors to hot tumors,
and the angiogenesis of microvessels in the TIME is associated with this conversion.

The TIME in solid tumors is characterized by hypoxia, acidosis, oxidative stress, high lactate levels
and declining nutrient resources. As tumor cells grow, these features become more apparent and lead
to tumor heterogeneity and genetic instability, resulting in cancer progression and the development
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of resistance to anticancer therapies [41]. Among these features, hypoxia is known to be the main
factor for tumor progression and resistance to chemotherapy and radiotherapy in nearly all solid
tumors [42–44]. Moreover, it has been revealed that hypoxia contributes to angiogenesis in the TIME
and resistance to immunotherapy [45–47].

The rapid growth of tumor cells requires a large amount of oxygen that cannot be supplied
from the surrounding blood, resulting in hypoxia, which is the imbalance between increased oxygen
consumption and inadequate oxygen supply [48]. Persistent hypoxia stimulates the growth of new
vasculatures to adapt to low levels of oxygen and nutrients, but these vasculatures are unorganized
and have an irregular distribution, contributing to an increased distance between the capillaries, loss of
capacity to diffuse oxygen and intratumoral oxygen gradients [49,50]. These vasculatures are also leaky
and cause vascular hyperpermeability, resulting in increased interstitial fluid pressure and reduced
drug penetration in the TIME because their endothelial structures are discontinuous and lymph vessels
are obstructed [51,52].

In this response triggered by hypoxia, hypoxia-inducible factor 1 (HIF-1) plays a key role. HIF-1 is
a dimeric protein composed of two subunits expressed in the cells, the oxygen-sensitive α-subunit,
HIF-1α, and a constitutively expressed β-subunit, HIF-1β [53,54]. At normal oxygen concentrations,
prolyl hydroxylase domain-2 (PHD-2), which is the HIF proline hydroxylase enzyme, generates
hydroxyl groups from oxygen molecules and adds them to the Pro402 and Pro564 residues of HIF-1α.
Subsequently, von Hippel-Lindau (VHL) E3 ubiquitin ligase binds to HIF-1α, whose proline residue
is hydroxylated, resulting in rapid degradation. Under hypoxic conditions, however, the activity of
PHD-2 is low, and PHD-2 cannot bind and degrade HIF-1α. Activated HIF-1α translocates to the
nucleus, interacts with the HIF-1β subunit, and binds to the promoter regions of various genes that are
involved in the hypoxia response, such as angiogenesis, cell proliferation, glucose metabolism and
macrophage polarization into TAMs, resulting in the suppression of innate and adaptive antitumor
immune responses [55–57] (Figure 1). In this HIF1-related signal, VEGF is strongly associated
with these genes identified as the transcriptional target of HIF-1, and several studies have shown
functional cross-talk among regulatory T cells (Tregs), TAMs, and MDSCs [58]. VEGF is the most
potent endothelial-specific mitogen that recruits endothelial cells into hypoxic and avascular areas
and stimulates their proliferation [59]. Therefore, VEGF has not only vascular biological effects,
including endothelial cell proliferation, induction of vascular permeability and elevation of interstitial
fluid pressure but also several immunological effects in the TIME, such as inhibition of dendritic
cell maturation resulting in the inactivation of CTLs, recruitment of Tregs, MDSCs and TAMs,
the polarization of macrophages from M1 to M2, upregulation of the expression of PD-1 on CD8+

CTLs and Tregs via VEGFR2-dependent signals and induction of Fas ligand expression leading to CTL
exhaustion [60–64]. In addition, Tregs themselves produce IL-4, IL-10, and IL-13, inducing monocyte
differentiation into TAMs [65] (Figure 2). Because of these immunosuppressive effects of VEGF in the
TIME, antiangiogenic therapy targeting VEGF signaling has the possibility to convert “cold” tumors
into “hot” tumors with a favorable microenvironment. Additionally, the combination therapy of ICIs
and tumor angiogenesis inhibitors seems very reasonable considering the above TIME changes.
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Figure 1. hypoxia-inducible factor 1 (HIF-1) pathway at the normal oxygen concentrations and under
hypoxic conditions.

Figure 2. Vascular biological effects and immunosuppressive effects of vascular endothelial growth
factor (VEGF) in the tumor immune microenvironment (TIME).

4. Cancer Immunity Cycle

It was proposed that the repetition and progression of seven stepwise series of events, called the
cancer-immunity cycle (CIC), are necessary for the anticancer immune response [66]. In brief, the CIC
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is composed of cancer antigens (step 1), the presentation of cancer antigens (step 2), priming and
activation (step 3, priming phase), T-cell migration (step 4), the tumor infiltration of T cells (step 5),
the recognition of tumor cells (step 6), and the destruction of tumor cells (step 7, effector phase).
Tumors evade immune surveillance by obstructing one or several steps of the CIC, leading to resistance
to immunotherapy and tumor progression. In this cycle, ICIs mainly act at the step where T cells are
activated (step 3) and at the step where activated T cells destroy cancer cells (step 7). Here, we focus on
the interaction between VEGF signaling and the CIC.

Step 1 refers to the release and capture of tumor neoantigens by dendritic cells (DCs). DCs have
major histocompatibility complex (MHC) I and II molecules that present tumor peptide antigens to
T cells with costimulation by the B7 molecule, resulting in the efficient activation of T-cell responses
against cancer antigens, which is called the priming phase (step 2 to 3). In these steps, tumors release
several factors that negatively affect the maturation of DCs [61]. Tumor-derived VEGF is one of these
negative factors and is responsible for the differentiation of hematopoietic progenitor cells to DCs,
which inhibits the phosphorylation and corresponding degradation of IκB, resulting in the attenuation
of NF-κB activation in immature DCs [67,68]. Thus, VEGF inhibits the functional maturation of DCs
and promotes immune evasion.

Steps 4 and 5 refer to the migration and infiltration of primed and activated T cells from the
lymph node to the tumor. Tumor blood vessels promoted by VEGF can inhibit the extravasation of
immune cells from blood to the intraepithelial spaces by downregulating the expression of the adhesion
molecules required for the adhesion and migration of lymphocytes, such as intercellular adhesion
molecule (ICAM) and vascular cell adhesion molecule (VCAM) [69,70].

Steps 6 and 7 refer to the recognition and destruction of tumor cells, which is called the effector phase.
In this phase, VEGF binding to VEGFR promotes immune evasion via the recruitment and expansion of
MDSCs through the phosphorylation and activation of the STAT3 signaling pathway [71,72]. MDSCs are
heterogeneous populations of cells derived from the bone marrow and consist of polymorphonuclear
MDSCs (PMN-MDSCs) and monocytic MDSCs (M-MDSCs) [73]. MDSCs accumulate through persistent
inflammation in the TIME, providing signals for their expansion and activation. Activated MDSCs
express high levels of PD-L1 and B7-1/2, reduce amino acids such as tryptophan, arginine and
cysteine required for T cell activation, induce Treg infiltration into the TIME, and secrete various
inflammatory factors, including IL-10, TGF-β and PGE2, resulting in the suppression of antigen-specific
T-cell proliferation [74,75]. Additionally, the TIME inhibits the differentiation of MDSCs into mature
myeloid cells, such as DCs, mature neutrophils and macrophages, which can promote antitumor
immune activities [74]. As these mechanisms occur in each step, VEGF creates an immune suppressive
microenvironment and promotes the immune evasion of tumors. Taken together, these findings suggest
that the combination therapy of ICI and tumor angiogenesis inhibitors still seems very reasonable
and effective.

5. Clinical Evidence

The mechanism by which the combination therapy of ICI and anti-angiogenesis therapy exerts a
synergistic effect is that anti-angiogenesis therapy not only inhibits angiogenesis but also reprograms
TIME [76]. Tumor angiogenesis inhibitors can be broadly classified into two groups: drugs that
inhibit the binding of VEGF-A and VEGFR or multikinase inhibitors that are small molecules that
inhibit the kinase activity of VEGFR. Many of these inhibitors have been tested in several clinical trials
and have shown prolonged survival and progression-free survival [77]. Bevacizumab, which is a
recombinant humanized monoclonal antibody targeting VEGF-A, was first approved by the FDA [78].
It blocks the interaction between VEGF-A and VEGFR, primarily VEGFR-1 and VEGFR-2, on the
surface of endothelial cells. Bevacizumab is currently approved for the treatment of recurrent,
persistent or metastatic cervical cancer, metastatic colorectal cancer, glioblastoma, nonsquamous
non-small cell lung cancer (NonSq-NSCLC), ovarian cancer, fallopian tube or primary peritoneal
cancer and metastatic renal cell carcinoma (RCC) [79–83]. Similarly, ramucirumab is a monoclonal
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antibody inhibitor targeting VEGFR2 that is approved for the treatment of advanced gastric cancer or
gastroesophageal junction adenocarcinoma, NSCLC, metastatic colorectal cancer, and hepatocellular
carcinoma (HCC) [84–87]. Multikinase inhibitors include sunitinib, axitinib, and sorafenib, which are
used for RCC and HCC [88,89]. These angiogenesis inhibitors have been used as monotherapy or
combination therapy, mainly with chemotherapy, to enhance the effects of chemotherapy by increasing
the intratumor concentration of chemotherapy. Moreover, based on a number of rationales about
antiangiogenesis conferring immunosuppressive effects and actual evidence of angiogenesis inhibitors
augmenting the benefits of ICIs resulting in durable responses, combination therapy with ICIs has
been practiced and used in a variety of cancers.

For example, combination therapies of bevacizumab and atezolizumab, sunitinib or pazopanib
and nivolumab, axitinib and pembrolizumab have shown some additional efficacy [90–92]. The phase
III trials examining combination therapies of ICI and antiangiogenic therapy are summarized in Table 2.

Table 2. Phase III trials examining combination therapies of immune checkpoint inhibitors (ICIs) and
antiangiogenic therapy.

Trial Cases Disease Regimen RR (%) PFS
(months) HR OS

(months) HR

CheckMate 214 1096 RCC N/I continued vs.
Sunitinib

42 vs.
29

8.2 vs.
8.3

0.77 (0.65–0.90)
p = 0.0014 NR vs. 26.6 0.66 (0.54–0.80)

p < 0.0001

IMmotion151 915 RCC A/B vs.
Sunitinib

43 vs.
37

11.2 vs.
7.7

0.74 (0.57–0.96)
p = 0.0217 34.0 vs. 32.7 0.84 (0.62–1.15)

p = 0.2857

JAVELIN Renal
101 trial 886 RCC

Avelumab/Axitinib
vs.

Sunitinib

51.4 vs.
25.7

13.8 vs.
8.4

0.69 (0.56–0.84)
p < 0.001 Immature Immature

IMpower150 1191 Non-Sq
NSCLC

A/B/C/P or
A/C/P vs.

B/C/P

56 vs.
4041 vs.

40

8.4 vs.
6.8

6.7 vs.
6.8

0.59 (0.50–0.69)
0.91 (0.78–1.06)

19.8 vs. 14.9
19.5 vs. 14.9

0.76 (0.63–0.93)
0.85 (0.71–1.03)

Abbreviations: RR, response rate; PFS, progression-free survival; HR, hazard ratio; OS, overall survival;
RCC, renal cell carcinoma; NR, not reached; Non-Sq NSCLC, nonsquamous non-small-cell lung cancer; N, nivolumab;
I, ipilimumab; A, atezolizumab; B, bevacizumab; C, carboplatin; P, paclitaxel.

A phase III trial comparing nivolumab/ipilimumab followed by nivolumab with nivolumab/

ipilimumab followed by sunitinib in patients with previously untreated RCC (CheckMate 214)
showed that nivolumab/ipilimumab followed by nivolumab significantly prolonged overall survival
(OS) compared to sunitinib (hazard ratio [HR], 0.66; 95% confidence interval [CI], 0.54 to 0.80;
p < 0.0001; not reached vs. 26.6 months) [5]. The most common grade 3-4 treatment-related adverse
events (AEs) determined by the Common Terminology Criteria for Adverse Events (CTCAE) in
the nivolumab/ipilimumab followed by nivolumab group were increased lipase (10%), increased
amylase (6%) and increased alanine aminotransferase (5%), whereas in the sunitinib group, they were
hypertension (17%), fatigue (10%) and palmar-plantar erythrodysesthesia (9%). On the other hand,
another phase III trial comparing atezolizumab/bevacizumab with sunitinib in patients with previously
untreated metastatic RCC (IMmotion151 trial) showed that atezolizumab/bevacizumab significantly
prolonged PFS compared to sunitinib (HR, 0.74; 95% CI, 0.57 to 0.96; p = 0.0217; 11.2 months vs.
7.7 months) [93]. Grade 3-4 AEs were observed in 40% of the atezolizumab/bevacizumab group
and in 54% of the sunitinib group. Furthermore, a phase III trial comparing avelumab/axitinib
with sunitinib in patients with previously untreated advanced RCC (JAVELIN Renal 101 trial)
revealed that avelumab/axitinib significantly prolonged PFS compared to sunitinib (HR, 0.69; 95% CI,
0.56 to 0.84; p < 0.001; 13.8 months vs. 8.4 months) [94]. Grade 3-5 AEs were observed in
71.2% of the avelumab/axitinib group and in 71.5% of the sunitinib group. A phase III trial
comparing atezolizumab/bevacizumab plus carboplatin/paclitaxel (ABCP) with atezolizumab plus
carboplatin/paclitaxel (ACP) or bevacizumab plus carboplatin/paclitaxel (BCP) was conducted in
chemotherapy-naive patients with nonsquamous non-small-cell lung cancer (NSCLC) (IMpower150
trial) [95]. In the intention-to-treat population, ABCP showed superior OS compared to BCP (HR, 0.76;
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95% CI, 0.63 to 0.93; 19.8 months vs. 14.9 months). Grade 3–4 AEs occurred in 57% of the ABCP group,
in 43% of the ACP group and in 49% of the BCP group.

6. Conclusions

Anti-angiogenesis therapy not only inhibits the blood vessels that feed tumors but also reprograms
the TIME. Some clinical trials that investigated the synergistic effect of the combination therapy
acquired promising outcomes in several cancers. This ideal combination may further improve the
patient's prognosis.
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