Supplementary Materials

Discovery of Unusual Cyanobacterial Tryptophan-Containing Anabaenopeptins by MS/MS-Based Molecular Networking

Subhasish Saha ^{1,†}, Germana Esposito ^{2,†}, Petra Urajová ¹, Jan Mareš ^{1,3}, Daniela Ewe ¹, Alessia Caso ², Markéta Macho ^{1,4}, Kateřina Delawská ^{1,4}, Andreja Kust ^{1,3}, Pavel Hrouzek ¹, Josef Juráň ^{4,5}, Valeria Costantino ^{2,*} and Kumar Saurav ^{1,*}

- ¹ Laboratory of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37981, Třeboň, Czech Republic; <u>saha@alga.cz</u> (S.S.); <u>urajova@alga.cz</u> (P.U.); <u>mares@alga.cz</u> (J.M.); <u>ewe@alga.cz</u> (D.E.); <u>macho@alga.cz</u> (M.M.); <u>delawska@alga.cz</u> (K.D.); <u>kust@alga.cz</u> (A.K.); <u>hrouzek@alga.cz</u> (P.H.)
- ² Task Force Big Fed2, The Blue Chemistry lab, Università degli Studi di Napoli, 80131, Napoli, Italy; <u>germana.esposito@unina.it</u> (G.E.); <u>alessia.caso@unina.it</u> (A.C.)
- ³ Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
- ⁴ Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, 37005, České Budějovice, Czech Republic. josef.juran@ibot.cas.cz
- ⁵ Institute of Botany of the Czech Academy of Sciences, 252 43, Průhonice, Czech Republic
- ⁺ These authors contributed equally to this work
- * Correspondence: valeria.costantino@unina.it (V.C.), saurav@alga.cz (K.S.); Tel.: +420-737-003-359 (K.S.).

Academic Editor: Derek J. McPhee

Received: 21 July 2020; Accepted: 19 August 2020; Published: 20 August 2020

Table S1. Biosynthetic gene clusters (BGCs) predicted from the genome of *Brasilonema* sp. CT11 using antiSMASH. Out of the 36 clusters identified, four clusters possess 100% similarity with other known BGCs whereas only two clusters were detected with more than 75% similarity with BGCs of known compounds.

Table S2. Summary of deduced proteins in the anabaenopeptin biosynthetic pathway in *Brasilonema* sp. CT11 and their closest homologues.

Table S3. Summary of adenylation domains and their substrates involved in anabaenopeptin biosynthesis in *Brasilonema* sp. CT11.

Figure S1. Microphotograph of *Brasilonema* sp. CT11 with heterocytous false-branching filaments. Scale bar represents 100μ M.

Figure S2. Molecular networking analyses of the crude extract of *Brasilonema* CT11 analyzed via LC-HRMS/MS. Labelled box represents the cluster containing APT molecules.

Figure S3. HR-MS/MS product ion spectra of protonated anabenopeptin 802 2a and 2b from *Brasilonema* CT11.

Table S4. NMR data of anabenopeptin 802a (2a) (700 MHz, CD₃OD).

Figure S4. ¹H-NMR spectrum of anabenopeptin 802a (2a) (700 MHz, CD₃OD).

Figure S5. COSY spectrum of anabenopeptin 802a (2a) (700 MHz, CD₃OD).

Figure S6. NOESY spectrum of anabenopeptin 802a (2a) (700 MHz, CD₃OD).

Figure S7. HSQC spectrum of anabenopeptin 802a (2a) (700 MHz, CD₃OD).

Figure S8. HMBC spectrum of anabenopeptin 802a (2a) (700 MHz, CD₃OD).

Figure S9. TOCSY spectrum of anabenopeptin 802a (2a) (700 MHz, CD₃OD).

Table S5. NMR data of anabenopeptin 802b (2b) (700 MHz, CD₃OD).

Figure S10. ¹H-NMR spectrum of anabenopeptin 802b (2b) (700 MHz, CD₃OD).

Figure S11. COSY spectrum of anabenopeptin 802b (2b) (700 MHz, CD₃OD).

Figure S12. NOESY spectrum of anabenopeptin 802b (2b) (700 MHz, CD₃OD).

Figure S13. HSQC spectrum of anabenopeptin 802b (2b) (700 MHz, CD₃OD).

Figure S14. HMBC spectrum of anabenopeptin 802b (2b) (700 MHz, CD₃OD).

Figure S15. TOCSY spectrum of anabenopeptin 802b (2b) (700 MHz, CD₃OD).

Table 1.	BGCs pr	edicted	d from this	strain	using	antiSM	ASH. O	ut of the 3	6 clus	ters i	dentified	, four
clusters	possess	100%	similarity	with	other	known	BGCs,	whereas	only	two	clusters	were
detected	l with mo	ore that	n 75% simi	larity	with B	GCs of l	known	compoun	ds.			

Metabolite Class	Brasilonema CT11	Most similar known cluster (%)
PKS I	01	Merocyclophane C/D (22%)
NRPS	12	Anabaenopeptin 908/915
		(100%)
PKS-NRPS	06	Nostopeptolide A2 (100%)
Hybrid		• •
Terpene	03	Geosmin (100%)
RiPP	02	-
Bacteriocin	04	-
Indole	01	Staurosporine (26%)
Mixed	04	_
Others	03	-

Anabaenopeptin Pathway Closest Homologue (BLASTp)					Top BLASTp Hit with Known Function					
Protein	Size (aa)	Proposed Function	Accession	Organism	Identity (%)	Function	Accession	Organism	Identity (%)	Function
AptA	2201	NRPS	WP_171976800.1	Brasilonema (multispecies)	89	NRPS (hypothetical)	AVK43380.1	<i>Nostoc</i> sp. N135.9.1	81	NRPS—AptA (anabaenopeptin pathway)
AptB	1069	NRPS	WP_073634533.1	<i>Scytonema</i> sp. HK-05	87	NRPS (hypothetical)	ASR75186.1	Nostoc sp. KVJ2	83	NRPS—AptB (anabaenopeptin pathway)
AptC	2588	NRPS	WP_073634532.1	Scytonema sp. HK-05	84	NRPS (hypothetical)	AVK43394.1	Nostoc sp. XHIID C2	82	NRPS—AptC (anabaenopeptin pathway)
ORF1	206	unknown	WP_073634531.1	Scytonema sp. HK-05	88	Uma2 family endonuclease (hypothetical)		I	10 hit	
AptD	1397	NRPS	WP_171976805.1	<i>Brasilonema</i> (multispecies)	91	NRPS (hypothetical)	AVK43292.1	Nodularia spumigena AV2	83	NRPS—AptD (anabaenopeptin pathway)
AptE	736	ABC transporter	WP_171976806.1	Brasilonema (multispecies)	82	ATP-binding cassette domain-containing protein (hypothetical)	AVV48476.1	Anabaena sp. SYKE748A	71	ABC transporter—AptE (anabaenopeptin pathway)

Table 2. Summary of deduced proteins in the anabaenopeptin biosynthetic pathway in *Brasilonema* sp. CT11 and their closest homologues.

Table 3. Summar	y of adenylation	domains and their s	substrates involved ir	anabaenopept	tin biosynthesis	s in <i>Brasilonema</i> s	p. CT11
-----------------	------------------	---------------------	------------------------	--------------	------------------	---------------------------	---------

Protein	Domain (aa range)	Closest Annotated BLAST Hit (aa range)	Identity (%)	Predicted Substrate (antiSMASH)	Incorporated aa Residue in Anabaenopeptin
AptA	A0 (46–449)	AptA1, Nostoc sp. 268, AVK43337.1 (47–446)	83	Val/Ile	L-Val/L-Leu
	A1 (1130–1537)	AptA2, Nostoc sp. N135.9.1, AVK43380.1 (1121–1523)	82	Lys	D-Lys
AptB	A2 (450–848)	AptB, Nostoc sp. XHIID C2, AVK43393.1 (470–867)	84	Leu/Ile	L-Leu/L-Ile/L-Val
AptC	A3 (511–905)	AptD, Nostoc sp. KVJ2, ASR75188.1 (544–937)	80	Leu	L-Trp
	A4 (1563–1972)	AptC, Nostoc sp. XHIID C2, AVK43394.1 (1569–1967)	82	Ala	L- <i>N</i> MeAla
AptD	A5 (545–939)	AptD, Nodularia spumigena 309, AVK43275.1 (546–937)	82	Phe	L-Phe

Figure S1. Microphotograph of *Brasilonema* sp. CT11 with heterocytous false-branching filaments. Scale bar represents 100 μ M.

Figure S2. Molecular networking analyses of the crude extract of *Brasilonema* CT11 analyzed via LC-HRMS/MS. Labelled box represents the cluster containing APT molecules.

Figure S3. HR-MS/MS product ion spectra of protonated anabenopeptin 802 2a and 2b from *Brasilonema* CT11.

Val						
Val						
	NH			8.40, br s		
	1	175.9 <i>,</i> C		-		
	2	59.7 <i>,</i> CH		4.18, br s		
	3	31.6, CH		2.25, m		4, 5
	4	17.3, CH ₃		0.91, d (6.9)	2, 3, 5	2, 3
	5	19.8, CH ₃		0.98, d (6.9)	2, 3, 4	2, 3
С=О	6	159.6, C		-		
Lys	NH			8.40, br s		
	1	175.9 <i>,</i> C		-		
	2	56.0, CH		4.15, t (4.6)	1, 3, 4, 6, 7	3a
	3	32.3, CH2	а	1.75, m	1, 2	
			b	1.93, m	1	
	4	21.5, CH ₂	а	1.26, m		
			b	1.45, m		
	5	35.6, CH ₂		1.51, m		
	6	39.8, CH2	а	2.92, br d (12.6)		6b
			b	3.75, m		6a
	NH			7.82, d (8.0)		
Phe	NH			9.21, d (8.8)		
	1	174.0, C		-		
	2	56.6, CH		4.5, ddd (12.5, 8.7, 2.9)	1, 3, 4	3a
	3	38.6, CH ₂	а	2.86, t (13.2)	2, 4, 5/9	
			b	3.38, dd (13.7, 3.1)	4, 5/9	3a
	4	139.4, C		-		
	5/9	129.9, CH		7.11, d (7.6)	3, 6, 7	2, 3a
	6/8	129.5, CH		7.21, t (7.6)	4, 5/9	,
	7	127.3, CH		7.14, t (7.6)	5/9	

Table 4. NMR data of anabenopeptin 802a (2a) (700 MHz, CD₃OD).

NMeAla 1 173.3, C

-

	2	56.6, CH	4.60, q (6.7)	1, 3, 4	3
	3	12.5, CH ₃	-0.26, d (6.7)	1, 2	2
	4	27.9, CH ₃	1.57, s	2, C1-Trp	
Trp	NH		8.97, d (3.2)		
	1	174.0, C	-		
	2	51.7, CH	5.05, dt (11.2, 5.0, 3.7)	1, 3, 4	
	3	28.8, CH ₂	3.27, m	1, 2, 4, 5	
	4	109.8, C	-		
	5	124.5 <i>,</i> CH	7.05, s	3, 4, 6, 11	10
	6	128.7, C	-		
	7	112.3 <i>,</i> CH	7.31, d (8.1)	6, 8	
	8	119.9 <i>,</i> CH	7.02, t (7.4)	6, 7	10
	9	122.3 <i>,</i> CH	7.09, br d (7.6)	10, 11	
	10	119.0 <i>,</i> CH	7.57, d (7.9)	4, 6, 9, 11	5, 8, 9
	11	137.8, C	-		
	NH		7.90, s		
Ile	NH		7.78, br s		
	1	173.9, C	-		
	2	59.3, CH	4.04, dd (9.6, 4.9)	1, 3	3
	3	36.9, CH	1.96, m		
	4	15.3, CH ₃	1.17, d (6.8)	2, 3	
	5	19.8, CH ₂	1.38, m	6	
	6	14.0, CH ₃	0.93, t (7.4)	5	2

^a Selected HMBC correlations from proton stated to the indicated carbon.

Figure S4. ¹H-NMR spectrum of anabenopeptin 802 (2a) (700 MHz, CD₃OD).

Figure S5. COSY spectrum of anabenopeptin 802 (2a) (700 MHz, CD₃OD).

Figure S6. NOESY spectrum of anabenopeptin 802 (2a) (700 MHz, CD₃OD).

Figure S7. HSQC spectrum of anabenopeptin 802 (2a) (700 MHz, CD₃OD).

Figure S8. HMBC spectrum of anabenopeptin 802 (2a) (700 MHz, CD₃OD).

Figure S9. TOCSY spectrum of anabenopeptin 802 (2a) (700 MHz, CD₃OD).

	Position	dc, type		dH, mult (J in Hz)	HMBC ^a	NOESY
Val	NH			8.20, br s		
	1	176.7, C		-		
	2	59.2, CH		4.20, d (3.8)	1, 3,7	3,5
	3	31.3, CH		2.25, m		
	4	17.2, CH ₃		0.92, d (6.8)		3
	5	19.8, CH ₃		1.00, dd (6.6, 1.9)		3
C=O	6	159.6, C				
Lvs	NH			8.20, br s		
5	1	176.3, C		-		
	2	55.9, CH		4.16, t (4.9)	1, Val-NH	3a, 4a
	3	31.1, CH ₂	а	1.73, ovl	·	,
			b	1.95, tt (13.8, 3.4)		
	4	20.2, CH2	а	1.27, m		
			b	1.47, m		
	5	29.0, CH2	а	1.55, m		
			b	1.62, m		
	6	39.8, CH2	а	2.90, br d		
			b	3.80, m		
	NH			7.90, d (8.6)		5b, 6a, 6b
Phe	NH			9.20, d (8.7)		2, 3a
	1	176.3, C		-		
	2	56.9, CH		4.47, ddd (12.1, 8.5, 3.1)	1, 3a, 4	3a, 3b
	3	38.8, CH2	а	2.85, t (13.3)		
			b	3.40, dd (13.5,3.1)		
	4	139.1, C		-		
	5/9	129.5, CH		7.20, t (7.4)		
	6/8	130.1, CH		7.09, ovl	4	2, 3a, H4-Leu,
						H5-Leu

Table S4. NMR data of anabenopeptin 802b (2b) (700 MHz, CD₃OD).

	7	127.6, CH	7.14, t (7.4)		
NMeAla	1	173.5 <i>,</i> C	_		
	2	56.5, CH	4.60, g (6.7)	3	3
	3	10.7. CH ₃	-0.25. d (6.6)		
	4	27.6, CH ₃	1.58, s	2	
Tro	NH		9.00. d (3.4)		
r	1	173.6 <i>,</i> C	-		
	2	51.7, CH	5.10, m		
	3	28.3, CH2	3.30, d (5.1)	1, 4, 5	2
	4	109.5, C	-		
	5	124.7, CH	7.04, s	4	
	6	128.5, C	-		
	7	119.1, CH	7.60, d (8.1)	9, 11	2, 3, H2-Leu
	8	120.1, CH	7.00, t (7.4)	6, 10	
	9	122.5 <i>,</i> CH	7.09, ovl		
	10	112.5, CH	7.30, d (8.1)		
	11	137.8, C	-		
	NH		10.40, s		
Leu	NH		7.70, br s		
	1	174.7 <i>,</i> C	-		
	2	53.5, CH	4.30, m	1, 3, 4	
	3	41.1, CH ₂	1.76, ovl		
	4	25.4, CH	1.87, m	2, 3	
	5	22.3, CH ₃	1.00, dd (6.6, 1.9)		1
	6	23.0, CH ₃	1.05, d (6.4)		3, 4

^a Selected HMBC correlations from proton stated to the indicated carbon.

Figure S10. ¹H-NMR spectrum of anabenopeptin 802b (2b) (700 MHz, CD₃OD).

Figure S11. COSY spectrum of anabenopeptin 802b (2b) (700 MHz, CD₃OD).

Figure S12. NOESY spectrum of anabenopeptin 802b (2b) (700 MHz, CD₃OD).

Figure S13. HSQC spectrum of anabenopeptin 802b (2b) (700 MHz, CD₃OD).

Figure S14. HMBC spectrum of anabenopeptin 802b (2b) (700 MHz, CD₃OD).

Figure S15. TOCSY spectrum of anabenopeptin 802b (2b) (700 MHz, CD₃OD).