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Abstract: Distant metastatic colorectal cancer (CRC) is present in approximately 25% of patients at
initial diagnosis, and eventually half of CRC patients will develop metastatic disease. The 5-year
survival rate for patients with metastatic CRC is a mere 12.5%; thus, there is an urgent need to
investigate the molecular mechanisms of cancer progression in CRC. High expression of human
high-mobility group A2 (HMGA2) is related to tumor progression, a poor prognosis, and a poor
response to therapy for CRC. Therefore, HMGA2 is an attractive target for cancer therapy. In this
study, we identified aspirin and sulindac sulfide as novel potential inhibitors of HMGA2 using a
genome-wide mRNA signature-based approach. In addition, aspirin and sulindac sulfide induced
cytotoxicity of CRC cells stably expressing HMGA2 by inhibiting cell proliferation and migration.
Moreover, a gene set enrichment analysis (GSEA) revealed that gene sets related to inflammation
were positively correlated with HMGA2 and that the main molecular function of these genes was
categorized as a G-protein-coupled receptor (GPCR) activity event. Collectively, this is the first
study to report that aspirin and sulindac sulfide are novel potential inhibitors of HMGA2, which can
induce cytotoxicity of CRC cells stably expressing HMGA2 by inhibiting cell proliferation and
migration through influencing inflammatory-response genes, the majority of which are involved in
GPCR signaling.
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1. Introduction

Around a quarter of colorectal cancer (CRC) patients are incurable at diagnosis, and half of the
patients who undergo potentially curative surgery will ultimately develop metastatic disease [1].
Distant metastatic disease of CRC is present in approximately 25% of patients at initial diagnosis,
and half of CRC patients will develop metastatic disease [2]. In the group of patients who develop
metastatic disease, the median survival has improved from less than 10 months with the best supportive
care to 14 months with fluoropyrimidine treatment [3] and to more than 2 years with a combination
of various cytotoxic agents [4]. In spite of advances in systemic therapy, the 5-year survival rate for
metastatic CRC is still a mere 12.5% [5]. Therefore, there is an urgent need to investigate the molecular
mechanisms of cancer progression in CRC.

High-mobility group A2 (HMGA2) is a non-histone chromatin DNA-binding protein that
modulates the transcription of several genes by binding to AT-rich sequences in the minor groove
of B-form DNA and altering the chromatin structure [6]. It was demonstrated that overexpression
of the HMGA2 protein occurs in various types of cancer, including CRC [7]. It was also shown that
high expression of HMGA2 is related to tumor progression, a poor prognosis, and a poor response
to therapy [8]. A variety of biological processes are influenced by HMGA2, including the cell cycle
process, apoptosis, and the epithelial-to-mesenchymal transition (EMT) [9]. Thus, HMGA2 is an
attractive target for cancer therapy.

Bioinformatics methodologies have become a crucial part of drug discovery [10]. This is mostly
because they can impact the entire drug development trajectory, by identifying and discovering
potential new drugs with a significant reduction in the traditionally high costs and long periods
required for new drug development [11]. A scan of publicly available databases containing differential
genome-wide messenger (m)RNA signatures identified by researchers in this field can be conducted
to signify the perturbation of biological and physiological systems by bioactive small molecules [12].
Our previous study found that the heat shock protein 90 (HSP90) inhibitor has therapeutic potential to
inhibit HMGA2-triggered tumorigenesis by this approach [13]. However, 43% of breast cancer patients
suffered visual disturbances after drug treatment [14]. Therefore, an urgent need remains to discover
and develop potential therapeutic drugs to suppress the overexpression of HMGA2 in cancer patients.

2. Results

2.1. Aspirin and Sulindac Sulfide as Potential Inhibitors of HMGA2

We first analyzed two Gene Expression Omnibus (GEO) datasets deposited in the National Center
for Biotechnology Information (NCBI) databases to discover new inhibitors of HMGA2. In the left panel
of Figure 1, gene expression profiles from HMGA2-knockdown of human esophageal cancer cells (TE-8)
derived from the GEO dataset, GSE143882, are displayed. In the right panel of Figure 1, gene expression
profiles from HMGA2 overexpression of hematopoietic stem and progenitor cells (HSPCs) derived
from the GEO dataset, GSE107594, are shown [15]. Furthermore, the top 100 differentially expressed
genes (DEGs) from the two GEO datasets were analyzed and queried using the Library of Integrated
Network-Based Cellular Signatures (LINCS) L1000 platform to predict which drugs might have potency
to inhibit HMGA2 expression. A negative enrichment score (NES) indicates that the gene signature of a
drug is opposite to the gene signature of the disease, while a positive enrichment score (PES) is displayed
when they are concordant. Results shown in Table S1 indicate the top 10 chemical perturbagens with a
PES for the gene expression signature with HMGA2-knockdown. Meanwhile, Table S2 shows the top
10 chemical perturbagens with an NES for gene expression signatures with HMGA2 overexpression.
Comparing these two tables, we found that the strongest therapeutic predictors of HMGA2 were
aspirin and the aspirin-like compound, sulindac sulfide, which are non-steroidal anti-inflammatory
drugs (NSAIDs) (Figure 1).
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Figure 1. Diagram of new human high-mobility group A2 (HMGA2) inhibitor identification. Two 
Gene Expression Omnibus (GEO) databases (i.e., GSE143882 and GSE107594) were selected from the 
National Center for Biotechnology Information (NCBI). The top 100 up- and downregulated genes 
were analyzed from the two GEO databases and further queried using the Library of Integrated 
Network-based Cellular Signatures (LINCS) L1000 platform to predict new inhibitors of HMGA2. TE-
8, esophageal cancer cells; HSPCs, hematopoietic stem and progenitor cells. 

2.2. Aspirin and Sulindac SulfideAttenuate the Proliferation of CRC Cells Stably Expressing HMGA2 

To gain insights into the interactions of aspirin and sulindac sulfide with HMGA2, molecular 
docking was carried out. The AT-hook motif as presented in the amino acid sequence of Pro-Arg-
Gly-Arg-Pro is a particular feature of HMGA2 [16]. The chemical structures of aspirin and sulindac 
sulfide are shown in Figure 2A. We next retrieved the sequence of the AT-hook motif from the Protein 
Data Bank (PDB) (accession code: 3UXW) [17]. Results obtained from SwissDock provided insights 
into the most favorable binding site for aspirin (Figure 2B) and sulindac sulfide (Figure 2C) in the 
pocket of the AT-hook motif of HMGA2. The binding free energies were −7.85 kcal/mol for aspirin 
and −7.68 kcal/mol for sulindac sulfide. Furthermore, we established stable DLD-1 cell lines which 
overexpressed either an empty vector (called DLD-1 vector) or HMGA2 (called DLD-1 HMGA2). As 
shown in Figure 2D, expressions of HMGA2-green fluorescent protein (GFP) and endogenous 
HMGA2 were characterized using an anti-HMGA2 antibody for Western blotting. Since aspirin and 
sulindac sulfide were predicted to be novel inhibitors of HMGA2, we wanted to investigate whether 
DLD-1 cells stably expressing HMGA2 were sensitive to aspirin and sulindac sulfide. Thus, we used 
aspirin and sulindac sulfide to perform a cell viability assay. As expected, the proliferation index of 
DLD-1 HMGA2 cells significantly decreased in the aspirin-treated group compared to the DLD-1 
vector (p = 0.011) (Figure 2E). Similar effects were observed in the case of sulindac sulfide-treated 
groups (Figure 2F). Taken together, these results suggest that both aspirin and sulindac sulfide can 
attenuate the growth of CRC cells, especially DLD-1 cells stably expressing HMGA2, through a direct 
interaction between aspirin or sulindac sulfide and HMGA2. 

Figure 1. Diagram of new human high-mobility group A2 (HMGA2) inhibitor identification. Two Gene
Expression Omnibus (GEO) databases (i.e., GSE143882 and GSE107594) were selected from the National
Center for Biotechnology Information (NCBI). The top 100 up- and downregulated genes were analyzed
from the two GEO databases and further queried using the Library of Integrated Network-based
Cellular Signatures (LINCS) L1000 platform to predict new inhibitors of HMGA2. TE-8, esophageal
cancer cells; HSPCs, hematopoietic stem and progenitor cells.

2.2. Aspirin and Sulindac SulfideAttenuate the Proliferation of CRC Cells Stably Expressing HMGA2

To gain insights into the interactions of aspirin and sulindac sulfide with HMGA2, molecular
docking was carried out. The AT-hook motif as presented in the amino acid sequence of
Pro-Arg-Gly-Arg-Pro is a particular feature of HMGA2 [16]. The chemical structures of aspirin
and sulindac sulfide are shown in Figure 2A. We next retrieved the sequence of the AT-hook motif from
the Protein Data Bank (PDB) (accession code: 3UXW) [17]. Results obtained from SwissDock provided
insights into the most favorable binding site for aspirin (Figure 2B) and sulindac sulfide (Figure 2C)
in the pocket of the AT-hook motif of HMGA2. The binding free energies were −7.85 kcal/mol for
aspirin and −7.68 kcal/mol for sulindac sulfide. Furthermore, we established stable DLD-1 cell lines
which overexpressed either an empty vector (called DLD-1 vector) or HMGA2 (called DLD-1 HMGA2).
As shown in Figure 2D, expressions of HMGA2-green fluorescent protein (GFP) and endogenous
HMGA2 were characterized using an anti-HMGA2 antibody for Western blotting. Since aspirin and
sulindac sulfide were predicted to be novel inhibitors of HMGA2, we wanted to investigate whether
DLD-1 cells stably expressing HMGA2 were sensitive to aspirin and sulindac sulfide. Thus, we used
aspirin and sulindac sulfide to perform a cell viability assay. As expected, the proliferation index
of DLD-1 HMGA2 cells significantly decreased in the aspirin-treated group compared to the DLD-1
vector (p = 0.011) (Figure 2E). Similar effects were observed in the case of sulindac sulfide-treated
groups (Figure 2F). Taken together, these results suggest that both aspirin and sulindac sulfide can
attenuate the growth of CRC cells, especially DLD-1 cells stably expressing HMGA2, through a direct
interaction between aspirin or sulindac sulfide and HMGA2.
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Figure 2. Growth inhibitory effects of aspirin and sulindac sulfide in DLD-1 (empty vector) vector 
and DLD-1 HMGA2 cells. (A)Chemical structures of aspirin and sulindac sulfide. The binding mode 
of aspirin (B) or sulindac sulfide (C)fit into the pocket of the AT-hook motif of HMGA2. (D)Western 
blotting with an anti-HMGA2 antibody to examine protein expression levels of HMGA2 in DLD-1 
stable cell lines. Cells were treated with aspirin (E)or sulindac sulfide (F)at the indicated 
concentrations for 48 h, and cell viability was assessed by the crystal violet staining method. Bars = 
standard deviation (SD) (n = 6). 

2.3. Aspirin and Sulindac Sulfide Decrease the Migratory Ability of CRC Cells Stably Expressing HMGA2 

To further determine the influence of aspirin and sulindac sulfide on the migration of CRC cells 
stably expressing HMGA2, we first examined the migratory ability of DLD-1 vector and DLD-1 
HMGA2 cells using a transwell migration assay. As expected, the migratory ability of DLD-1 HMGA2 
cells significantly increased by about 75% compared to that of DLD-1 vector cells (p = 0.012) (Figure 
3A). We further investigated the effect of HMGA2 on the expressions of EMT effectors in DLD-1 
vector and DLD-1 HMGA2 cells. As shown in Figure 3B, HMGA2 overexpression did indeed cause 
induction of mesenchymal markers (i.e., Twist, Snail, and vimentin), in conjunction with concomitant 
decreases in E-cadherin expression. The above results indicated that the 50% inhibitory concentration 
(IC50) values of growth inhibition were approximately 2.5 mM for aspirin-treated groups (Figure 2E) 

Figure 2. Growth inhibitory effects of aspirin and sulindac sulfide in DLD-1 (empty vector) vector and DLD-1
HMGA2 cells. (A) Chemical structures of aspirin and sulindac sulfide. The binding mode of aspirin (B) or sulindac
sulfide (C) fit into the pocket of the AT-hook motif of HMGA2. (D) Western blotting with an anti-HMGA2 antibody
to examine protein expression levels of HMGA2 in DLD-1 stable cell lines. Cells were treated with aspirin (E) or
sulindac sulfide (F) at the indicated concentrations for 48 h, and cell viability was assessed by the crystal violet
staining method. Bars = standard deviation (SD) (n = 6).

2.3. Aspirin and Sulindac Sulfide Decrease the Migratory Ability of CRC Cells Stably Expressing HMGA2

To further determine the influence of aspirin and sulindac sulfide on the migration of CRC
cells stably expressing HMGA2, we first examined the migratory ability of DLD-1 vector and DLD-1
HMGA2 cells using a transwell migration assay. As expected, the migratory ability of DLD-1 HMGA2
cells significantly increased by about 75% compared to that of DLD-1 vector cells (p = 0.012) (Figure 3A).
We further investigated the effect of HMGA2 on the expressions of EMT effectors in DLD-1 vector and
DLD-1 HMGA2 cells. As shown in Figure 3B, HMGA2 overexpression did indeed cause induction of
mesenchymal markers (i.e., Twist, Snail, and vimentin), in conjunction with concomitant decreases
in E-cadherin expression. The above results indicated that the 50% inhibitory concentration (IC50)
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values of growth inhibition were approximately 2.5 mM for aspirin-treated groups (Figure 2E) and
approximately 100 µM for sulindac sulfide-treated groups (Figure 2F). Thus, concentrations of 2.5 mM
and 100 µM were respectively selected to determine the effects of aspirin and sulindac sulfide on
the migration of DLD-1 vector and DLD-1 HMGA2 cells. As shown in Figure 3C, the number of
migrating cells among aspirin- or sulindac sulfide-treated DLD-1 HMGA2 cells was significantly
reduced compared to the DLD-1 vector group. Expressions of the EMT effectors were further examined
in DLD-1 vector and DLD-1 HMGA2 cells after aspirin and sulindac sulfide treatment for 24 h. Our data
show that stable expression of HMGA2 enhanced the effect of aspirin- or sulindac sulfide-mediated
suppression of the EMT in DLD-1 HMGA2 cells compared to the control vector group. Taken together,
these results suggest that aspirin and sulindac sulfide can inhibit the migratory ability and EMT effector
expression of CRC cells, especially in DLD-1 cells with stable expression of HMGA2.
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2.4. HMGA2 Expression is Related to Inflammatory Response Genes Involved in GPCR Signaling 

The above results show that inhibitory effects of aspirin and sulindac sulfide are involved in the 
stable expression of HMGA2 in CRC cells. To understand whether alterations of inflammatory 
response genes are related to HMGA2, gene sets regulated by HMGA2 from Figure 1 were analyzed. 
A gene set enrichment analysis (GSEA) revealed that HMGA2 expression was positively correlated 
with inflammation signal gene signatures in TE-8 cells (Figure 4A) and HSP cells (Figure 4B). Next, 
to identify the exact association of inflammatory response genes with HMGA2, 148 downregulated 

Figure 3. Aspirin- and sulindac sulfide-mediated suppression of the migratory ability and
epithelial-mesenchymal transition (EMT) of DLD-1 (empty vector) vector and DLD-1 HMGA2 cells.
(A) The migratory ability of DLD-1 vector and DLD-1 HMGA2 cells was assessed using a migration
transwell assay. (B) Protein expressions of EMT effectors in DLD-1 vector and DLD-1 HMGA2
cells, as revealed by gains in the mesenchymal markers, Twist, Snail, and vimentin, and loss of the
epithelial marker, E-cadherin. (C) Effects of aspirin and sulindac sulfide on the migratory activities
of DLD-1 vector and DLD-1 HMGA2 cells after 24 h of treatment. (D)Effects of aspirin- or sulindac
sulfide-mediated reversal of the mesenchymal character of DLD-1 HMGA2 cells. * p < 0.05, ** p < 0.01.

2.4. HMGA2 Expression is Related to Inflammatory Response Genes Involved in GPCR Signaling

The above results show that inhibitory effects of aspirin and sulindac sulfide are involved in the
stable expression of HMGA2 in CRC cells. To understand whether alterations of inflammatory
response genes are related to HMGA2, gene sets regulated by HMGA2 from Figure 1 were
analyzed. A gene set enrichment analysis (GSEA) revealed that HMGA2 expression was positively
correlated with inflammation signal gene signatures in TE-8 cells (Figure 4A) and HSP cells
(Figure 4B). Next, to identify the exact association of inflammatory response genes with HMGA2,
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148 downregulated inflammatory-response genes with HMGA2-knockdown from the GSEA and 93
upregulated inflammatory-response genes with HMGA2 overexpression from the GSEA were selected
and compared to each other. As shown in Figure 4C, 67 overlapping genes were identified from the
intersection between the two gene groups (Table S3). Furthermore, in order to further characterize
the 67 overlapping genes, we performed a gene enrichment analysis on the set of all 67 overlapping
genes via a FunRich software analysis [18]. The enrichment results showed that 20.9% of the genes
were categorized as having GPCR activity, 14.9% of the genes as having receptor activity, and 7.5%
of the genes as having cytokine and chemokine activity, according to a molecular function analysis
(Figure 4D). Next, to understand how these 67 overlapping genes interact with HMGA2, a predictive
network model was employed using the Search Tool for the Retrieval of Interacting Genes/Proteins
(STRING) database [19]. The STRING network of HMGA2 and the 67 overlapping genes is shown in
Figure 4E, where the preferred association of the node proteins with HMGA2 was interleukin (IL)-6
(enrichment p value of <1.0e-16). Collectively, these results suggested that the main influence of
HMGA2 on inflammatory response genes involves GPCR signaling.
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gene set in TE-8 cells after transfection with HMGA2 siRNA (A), or an upregulated inflammatory
response gene set in HSPCs after transfection with the HMGA2 plasmid (B). (C) Sixty-seven overlapping
inflammatory response genes were identified from the intersection between 148 downregulated
inflammatory-response genes after HMGA2-knockdown and 93 upregulated inflammatory-response
genes after HMGA2 overexpression. (D) Functional gene enrichment analysis of the molecular functions
of 67 overlapping inflammatory-response genes using FunRich software. Blue bar: percentage of genes
assigned to the indicated term; yellow bar: reference p value; red bar: calculated p value of enrichment
of the indicated term. (E) Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) gene
networks of the interactions ofHMGA2 and the 67 overlapping inflammatory response genes. The node
protein of potential importance for HMGA2 was interleukin (IL)-6.

3. Discussion

Several studies demonstrated that the biological functions of HMGA2 are associated with various
behaviors of tumor cells, such as proliferation, invasion, and metastasis; thus, HMGA2 is an attractive
target for cancer treatment [8,9]. This is the first study to identify the clinical use of aspirin and
sulindac sulfide as novel potential inhibitors of HMGA2. Here, we summarize the evidence that
supports this conclusion. First, we identified aspirin and sulindac sulfide as novel potential inhibitors
of HMGA2 by analyzing two GEO datasets, including the knockdown and overexpression of HMGA2
gene expression profiles, using the LINCS L1000 platform. Second, we found that DLD-1 cells stably
expressing HMGA2 were sensitive to both aspirin and sulindac sulfide treatment. Third, we found
that the migratory ability of CRC cells stably expressing HMGA2 was inhibited by both aspirin and
sulindac sulfide treatment through HMGA2-regulated EMT effectors. Fourth, we found that HMGA2
expression was related to inflammatory-response genes involved in GPCR signaling. Collectively,
this is the first report to describe aspirin and sulindac sulfide as novel potential inhibitors of HMGA2,
which can induce cytotoxicity in CRC cells overexpressing HMGA2 by inhibiting cell proliferation and
migration through influencing inflammatory-response genes, the majority of which are involved in
GPCR signaling.

HMGA2 was demonstrated to play important roles in promoting cell migration and in regulating
the EMT pathway through regulating the transcription of several EMT-related genes in various
cancers [9,20]. Expressions of Twist and Snail were demonstrated to be upregulated by HMGA2,
and the upregulation of Twist and Snail caused downregulation of E-cadherin expression [21]. Our study
showed that HMGA2 overexpression was positively correlated with an increased rate of migration of
DLD-1 cells with stable expression of HMGA2, which was consistent with previous findings. We next
demonstrated that both aspirin and sulindac sulfide treatment could suppress the migratory ability of
CRC cells stably expressing HMGA2 (Figure 3). In addition, HMGA2 overexpression enhanced the
effects of aspirin- and sulindac sulfide-mediated suppression of EMT effectors in DLD-1 cells stably
expressing HGMA2 compared to the control vector group. This indicates that aspirin and sulindac
sulfide treatment might be able to inhibit the migration of CRC cells through inhibiting EMT effectors
regulated by HMGA2.

Numerous studies demonstrated that HMGA2 can drive inflammatory pathways, facilitating
tumor progression and refractory disease [22]. Inflammatory-response genes include cytokines,
cytokine receptors, chemokines, chemokine receptors, and transcription factors [23]. Cytokines and
chemokines can bind and activate their receptors, GPCRs, which are imbedded in leukocyte cell
membranes, thereby inducing leukocyte adhesion to vessel walls, morphological changes, extravasation
into inflamed tissues, and chemotaxis along the chemokine gradient to the site of injury or infection [24].
GPCRs represent the largest family of signaling molecules in the human genome [25]. They are activated
by a large variety of stimuli, such as peptides, proteins, lipids, ions, neurotransmitters, and hormones.
It was reported that stimulation of GPCRs can engage a broad range of physiological responses, such as
cell proliferation and migration, chemotaxis, smooth muscle contraction, and neurotransmission.
Thus, GPCRs are important targets for current drugs and drug discovery, largely because of the wide
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range of physiological and pathophysiological processes on which GPCR targeting can have major
impacts [25]. In this study, we found that gene sets related to inflammation were positively correlated
with HMGA2, and that the main molecular functions of those genes were categorized as a GPCR activity
event, which corresponds to results in Figure 1, and indicates that NSAIDs are novel potential inhibitors
of HMGA2. Recently, there has been interest in targeting GPCR-related upstream or downstream
molecules rather than the GPCRs directly [26]. This approach has the potential to achieve broad
efficacy by blocking pathways shared by GPCRs [27]. Furthermore, it is interesting that as illustrated
by STRING (Figure 4E), among the 67 overlapping inflammatory-response genes, IL-6 was predicted
to interact with HMGA2. It was demonstrated that HMGA2 overexpression significantly provoked
the IL-6 protein level in RAW264.7 cells [20]. In addition, upregulation of the HMGA2/IL-6 axis was
shown to be highly correlated with poor outcomes in glioblastoma patients [28]. Thus, HMGA2 might
positively regulate the expression of inflammatory-response genes by activating the IL-6 pathway,
and this may offer us new insights into HMGA2-mediated regulation of inflammation.

NSAIDs are members of a drug class that reduces pain, decreases fever, prevents blood clots, and in
higher doses, decreases inflammation [29]. There are currently at least 20 approved NSAIDs, the most
prominent of which are aspirin, ibuprofen, and naproxen, all of which are available over the counter in
most countries [30]. The concept that NSAIDs can prevent CRC is now well established, owing to huge
epidemiologic studies which indicated that prolonged use of NSAIDs reduced adenomatous polyps,
as well as the incidence of disease and death from CRC by 30~50%, and most interventional studies
focused on aspirin and sulindac sulfide [31,32]. In addition, it was reported that aspirin can reduce
the occurrence of CRC, and also reduce the risk of metastasis in CRC [33]. However, the mechanism
of action of aspirin and sulindac sulfide as anticancer agents remains unclear. In this study, we used
gene expression profiles of HMGA2-knockdown and overexpression, and employed the LINCS L1000
platform which predicted that aspirin and the aspirin-like compound, sulindac sulfide, are novel
inhibitors of HMGA2. We found that the migratory ability of CRC cells with stable expression of
HMGA2 was inhibited by aspirin and sulindac treatment through HMGA2-regulated EMT effectors.
These findings indicate that aspirin and sulindac sulfide might act as inhibitors of the HMGA2-induced
migration of CRC cells, and that HMGA2 could be a potential therapeutic target for HMGA2-induced
EMT and metastasis of CRC.

In conclusion, results presented in this study provide strong support for further exploration of
aspirin and the aspirin-like compound, sulindac sulfide, as novel potential inhibitors of HMGA2 bythe
genome-wide mRNA signatures-based approach. Aspirin- and sulindac sulfide-induced cytotoxicity of
CRC cells stably expressing HMGA2 by inhibiting cell proliferation and migration through influencing
inflammatory-response genes, the majority of which were involved in GPCR signaling.

4. Materials and Methods

4.1. Chemicals, Reagents, and Antibodies

Sulindac sulfide, aspirin, methanol, crystal violet, and G418 were obtained from Sigma-Aldrich
(St. Louis, MO, USA). Antibodies against green fluorescent protein (GFP), Twist, Snail, vimentin,
E-cadherin, α-tubulin, and GAPDH were obtained from Cell Signaling (Beverly, MA, USA). HMGA2
was obtained from Santa Cruz Biotechnology (Santa Cruz, CA, USA).

4.2. Prediction of HMGA2 Inhibitors

Computational prediction of novel HMGA2 inhibitors was performed as follows. Differentially
expressed gene (DEG) signatures were obtained from the Gene Expression Omnibus (GEO) databases
of the National Center for Biotechnology Information (NCBI), with data from HMGA2-knockdown of
human esophageal cancer cells (TE-8) (GSE143882) and HMGA2 overexpression of hematopoietic stem
and progenitor cells (HSPCs) (GSE107594). Next, signatures of DEGs were analyzed using the Library
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of Integrated Network-Based Cellular Signatures (LINCS) L1000 platform [34] to predict drugs that
have the potency to inhibit HMGA2 expression.

4.3. Molecular Docking Analysis

The simulated docking of NSAIDs to the AT-hook motif of HMGA2 was carried out using
SwissDock [35] and analyzed using Chimera [36]. The sequence of the AT-hook motif was retrieved
from the Protein Data Bank (PDB) (accession code: 3UXW). Binding free energies were averaged to
estimate the affinity from the predicted binding intensities of docking interactions of NSAIDs and the
AT-hook motif of HMGA2. All docking parameters were set to the default.

4.4. Cell Cultures

DLD-1 control vector and DLD-1 HMGA2 stably expressing cell lines were provided by Prof.
Huang’s laboratory (Taipei Medical University, Taipei, Taiwan). All CRC cell lines were cultured in
RPMI-1640, supplemented with 10% fetal bovine serum (FBS) and antibiotics (all from Thermo Fisher
Scientific, Waltham, MA, USA), and maintained at 37 ◦C in a humidified atmosphere containing 5%
CO2. The cell lines were selected by 0.5 mg/mL G418.

4.5. Cell-Viability Assay

Cell viability was determined using the crystal violet staining method, as described previously [37].
In brief, cells were plated in 96-well plates at 3000 cells/mL and treated with or without NSAIDs at
the indicated concentrations. After NSAID treatment for 48 h, cells were stained with 0.5% crystal
violet for 10 min at room temperature. Next, the plates were washed with tap water three times.
After drying, cells were lysed with a 0.1 M sodium citrate solution (Sigma-Aldrich, St. Louis, MO,
USA), and measured at 550 nm on a microplate reader.

4.6. Cell-Migration Assay

DLD-1 control and DLD-1 HMGA2 stable expression cell lines (104 cells/well) in 0.5 mL of
serum-free medium were seeded in the upper chamber membranes of FalconTM cell culture inserts
(BD Biosciences, San Jose, CA, USA) and received different treatments. These membranes were inserted
into 24-well plates containing 10% FBS-supplemented medium. After 24 h, cells were fixed with 100%
methanol and stained with 5% Giemsa stain (Merck, Darmstadt, Germany). Non-migrated cells that
remained in the upper chambers were removed with a damp cotton swab. Cells that had migrated
were photographed under a phase-contrast microscope.

4.7. Western Blotting

Cell lines were placed in lysis buffer at 4 ◦C for 1 h. Protein samples were analyzed using different
percentages of sodium dodecylsulfate (SDS)-polyacrylamide gel electrophoresis, as described in [38].

4.8. Gene Set Enrichment Analysis (GSEA) and Functional Enrichment Analysis

We used GSEA v4.0 to perform a GSEA on public resources (GSE143882 and GSE107594). Gene sets
were obtained either from the molecular signatures database (MSigDB) hallmark gene set [39] or from
two public resources (GSE143882 and GSE107594). Statistical significance was assessed by comparing
enrichment scores to enrichment results. Significant DEGs were selected for the functional enrichment
analysis using the FunRich3.1.3 tool [18].

4.9. Statistical Analysis

Results are presented as the mean ± standard deviation (SD). We used Student’s t-tests for all
comparison experiments. Statistical analyses of the cell-viability and cell-migration assays were
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performed using an unpaired Student’s t-test with Excel software. All p values of <0.05 were
considered significant.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/25/17/3826/s1:
Table S1: Top 10 chemical perturbagens with a positive enrichment score for the gene expression signature of
the knockdown of human high-mobility group A2 (HMGA2).Table S2: Top 10 chemical perturbagens with a
negative enrichment score for the gene expression signature of the overexpression of HMGA2.Table S3: Sixty-seven
overlapping genes identified from the intersection between the knockdown or the overexpression of HMGA2
through a gene set enrichment analysis (GSEA).
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