Supporting information

NIR absorbing azaBODIPY dyes for pH sensing

Gugu Kubheka ¹, John Mack ^{1,*}, Tebello Nyokong ¹ and Zhen Shen ^{2,*}

- ¹ Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa; j.mack@ru.ac.za
- ² State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, P. R. China; zshen@nju.edu.cn
- * Correspondence: j.mack@ru.ac.za; Tel.: +27-46-603-7234 (J.M.): zshen@nju.edu.cn; Tel.: +86-25-8968-6679 (Z.S.)

Figure S1: ¹H NMR spectrum of 2a in acetone-d₆.

Figure S2: ¹H NMR spectrum of 2b in CDCl₃.

Figure S3: MS data for 2a.

Figure S4: MS data for 2b.

Figure S5: Stacked ¹H NMR spectra for **2b** titrated with TFA in CDCl₃.

*Buffer	Target	Measured	Conc. of	Vol. of	Vol.	Vol. of	Total	Calculated	Conc.
	рН	рН	Salt Solution (M)	Salt Solution (ml)	of HCI (ml)	NaOH (0.1 M) (ml)	Vol H2O (ml)	Ionic Strength (M)	of KCl required (M)
KCl/HCl	0.40	0.40	2.0	25	48.6		200	0.736	0.26
	0.60	0.62		50	29.5			0.695	0.31
	0.80	0.82			11.5			0.515	0.49
	1.0	1.02			7.1			0.471	0.53
KCl/HCl	1.2	1.19	0.20		3.6			0.436	0.56
	1.4	1.42			107.1			0.1571	0.84
	1.6	1.62			31.1			0.0811	0.92
	1.8	1.81			17.2			0.0672	0.93
	2.0	2.02			9			0.059	0.94
C8H5KO4	2.5	2.51		100	69.9			0.2699	0.73
NaOAC/	3.0	3.03	0.10	25	50.9		100	0.0759	0.92
AcOH	4.0	4.03			38.3			0.0633	0.94
	5.0	5.08			13			0.038	0.96
KH2PO4	6.0	6.00				1.4		0.0264	0.97
	7.0	7.00]			6		0.031	0.97
	8.0	8.04]			11.2		0.0362	0.96
	9.0	9.04				19.05		0.04405	0.96

Table S1: Preparation of buffer solutions of constant ionic strength (I = 1 M). The pH values were measured at $\approx 20^{\circ}$ C.

*C8H5KO4 (potassium hydrogen phthalate, NaOAC/AcOH

(Sodium acetate/ acetic acid) and KH2PO4 (Potassium hydrogen phosphate)

#a	Еь	λ_{calc}	f^{d}	λ_{exp}^{e}	Wavefunction ^f			
	[eV]	[nm]		[nm]				
AzaBDY								
S ₁	2.89	429	0.44		92% HOMO \rightarrow LUMO;			
2a								
S_1	1.98	625	0.82	824	98% HOMO \rightarrow LUMO;			
S ₂	3.08	402	0.80		70% HOMO-1 \rightarrow LUMO; 27% HOMO-3 \rightarrow LUMO;			
2b								
S_1	2.04	608	0.69	790	99% HOMO \rightarrow LUMO;			
S ₂	2.69	461	0.43		69% HOMO-1 \rightarrow LUMO; 23% HOMO-2 \rightarrow LUMO;			

Table S2. Calculated electronic excitation spectra of **2a** and **2b** at the CAM-B3LYP/6-31G(d) level of theory.

^{*a*}Excited state numbers in increasing energy from the TD-DFT calculations. ^{*b*}Calculated transition energies in eV. ^{*c*}Calculated wavelengths in nm. ^{*d*}Calculated oscillator strengths. ^{*e*}Experimental absorption maxima wavelengths in nm (solvent = DMSO). ^{*f*}Wavefunctions of the one-electron transitions involved in the transitions and their respective contributions on the basis of the eigenvectors predicted by TD-DFT calculations.