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Abstract: Complex formation of nickel(II) tetrafluoroborate and tert-butyl 5-phenyl-2-pyridyl nitroxide
(phpyNO) in the presence of sodium cyanate gave a discrete molecule [Ni(phpyNO)2(X)2] (X = NCO).
The Ni-O-N-Csp2 torsion angles were reduced on heating; 33.5(5)◦ and 36.2(4)◦ at 100 K vs. 25.7(10)◦

and 32.3(11)◦ at 400 K. The magnetic behavior was almost diamagnetic below ca. 100 K, and the χmT
value reached 1.04 cm3 K mol−1 at 400 K. An analysis using the van’t Hoff equation indicates a possible
spin transition at T1/2 >> 400 K. Density functional theory calculation shows that the singlet-quintet
energy gap decreases as the structural change from 100 to 400 K. The geometry optimization results
suggest that the diamagnetic state has the Ni-O-N-Csp2 torsion angles of 32.7◦ while the Stotal = 2 state
has those of 11.9◦. The latter could not be experimentally observed even at 400 K. After overviewing
the results on the known X = Br, Cl, and NCS derivatives, the magnetic behavior is described in
a common phase diagram. The Br and Cl compounds undergo the energy level crossing of the
high-/low-spin states, but the NCS and NCO compounds do not in a conventional experimental
temperature range. The spin transition mechanism in this series involves the exchange coupling
switch between ferro- and antiferromagnetic interactions, corresponding to the high- and low-spin
phases, respectively.
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1. Introduction

Coordination compounds provide us a great opportunity for the development of spin-transition
materials [1–8]. Magnetic switches are needed for applications in display, memory, sensor, and related
smart devices. Iron(II) (3d6)-based spin-crossover (SCO) materials are the most intensively studied [9–14],
because magnetic and chromic changes would be drastic between the low-spin (LS) S = 0 diamagnetic
and high-spin (HS) S = 2 paramagnetic states. Furthermore, much attention has been paid to SCO near
room temperature required for applications under ambient conditions.

In the context of frontier orbital engineering, heterospin systems have an advantage in the wide
diversity of paramagnetic centers and practically infinite combinations and mutual geometries. Organic
radical species can also be applied to spin sources [6–8], and ligands can serve not only as a cap, bridge,
or polyhedron regulator, but also as a spin carrier. According to the “metal–radical approach” proposed
by Gatteschi et al. [15,16], direct metal-radical coordination bonds afford considerable magnetic
exchange interaction. A number of ligands based on 2-azaaryl tert-butyl nitroxides (aminoxyls) have
been explored for 2p-3d [17–23] as well as 2p-4f heterospin systems [24–28]. The exchange coupling
in radical-coordinated copper(II) (3d9) and nickel(II) (3d8) complexes is the best understood in the
2p-3d family [15–20,29]. Strictly orthogonal arrangement of magnetic orbitals, metal dσ and radical
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π*, favors ferromagnetic coupling. In contrast, severe angular deformation around the coordination
bond gives rise to an overlap between magnetic orbitals and accordingly antiferromagnetic interaction.
We have proposed the M-O-N-Csp2 torsion angle |ϕ| as a handy metric to evaluate the orthogonal or
overlapped dσ and radical π* orbitals [19,24].

While exotic spin-transition/SCO systems are explored extensively [6,30], we are developing the
S = 0� 2 spin-transition system other than iron(II) complexes. Three examples have so far been known
on the nickel(II)-bis(nitroxide) spin transition between Stotal = 0� 2. The reports on [Ni(phpyNO)2(X)2]
with X = Br (1, Scheme 1 for the molecular structure) [31], Cl (2) [32], and NCS (3) [33] afforded a clue
to a molecular design, where phpyNO stands for tert-butyl 5-phenyl-2-pyridyl nitroxide. A steric effect
from anionic co-ligands may tune spin-transition temperature. Here, we will report the results of the
X = NCO derivative (4).
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Scheme 1. Molecular formula of 1–4.

2. Results

2.1. Structural Study

Complex [Ni(phpyNO)2(NCO)2] (4) was synthesized by combining solutions of phpyNO and
Ni(BF4)2 in the presence of NaNCO. The elemental, spectroscopic, and crystallographic analyses
revealed the absence of any solvent molecules.

Single-crystal X-ray diffraction measurements on 4 were performed at 100, 200, 300, and 400 K,
and Figure 1a,b show the determined structures at 100 and 400 K, respectively. The space group is
orthorhombic Pna21, and there is a unique molecule in an asymmetric unit. Although the molecular
structure of highly related analogue 3 is quite similar, the space group is different [33]. It is probably
because the intermolecular interaction regarding the thiocyanate sulfur atoms [34] plays a role of
driving force in crystallization of 3.
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Figure 1. (a) X-ray crystal structure of 4 measured at 100 K and (b) 400 K. Thermal ellipsoids are drawn
at the 50% probability level. Selected atomic numbering is also shown. (c) Temperature dependences
of torsion angles (|ϕ|) for 4. Broken lines are drawn for a guide to the eye.
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A 2p-3d-2p triad was successfully constructed as a discrete molecule of 4. The co-ligand NCO– is
coordinated at a nitrogen atom. Each five-membered chelate ring involves a direct metal-radical bond.
The two nitroxide oxygen atoms are located in a cis relation.

At 100 K (Figure 1a), the N1-O1 and N2-O3 bond lengths of 1.297(5) and 1.292(5) Å are typical of
phpyNO complexes [19]. The Ni-O and Ni-N bond lengths vary in 1.985(4)–2.090(4) Å. The octahedral
coordination geometry of the nickel(II) ion indicates SNi2+ = 1. The bond lengths and bond angles
are almost unchanged on heating from 100 K to 400 K. The coordination polyhedron was quantified
with the SHAPE program [35]. In fact, the SHAPE measures to the ideal octahedron were 0.887, 0.867,
0.887, and 0.869 for the structures at 100, 200, 300, and 400 K, respectively. The crystal field practically
does not change in the entire temperature range. This feature is characteristic of the present transition
materials (see below), in sharp contrast to the observation in conventional one-centered SCO materials.

On the other hand, the Ni1-O1-N1-C1 and Ni1-O2-N3-C16 torsion angles were reduced;
ϕ1 = 33.5(5)◦ and ϕ2 = 36.2(4)◦ at 100 K vs. 25.7(10) and 32.3(11)◦ at 400 K (Figure 1b). As Figure 1c
displays, ϕ monotonically decreases on heating. The change width is relatively narrow, in comparison
with those of 1 and 2 [31,32].

2.2. Magnetic Study

Figure 2a displays the magnetic susceptibility result on 4. The χmT value was 1.04 cm3 K mol−1

at 400 K, being still smaller than 1.75 cm3 K mol−1 as the spin-only value from one triplet and two
doublet species. Furthermore, a positive slope remained at 400 K. On cooling, the χmT value decreased
and approached an almost diamagnetic level. These findings indicate that the presence of considerable
antiferromagnetic interaction. According to Okazawa’s formalism [36], the critical torsion angle ϕc is
21(1)◦, and any ϕ values obtained here fell in the antiferromagnetic region. The magneto-structure
relationship [19,20,31,36] holds well for the present case.
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Figure 2. (a) The χmT vs. T plot for 4. An asterisk indicates an impurity signal. (b) van’t Hoff plot of the
first heating data above 100 K. The solid lines are calculated with the van’t Hoff equation and optimized
parameters (see the text). In (b) the intercept is ∆S/R = 0.447, and the slope is −∆H/R = −492 K, where R
is the gas constant.

An impurity peak appeared around 15 K, but the impurity was experimentally inseparable from
the specimen (Figure 2a). Probably it would be ascribable to layered or networked magnets based on
nickel(II) hydroxides [37–39]. Fortunately, this signal occurs only in the lowest temperature region
below ca. 50 K, while the χmT onset ascribable to 4 emerges above ca. 100 K. The impurity signal
hardly disturbs the magnetic analysis.

The magnetic data were analyzed quite similarly to that of 3 [33]. The structural study clarifies
that the coordination structure is temperature dependent. The van Vleck analysis using an exchange
constant is inappropriate. We found that the magnetic data of 4 obeyed the van’t Hoff law (Equation (1))
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(Figure 2b). The van’t Hoff analysis is a common method to quantify SCO behavior in the absence of a
cooperative effect [40,41].

γHS =
1

1 + exp[(∆H/R)(1/T − 1/T1/2)]
(1)

χmT = C0 γHS + C1 (2)

The experimental χmT value was converted to γHS, the molar HS fraction (Equation (2)).
Parameters C0 implies the Curie constants for the HS state, and C1 that of the paramagnetic impurity.
The optimized parameters are: C0 = 3.0(3) cm3 K mol−1, C1 = 0.080(3) cm3 K mol−1, T1/2 = 1100(300) K,
the enthalpy change ∆H = 4.1(1) kJ mol−1, and the entropy change ∆S = 3.7(19) J K−1 mol−1. The fit
curves reproduced the data well. The C0 value is compatible with the spin-only value expected for
the HS state (S = 2; 3.0 cm3 K mol–1). The relatively small C1 supports the sample purity. The large
statistic error of T1/2 is unavoidable because of only the onset χmT data available. Although the C0

parameter seems to be somewhat underestimated and T1/2 overestimated, owing to a depopulation
effect, 4 would display a possible thermal spin transition at T1/2 >> 400 K.

2.3. DFT Calculation Study

The atomic coordinates of 4 experimentally determined at 100, 200, 300, and 400 K were subjected
to density functional theory (DFT) calculation [42]. The self-consistent field (SCF) energies were
computed using the unrestricted DFT theories and 6-311+G(2d,p) basis set. We chose B3LYP, PBE0,
and TPSSh [43,44] to check the functional dependence. Figure 3 shows the singlet-quintet energy gaps
as a function of temperature. The ground state is singlet at any temperatures, and the gap tends to
monotonically decrease, apparently toward null, with an increase of temperature. The PBE0 calculation
underestimates the magnitude of the gap, while the TPSSh one overestimates, with respect to the
B3LYP result. The three theories qualitatively gave the identical trend.
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Figure 3. The energy gap between the broken symmetry singlet state (EBS) and quintet state (EHS).
The functional dependence is also shown. Broken lines are drawn for a guide to the eye.

Detailed energy level structures were computed with the B3LYP theory, and Figure 4 shows
the results of the 100 and 400 K structures of 4. For the 100 K form (Figure 4, left), the lowest state
was singlet, depicted as ↓-↑↑-↓ along the radical-Ni-radical array. The highest state was quintet,
↑-↑↑-↑. The singlet-quintet gap was –2196 K. Two triplet states, ↑-↑↑-↓ and ↓-↑↑-↑, intervene them.
The exchange couplings are antiferromagnetic on both sides. For the 400 K form (Figure 4, right),
the ground state was also singlet, and the dominant antiferromagnetic behavior retained. However,
the most important point is a weakened antiferromagnetic interaction. The singlet-quintet gap was
reduced to −1245 K (57% of the corresponding value of the 100 K form). The energy gap to the first
excited triplet state became narrow as −323 K (37% of that of the 100 K form). The thermal energy at
the temperatures of the magnetic experiments is comparable to this gap. These calculation results are
entirely consistent with the magnetic study results.
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Figure 4. Diagram of the energy levels of the singlet, two triplet, and quintet states for the 100 K and
400 K forms of 4. Molecules are shown with a spin density map superposed. H atoms are omitted.
The positive (dark) and negative spin densities (light) are drawn with an isocontour of 0.002 e− Å−3.

A definitive support for the structure-related exchange coupling switch was offered from geometry
optimization results. The optimization was carried out with the B3LYP protocol on the 6-311+G(2d,p)
basis set for Ni and 6-31+G(d) basis set for other atoms. To reduce calculation cost, the peripheral
tert-butyl and phenyl groups were replaced with methyl and hydrogen groups, respectively; namely
methyl 2-pyridyl nitroxide (abbreviated as L) was applied as a model ligand. The optimized structures
of [NiL2(NCO)2] are displayed in Figure 5a,b. The Ni-O-N-Csp2 torsion angles of the diamagnetic state
are 32.7◦, whereas those of the Stotal = 2 state are 11.9◦. They possess a two-fold symmetry. Although
the conformation of the NCO groups varied during the energy minimization, it is safely concluded that
intramolecular 2p-3d antiferromagnetic coupling favors a large torsion, while ferromagnetic coupling
a small torsion. The calculation well reproduced the experimental values of the diamagnetic phase.
However, the value of 11.9◦ could not be experimentally observed even at 400 K. In other words,
the thermal energy of 400 K is insufficient to cause spin transition.
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Figure 5. Optimized structures of model 2p-3d-2p compounds: [NiL2(NCO)2] in the diamagnetic state
(a) and the Stotal = 2 state (b) and [NiL2Cl2] in the diamagnetic state (c) and the Stotal = 2 state (d),
where L stands for methyl 2-pyridyl nitroxide. The Ni-O-N-Csp2 torsion angles are indicated. Color
codes: green, Ni; black, C; turquoise, H; blue, N; red, O.
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To remove the conformational freedom in the co-ligands, another calculation was performed on a
model compound [NiL2Cl2]. The geometries were optimized for the diamagnetic and Stotal = 2 states
on the same calculation level (Figure 5c,d, respectively). The former has ϕ = 35.4 and −27.2◦, while
the latter has ϕ = −9.3◦. The experimental values of 2 are 38.9(2) and −29.2(2) at 85 K and 25.8(3) and
13.0(4) at 400 K [32]. In that case, the 85 K and 400 K structures are concluded to belong to the LS and
HS phases, respectively. The calculation well reproduced the experimental values for the diamagnetic
phase in particular. The sign of ϕ means a chirality of the torsional direction. The absolute values are
important for the orbital overlap, but it must be pointed out that the same and different signs indicate
“conrotatory” and “disrotatory” twisting directions, respectively, in a molecule. The DFT calculation
reproduced as well such observations in the diamagnetic state.

3. Discussion

The nickel(II)-radical exchange coupling parameter varies in a wide range, actually 2J/kB =

+409 K [19] to −1400 K [45], and is very sensitive to the overlap between the nickel(II) and radical
magnetic orbitals. Thanks to this, the unique spin transition materials are realized. The novelty of
the present spin transition mechanism resides in the ferro- and antiferromangetic exchange coupling
switch, corresponding to the HS and LS phases, respectively.

Now let us move to discuss: What is the driving force of the torsional deformation found in 4?
Why both wings synchronously move?

Figure 6a summarizes the calculation results on 1–4 [31–33]. In sharp contrast to the results on
3 and 4, the spin multiplicity of 1 and 2 was calculated to be HS at 400 K with the singlet-quintet
energy gaps were +141 and +102 K for 1 and 2, respectively. They are spin-transition materials
due to the exchange coupling switch. On the other hand, the thermal energy is insufficient for spin
transition even at 400 K for 3 and 4. Overall, the four compounds are documented in a common phase
diagram, as illustrated in Figure 6b. The critical temperature T1/2 is defined by the level crossing point.
Compounds 3 and 4 exhibited an indication of a possible spin-transition, as a result of T1/2 outside of
the temperature window of conventional magnetic measurements. Even if the temperature is elevated
above T1/2, the magnetic susceptibility did not reach the HS limit, but approached the paramagnetic
limit, owing to depopulation from the HS state.

Molecules 2020, 25, x FOR PEER REVIEW 6 of 11 

 

Figure 5. Optimized structures of model 2p-3d-2p compounds: [NiL2(NCO)2] in the diamagnetic state 
(a) and the Stotal = 2 state (b) and [NiL2Cl2] in the diamagnetic state (c) and the Stotal = 2 state (d), where 
L stands for methyl 2-pyridyl nitroxide. The Ni-O-N-Csp2 torsion angles are indicated. Color codes: 
green, Ni; black, C; turquoise, H; blue, N; red, O. 

To remove the conformational freedom in the co-ligands, another calculation was performed on 
a model compound [NiL2Cl2]. The geometries were optimized for the diamagnetic and Stotal = 2 states 
on the same calculation level (Figure 5c,d, respectively). The former has φ = 35.4 and −27.2°, while the 
latter has φ = −9.3°. The experimental values of 2 are 38.9(2) and −29.2(2) at 85 K and 25.8(3) and 13.0(4) 
at 400 K [32]. In that case, the 85 K and 400 K structures are concluded to belong to the LS and HS 
phases, respectively. The calculation well reproduced the experimental values for the diamagnetic 
phase in particular. The sign of φ means a chirality of the torsional direction. The absolute values are 
important for the orbital overlap, but it must be pointed out that the same and different signs indicate 
“conrotatory” and “disrotatory” twisting directions, respectively, in a molecule. The DFT calculation 
reproduced as well such observations in the diamagnetic state. 

3. Discussion 

The nickel(II)-radical exchange coupling parameter varies in a wide range, actually 2J/kB = +409 
K [19] to −1400 K [45], and is very sensitive to the overlap between the nickel(II) and radical magnetic 
orbitals. Thanks to this, the unique spin transition materials are realized. The novelty of the present 
spin transition mechanism resides in the ferro- and antiferromangetic exchange coupling switch, 
corresponding to the HS and LS phases, respectively. 

Now let us move to discuss: What is the driving force of the torsional deformation found in 4? 
Why both wings synchronously move? 

Figure 6a summarizes the calculation results on 1–4 [31–33]. In sharp contrast to the results on 3 
and 4, the spin multiplicity of 1 and 2 was calculated to be HS at 400 K with the singlet-quintet energy 
gaps were +141 and +102 K for 1 and 2, respectively. They are spin-transition materials due to the 
exchange coupling switch. On the other hand, the thermal energy is insufficient for spin transition 
even at 400 K for 3 and 4. Overall, the four compounds are documented in a common phase diagram, 
as illustrated in Figure 6b. The critical temperature T1/2 is defined by the level crossing point. 
Compounds 3 and 4 exhibited an indication of a possible spin-transition, as a result of T1/2 outside of 
the temperature window of conventional magnetic measurements. Even if the temperature is 
elevated above T1/2, the magnetic susceptibility did not reach the HS limit, but approached the 
paramagnetic limit, owing to depopulation from the HS state. 

(a) 

 

(b) 

 

Figure 6. (a) Temperature dependence of the energy gap between the broken-symmetry singlet state 
(BS) and quintet state (HS) on the determined structures of 4 (X = NCO), 3 (NCS), 2 (Cl), 1 (Br). The 
temperatures of structure determination are noted. An asterisk indicates an averaged value of the two 
independent molecules. For comparison on the same level, the data of 2 were updated as ∆E/kB = −1533 

Figure 6. (a) Temperature dependence of the energy gap between the broken-symmetry singlet state
(BS) and quintet state (HS) on the determined structures of 4 (X = NCO), 3 (NCS), 2 (Cl), 1 (Br).
The temperatures of structure determination are noted. An asterisk indicates an averaged value of
the two independent molecules. For comparison on the same level, the data of 2 were updated as
∆E/kB = −1533 and +102 K at T = 85 and 400 K, respectively. (b) A schematic Gibbs energy diagram
together with the experimental temperature windows for spin-transition materials 1–4.
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We have to state briefly the T1/2 order: 1 < 2 < 3 < 4. This chemical trend can be explained in
terms of the steric effects from the co-ligands [33]. The order of the van der Waals radii is r(N) < r(Cl) <

r(Br) [46], and the ligating atom mainly affects the steric congestion in the first coordination sphere.
The terminal sulfur and oxygen atoms may play an auxiliary role. Small co-ligands can accommodate
out-of-plane displacement of adjacent ligating atoms (i.e., nitroxide oxygen atoms), giving rise to
stabilization of the LS state and accordingly a high-temperature shift of T1/2.

All the compounds exhibited a single-crystal-to-single-crystal transition, as often found in
organic-based spin-transition materials [47]. The enthalpy change supplying the atomic dislocation
energy is regulated by the entropy change (T1/2∆trS = ∆trH), which is generally small. The entropy
due to the vibrational contribution is negligible because the structural change is merely the torsional
deformation in 1–4, in comparison with those of the bond length changes in the conventional
one-centered SCO compounds like iron(II) complexes. Consequently, the spin entropy change suffices
the enthalpy change of the spin transition accompanied by the small structural transition. In short,
the spin transition of the present series seems to be entropy-driven [48,49]. The Ni-O-N-Csp2 angular
deformations in 1–4 are always synchronized on both wings, and every interaction tends to alter from
ferro- to antiferromagnetic on lowering temperature, because the spin multiplicity could be minimized
(in this case, Stotal = 0). This notion also holds for the result on a spin-transition copper(II)-bis(nitroxide)
analogue, [Cu(phpyNO)2(H2O)2](BF4)2 [50]. In that case, no synchronous transition occurs between
the Stotal = 3/2 and 1/2 states. Only one side deformation is enough for minimization of Stotal.

There have been several reports on spin-transition phenomena in copper(II)-radical systems.
Okazawa et al. reported the spin transition of Cu2+-nitroxide compounds, and the mechanism is
quite similar to the present Ni2+ case [50,51]. Namely, the Cu-O-N-Csp2 angular deformation causes
the exchange coupling switch. On the other hand, Ovcharenko et al. reported the spin-transition
Cu2+-nitroxide compounds [52,53], and the mechanism involves a switch of the role of axial and
equatorial coordinations [54]. Rey et al. reported another type of the spin-transition Cu2+-nitroxide
materials [55], where the coordination environment is changed between a square pyramid and a trigonal
bipyramid. In contrast, our group focused on octahedral nickel(II) complexes. A coupling switch
takes place at any coordination sites, axial or equatorial. Rey et al. named a “pseudo-spin-transition”
material that shows a switch between strong and weak ferromagnetic couplings. Thus, this article
is supposed to report another example of a “pseudo-spin-transition” material that shows a switch
between strong and moderate antiferromagnetic couplings.

4. Materials and Methods

The following procedure of the preparation of 4 is typical. An acetone solution (1.0 mL) containing
phpyNO [19] (48.4 mg; 0.201 mmol) was combined with a water (0.60 mL) − methanol (0.40 mL)
mixed solution containing Ni(BF4)2·6H2O (35.0 mg; 0.103 mmol) and NaNCO (13.8 mg; 0.212 mmol)
at room temperature. After two days black rectangle-shaped crystals of 4 were formed, which were
collected on a filter, washed, and dried. The yield was 36.3 mg (0.0581 mmol; 58%). Mp. 196 ◦C (dec.).
IR (neat, attenuated total reflection) 3065, 2985, 2195, 1454, 1313, 1258, 1182, 1012, 764, 692, 610 cm−1.
Anal. Calcd. for C32H34N6NiO4: C, 61.46; H, 5.48; N, 13.44%. Found: C, 61.63; H, 5.64; N, 13.52%.

X-ray diffraction data of a single crystal of 4 were recorded on a Rigaku Saturn70 CCD diffractometer
using graphite monochromatized Mo Kα radiation (λ = 0.71073 Å). The structures were solved in the
CRYSTALSTRUCTURE application [56], and the parameters were refined in the SHELXL module [57].
Hydrogen atoms were located at calculated positions. Important crystal data are listed in Table 1.
CCDC numbers 2018891 and 2018892 for the structures at 100 and 400 K, respectively.

Magnetic susceptibilities of polycrystalline 4 were acquired on a Quantum Design MPMS XL-7
SQUID magnetometer (San Diego, CA, USA). Temperature was scanned from 1.8 to 400 K at a constant
magnetic field of 0.5 T. The diamagnetic susceptibility was calculated from Pascal’s constant [58].

Density functional theory (DFT) calculations were carried out on the Gaussian16 Revision
C.01 [59]. The broken symmetry method [42] was applied. For analyzing energy level structures of
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4, the self-consistent field energies were calculated with the experimentally-determined coordinates.
For geometrical optimization, a tight conversion was applied from the experimental coordinates as a
starting structure.

Table 1. Selected crystallographic parameters of 4.

Compound [Ni(phpyNO)2(NCO)2] (4)

T/K 100 400
Formula, formula weight C32H34N6NiO4, 625.36

Crystal system orthorhombic
Space group Pna21

a/Å 19.489(4) 19.727(9)
b/Å 8.992(2) 9.409(4)
c/Å 17.316(4) 17.217(7)

V/Å3 3034.5(11) 3196(2)
Z 4 4

dcalcd/g·cm−3 1.369 1.300
µ (MoKα)/mm−1 0.686 0.652

No. of unique reflections 6948 7227
R(F) (I > 2σ(I)) a 0.0525 0.0805

wR(F2) (all reflections) b 0.0989 0.1932
Goodness-of-fit parameter 1.054 1.155

a R = Σ[|Fo| − |Fc|]/Σ|Fo|; b wR = [Σw(Fo
2
− Fc

2)/ΣwFo
4]1/2.

5. Conclusions

When the singlet-quintet energy gap is relatively small, there is a chance of spin transition. After
overviewing the results on [Ni(phpyNO)2(X)2] (L = Br, Cl, NCS, NCO), the magnetic behavior is
described in a common phase diagram. The Br and Cl compounds undergo the energy level crossing
of the HS/LS states and behave as a spin-transition material. On the other hand, the NCS and NCO
compounds do not in a conventional experimental temperature range. The HS/LS phases originate
directly from the intramolecular 2p-3d ferro-/antiferromagnetic exchange couplings.

The present solid-state/solid-state structural transition, or more likely crossover, involves a
very slight torsional deformation around the coordination bond. Thus, the preset scenario can be
regarded as a novel mechanism operative in multi-centered SCO. The spin state is regulated by
antiferro-/ferromagnetic balance in multi-centered systems, in place of the aufbau/Hund balance in
one-centered systems. The aufbau principle works in gapped d-orbitals caused by a ligand field
as well as in gapped bonding and antibonding molecular orbitals caused by interaction between
magnetic orbitals.

Finally, we have to emphasize that J is a variable of T in the analysis of the magnetic data.
The single-point X-ray crystal structure analysis cannot reveal a hidden structural transition, but combining
detailed works from structural chemistry and magnetochemistry can solve such problems.
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