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Abstract: The phytochemical investigation of Huberantha jenkinsii resulted in the isolation of
two new and five known compounds. The new compounds were characterized as undescribed
8-oxoprotoberberine alkaloids and named huberanthines A and B, whereas the known compounds
were identified as allantoin, oxylopinine, N-trans-feruloyl tyramine, N-trans-p-coumaroyl tyramine,
and mangiferin. The structure determination was accomplished by spectroscopic methods. To evaluate
therapeutic potential in diabetes and Parkinson’s disease, the isolates were subjected to assays for
their α-glucosidase inhibitory activity, cellular glucose uptake stimulatory activity, and protective
activity against neurotoxicity induced by 6-hydroxydopamine (6-OHDA). The results suggested that
mangiferin was the most promising lead compound, demonstrating significant activity in all the
test systems.
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1. Introduction

In recent years, non-communicable diseases (NCDs), such as neurodegenerative disorders,
cardiovascular diseases, and metabolic syndromes, have become a major global health issue.
In several parts of the world, NCDs have caused serious socioeconomic impacts, through increasing
impoverishment and slowing down social and economic development [1]. Plants are a natural source
of chemopreventive agents for NCDs. A large number of plant-derived products have been shown
to possess protective activity against diabetes [2] and neurodegeneration [3]. Currently, our research
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has been focused on studying plants with potential preventive activity against NCDs, including
neurodegenerative disorders and diabetes [4–6].

The genus Huberantha Chaowasku, a recently established genus in the family Annonaceae, contains
27 species transferred from the genus Polyalthia [7,8]. Huberantha jenkinsii (Hook. f. and Thomson)
Chaowasku is called “Dang nga khao” in Thai or “Taung-Kabut” in Myanmar. It was formerly known
as Guatteria jenkinsii Hooker and Thomson or Polyalthia jenkinsii (Hook. f. and Thomson) Hooker and
Thomson [7,8]. The plant has no records of traditional medicinal uses. A recent report on Polyalthia
cinnamomea describes the isolation of alkaloids with α-glucosidase inhibitory activity [9], suggesting the
possible presence of compounds with antidiabetic potential in plants that are in or related to the genus
Polyalthia. In this study, the chemical components of Huberamtha jenkinsii were isolated and evaluated
for biological activities related to NCDs, including neuroprotective activity against Parkinson’s disease,
α-glucosidase inhibitory potential, and cellular glucose uptake stimulatory properties.

2. Results and Discussion

2.1. Structural Characterization

From the stem of Huberantha jenkinsii, two new alkaloids (1 and 2), together with five
known compounds (3–7), were isolated and structurally characterized (Figure 1). The known
compounds were identified as allantoin (3) [10], oxylopinine (4) [11], N-trans-feruloyl tyramine (5) [12],
N-trans-p-coumaroyl tyramine (6) [12], and mangiferin (7) [13] through the comparison of their
spectroscopic data with the literature values.
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four oxygenated quaternary carbons at δ 146.7, 147.0, 149.4, and 149.5, together with the HSQC 
correlation peaks for five aromatic methine carbons at δH 7.33 (1H, s)/δC 111.8, δH 7.33 (1H, d, J = 8.4 
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Figure 1. Chemical structures of compounds 1–7 isolated from Huberantha jenkinsii.

Compound 1 was obtained as a brownish white powder. The molecular formula was determined
to be C19H17NO5 from the deprotonated molecular ion [M-H]− at m/z 338.1029 (calcd. for C19H16NO5

338.1028) in the HR-ESI mass spectrum. The UV spectrum displayed maximal absorptions at 225,
335, and 370 nm, characteristic of the 8-oxoprotoberberine skeleton [14]. The presence of the lactam
functionality was supported by the IR band at 1667 cm−1 and the 13C NMR signal at δ 159.9 (Table 1).

The 1H NMR spectrum of 1 (Table 1) showed two 2H triplets at δ 2.91 (2H, t, J = 6.0 Hz, H2-5)
and 4.20 (2H, t, J = 6.0 Hz, H2-6), assignable to the methylene protons of the B ring [15]. This was
supported by their correlation peak in the COSY spectrum (Figure 2). The 13C NMR resonances for four
oxygenated quaternary carbons at δ 146.7, 147.0, 149.4, and 149.5, together with the HSQC correlation
peaks for five aromatic methine carbons at δH 7.33 (1H, s)/δC 111.8, δH 7.33 (1H, d, J = 8.4 Hz)/δC

123.7, δH 7.27 (1H, d, J = 8.4 Hz)/δC 122.6, δH 6.91 (1H, s)/δC 101.5, and δH 6.90 (1H, s)/δC 111.4, were
suggestive of 2,3,9,10-tetraoxygenation [14]. The four oxygen-containing substituents included two
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phenolic and two methoxy groups, as indicated from the HSQC cross peaks at δH 3.89 (3H, s)/δC 56.3
and δH 3.91 (3H, s)/δC 62.2. The first methoxy group (δ 3.89) should be placed at C-3, as evident from
the NOESY correlation peak between these methoxy protons and H-4, which also showed a NOESY
cross peak with H2-5 (Figure 2). This proposed structure was corroborated by the HMBC 3-bond
correlations from H-4 to the methylene carbon at δ 28.6 (C-5) and the hydroxylated carbon at δ 146.7
(C-2), and from the MeO-3 protons to the carbon at δ 149.4 (C-3) (Table 1 and Figure 2). The second
methoxy group (δ 3.91) should be located at C-9 of the D ring, since its protons did not display a
NOESY cross peak with H-11. This was supported from the 3-bond connectivity from the MeO-9
protons to C-9 (δ 147.0) and from H-12 to the hydroxylated carbon at δ 149.5 (C-10).

Table 1. NMR data of compounds 1 and 2.

Position
1 * 2 *

δH (Multiplicity, J in Hz) δC δH (Multiplicity, J in Hz) δC

1 7.33 (1H, s) 111.8 7.33 (1H, s) 112.0
2 146.7 146.7
3 149.4 149.6
4 6.90 (1H, s) 111.4 6.90 (1H, s) 111.4
4a 128.1 128.4
5 2.91 (2H, t, 6.0) 28.6 2.89 (2H, dd, 6.5, 6.0) 28.7
6 4.20 (2H, t, 6.0) 40.1 4.16 (2H, dd, 6.5, 6.0) 39.7
8 159.9 159.7
8a 119.5 113.1
9 147.0 155.4
10 149.5 141.5
11 7.27 (1H, d, 8.4) 122.6 155.2
12 7.33 (1H, d, 8.4) 123.7 6.85 (1H, s) 107.3

12a 132.9 136.9
13 6.91 (1H, s) 101.5 6.80 (1H, s) 100.7
14 136.1 137.9

14a 123.6 123.4
MeO-2
MeO-3 3.89 (3H, s) 56.3 3.90 (3H, s) 61.5
MeO-9 3.91 (3H, s) 62.2 3.90 (3H, s) 61.9

MeO-10 3.88 (3H, s) 56.3

* Recorded in acetone-d6 at 500 and 125 MHz for 1H and 13C, respectively.
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Figure 2. COSY (bold line), NOESY (double arrow line), and HMBC (arrow line) correlations observed
for 1.

Based on the above spectroscopic properties, 1 was characterized as a new 8-oxoprotoberberine
alkaloid with the structure 2,10-dihydroxy-3,9-dimethoxy-5,6-dihydro-8H-isoquinolino[3,2-a]
isoquinolin-8-one, and given the trivial name huberanthine A. It should be noted that this chemical
structure has been mentioned as an in situ intermediate for the organic synthesis of oxypalmatine [16].
However, so far no chemical, physical, or spectroscopic properties of 1 have been described.
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Compound 2 had a molecular formula of C20H19NO6, as deduced from the [M-H]− at m/z 368.1129
(calcd. for C20H18NO6 368.1134) in the HR-ESI-MS. The UV absorptions and IR bands of 2 were
similar to those of 1, suggesting an 8-oxoprotoberberine structure. The COSY spectrum showed vicinal
coupling for the methylene protons at C-5 and C-6 (Figure 3). It could be inferred from the molecular
mass that compound 2 possesses an additional methoxy group, in comparison with 1. This was
supported by the HSQC correlation peaks observed for three methoxy groups at δH 3.88 (3H, s)/δC

56.3, δH 3.90 (3H, s)/δC 61.5, and δH 3.90 (3H, s)/δC 61.9, and for four aromatic methines at δH 7.33
(1H, s, H-1)/δC 112.0, δH 6.90 (1H, s, H-4)/δC 111.4, δH 6.85 (1H, s, H-12)/δC 107.3, and δH 6.80 (1H,
s, H-13)/δC 100.7 (Table 1). Similar to 1, compound 2 had a phenolic and a methoxy group located
at C-2 and C-3 of ring A, respectively, as evidenced by the NOESY cross peak between the methoxy
protons at δ 3.90 and the H-4 proton at δ 6.90 (Figure 3). The two remaining methoxy groups of 2
should be placed at C-9 and C-10, since none of these methoxy protons showed NOESY interaction
with H-12 (Figure 3). This was supported by the HMBC correlations from H-12 to C-10 (δ 141.5)
and C-11 (δ 155.2) (Figure 3). Thus, 2 was determined to be a new compound, having the structure
2,11-dihydroxy-3,9,10-trimethoxy-5,6-dihydro-8H-isoquinolino[3,2-a]isoquinolin-8-one and given the
name huberanthine B.
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2.2. Biological Activities

The isolated compounds (1–7) were subjected to assays for protective activity against
6-hydroxydopamine (6-OHDA) in SH-SY5Y cells, an in vitro model for preliminary evaluation of
neuroprotective potential for Parkinson’s disease (PD) [17,18]. In this study, the neurotoxic agent
6-OHDA (100 µM) was used to cause cell death in the range of 42–58%, whereas oxyresveratrol
(50 µM) was employed as the positive control [17,19]. Each of the test compounds was evaluated in
four concentrations-i.e., 10, 25, 50 and 100 µM. The percentages of cell viability after a 2 h treatment
with 6-OHDA in the presence and the absence of the test compound were obtained and analyzed to
determine the percent of cell survival. Cytotoxicity studies of each compound were also conducted
by determining the percent cell viability after 24 h of exposure. From Table 2 and Figure 4, it can
be seen that the new compounds huberanthines A and B (1 and 2), after 2 h incubation, exhibited a
moderate activity, with the percent of cell survival of 72.4± 1.1% and 60.9± 0.9% at 100 µM, respectively.
However, after 24 h of exposure, they showed toxicity against the neuronal cells (<80% cell viability as
compared to the control).

N-trans-Feruloyl tyramine (5) showed a recognizable neuroprotective potential at 100 µM with a
60.9 ± 2.5% cell survival (6-OHDA: 48.4 ± 3.3% at 100 µM). Compounds 3, 4, and 6 were devoid of
activity. Interestingly, mangiferin (7) displayed a strong neuroprotective activity, with a 60.5 ± 1.7%
cell survival at 25 µM (6-OHDA: 53.1 ± 0.5% at 100 µM). In addition, the compound did not show
toxicity at all the tested concentrations. The findings in this study were in line with earlier reports on
the protective effects of mangiferin against PD [20].
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Table 2. Neuroprotective activity of compounds 1–7.

Sample % Cell Survival Sample % Cell Survival

Control 100
Huberanthine A (1) N-trans-Feruloyl tyramine (5)

10 µM 56.7 ± 1.2 10 µM 48.9 ± 4.9
25 µM 59.7 ± 1.1 25 µM 49.8 ± 3.3
50 µM 65.0 ± 2.1 * 50 µM 51.8 ± 1.1
100 µM 72.4 ± 1.1 * 100 µM 60.9 ± 2.5 *

6-OHDA (100 µM) 56.8 ± 0.8 6-OHDA (100 µM) 48.4 ± 3.3
Oxyresveratrol (50 µM) 66.0 ± 0.6 * Oxyresveratrol (50 µM) 56.1 ± 3.3 *
Huberanthine B (2) N-trans-p-Coumaroyl tytyramine (6)

10 µM 53.6 ± 0.3 10 µM 39.3 ± 1.4
25 µM 55.3 ± 1.3 25 µM 40.2 ± 0.3
50 µM 57.1 ± 0.8 50 µM 43.5 ± 0.8
100 µM 60.9 ± 0.9 * 100 µM 45.5 ± 1.0

6-OHDA (100 µM) 54.7 ± 0.4 6-OHDA (100 µM) 42.5 ± 0.7
Oxyresveratrol (50 µM) 62.9 ± 1.2 * Oxyresveratrol (50 µM) 54.7 ± 1.5 *
Allantoin (3) Mangiferin (7)

10 µM 49.7 ± 1.0 10 µM 54.8 ± 3.5
25 µM 50.5 ± 2.3 25 µM 60.5 ± 1.7 *
50 µM 51.3 ± 1.9 50 µM 65.7 ± 2.5 *
100 µM 54.2 ± 1.0 100 µM 70.7 ± 1.8 *

6-OHDA (100 µM) 52.2 ± 1.2 6-OHDA (100 µM) 53.1 ± 0.5
Oxyresveratrol (50 µM) 57.1 ± 1.6 * Oxyresveratrol (50 µM) 57.9 ± 1.8 *
Oxylopinine (4)

10 µM 45.5 ± 1.0
25 µM 56.5 ± 1.0
50 µM 57.2 ± 1.9
100 µM 57.0 ± 0.8

6-OHDA (100 µM) 58.4 ± 0.9
Oxyresveratrol (50 µM) 61.0 ± 1.2 *

* (p < 0.05) Significantly different when compared to 6-OHDA (100 µM).
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The isolated compounds were further studied for antidiabetic potential. Compounds 3–7 were
evaluated for α-glucosidase inhibitory activity using established protocols [21,22]. The alkaloids 1
and 2, however, were not tested due to their limited amounts. Allantoin (3) and oxylopinine (4) were
considered inactive, exhibiting a less than 50% inhibition at 100 µg/mL. The amides N-trans-feruloyl
tyramine (5) and N-trans-p-coumaroyl tyramine (6) displayed a strong inhibition of the enzyme,
showing IC50 values of 30.6 ± 2.9 µM and 0.6 ± 0.1 µM, respectively. Mangiferin (7) showed a
moderate activity with an IC50 value of 253.6 ± 14.2 µM, when compared with the drug acarbose
(IC50 724.7 ± 46 µM). The α-glucosidase inhibitory activities of 5–7 observed in this study were in
agreement with previous reports [23,24].

Recently, we have found that some α-glucosidase inhibitors (AGIs) of natural origin also possessed
the ability to stimulate glucose uptake by skeletal muscle cells [21,22]. This secondary biological activity
has currently attracted research attention because it might help to increase the antidiabetic potential
of these AGIs. With this in mind, we tested compounds 3–7 for their ability to stimulate glucose
uptake in L6 myotube cells, with insulin as the positive control. As illustrated in Figure 5, almost all
of the tested compounds showed no cytotoxicity against the rat L6 cells at the tested concentrations,
except for N-trans-feruloyl tyramine (5), which was toxic when tested at 100 µg/mL (<80% cell viability
compared to the control). Under the present experimental conditions, compounds 3, 4, 6, and 7 showed
observable cellular glucose uptake stimulatory activity (Table 3 and Figure 5) in comparison with
insulin (146.6% at 0.5 µM).

Allantoin (3) and mangiferin (7) have been earlier reported for cellular glucose uptake enhancing
activity [25,26], but oxylopinine (4) and N-trans-coumaroyl tyramine (6) have been studied for the first
time in this investigation.
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Table 3. Glucose uptake stimulatory activity of compounds 3–7.

Sample % Glucose Uptake % Enhancement

DMSO 100 0
Insulin (0.5 µM) 246.6 ± 35.8 * 146.6
Allantoin (3)

1 µg/mL (6.32 µM) 186.5 ± 34.3 * 86.5
10 µg/mL (63.24 µM) 228.4 ± 37.7 * 128.4
100 µg/mL (632.44 µM) 318.2 ± 35.5 * 218.2

Oxylopinine (4)
1 µg/mL (4.73 µM) 150.7 ± 57.1 NA
10 µg/mL (47.34 µM) 210.1 ± 29.6 * 110.1
100 µg/mL (473.44 µM) 321.0 ± 14.6 * 221.0

N-trans-Feruloyl tyramine (5)
1 µg/mL (3.19 µM) 148.7 ± 39.7 NA
10 µg/mL (31.91 µM) 123.7 ± 84.6 NA
100 µg/mL (319.13 µM) NC NA

N-trans-p-Coumaroyl tyramine (6)
1 µg/mL (3.53 µM) 221.0 ± 12.5 * 121.0
10 µg/mL (35.29 µM) 225.7 ± 67.3 * 125.7
100 µg/mL (352.95 µM) 279.7 ± 49.9 * 179.7

Mangiferin (7)
1 µg/mL (2.32 µM) 169.6 ± 14.9 * 69.6
10 µg/mL (23.68 µM) 216.9 ± 16.4 * 116.9
100 µg/mL (236.77 µM) 300.7 ± 12.9 * 200.7

* (p < 0.05) Significantly different from the control (DMSO); NA = not applicable; NC = not calculated due to toxicity.

It should be noted that, among the compounds evaluated for neuroprotective and antidiabetic
activities in this study, mangiferin (7) seems to be the most promising, since it showed significant
effects in all the three bioassay systems. In fact, this compound has been reported to possess a wide
range of pharmacological activities [27]. It has been hypothesized that mangiferin exerts its multiple
biological activities, including neuroprotective effects, through its antioxidant property [20]. In a
recent study, mangiferin showed synergistic antidiabetic effects with the oral hypoglycemic drugs
metformin and gliclazide [28]. Since mangiferin can be obtained in large amounts from the mango tree,
Mangifera indica L., and several other plants [29], the compound appears to be a potential candidate as
a preventive agent for NCDs.

3. Materials and Methods

3.1. General Experimental Procedures

UV spectra were measured on a Milton Roy Spectronic 300 Array spectrophotometer, and the IR
was recorded on a Perkin-Elmer FT-IR 1760x spectrophotometer (Boston, MA, USA). High-resolution
electrospray ionization mass spectra (HR-ESI-MS) were recorded with a Bruker micro TOF mass
spectrometer (Billerica, MA, USA). NMR spectra were obtained with a Bruker Avance DPX-300 or
Avance III HD 500FT-NMR spectrometer (Billerica, MA, USA). MeOH, EtOAc, n-butanol, hexane,
CH2Cl2, yeast α-glucosidase, p-NPG, glucose oxidase (GO) assay kit, sodium dodecyl sulfate (SDS),
3-(4,5- dimethyl thiazol-2-yl)-5-diphenyl tetrazolium bromide (MTT), and acarbose were obtained
from Sigma-Aldrich (St. Louis, MO, USA). Alpha minimal essentialmedium (α-MEM), fetal bovine
serum (FBS), and penicillin-streptomycin (10,000 IU/mL) were purchased from Thermo Fisher Scientific
(Grand Island, NY, USA). Insulin (100 IU/mL) was acquired from Biocon (Bangalore, India). Silica gel
(SiO2) and TLC plates were obtained from Merck (Darmstadt, Germany), and Sephadex LH-20 was
from Pharmacia (Piscataway, NJ, USA).
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3.2. Plant Materials

Samples of Huberantha jenkinsii were collected from Surat Thani province in April, 2014,
and identified by one of us (T.C.). The herbarium specimens have been on deposit at the Faculty of
Science, Chiang Mai University.

3.3. Extraction, Isolation, and Purification

The stem and leaves showed similar TLC profiles, but the leaves contained large amounts of
chlorophylls. The dried stem of (1.1 kg) was chopped and extracted with MeOH at room temperature
to give a methanol extract of 180 g after the removal of the solvent. This MeOH extract was treated
with EtOAc, n-butanol, and water to give corresponding extracts. The EtOAc extract was fractionated
by vacuum-liquid chromatography on silica gel (hexane-CH2Cl2 and CH2Cl2-MeOH, gradient) to
give six fractions (A-F). Fraction B was further separated on Sephadex LH-20 (MeOH) to obtain five
fractions (BI-BV). The separation of fraction BII by repeated column chromatography (CC), including
reverse-phase CC (C18, MeOH-H2O, gradient) and normal phase CC (silica gel; hexane-acetone,
gradient), gave compound 1 (3.5 mg), compound 2 (3.4 mg), allatoin (3, 32.6 mg), and oxylopinine
(4, 6.5 mg). Fraction D was separated on Sephadex LH-20 (MeOH) to give four fractions (DI-DIV).
N-trans-Feruloyl tyramine (5, 28.4 mg) was isolated from fraction DIII through purification on CC
(silica gel; hexane-acetone, gradient). Fraction E was separated on Sephadex LH-20 (MeOH) to give
N-trans-p-coumaroyl tyramine (6, 6.1 mg). Mangiferin (7, 1 g) was obtained as white precipitates from
the BuOH extract after it was left standing overnight. It should be mentioned that alkaloids 1 and
2 were quite unstable, as could be seen from their spots on the SiO2 TLC plate turning brown in a
few minutes. Their purity should be in the range of 90–95%, as estimated from the appearance of the
1H NMR spectra.

Compound 1: brownish white powder; UV (MeOH): λmax (log ε) 205 (3.74), 225 (3.85), 335 (3.60),
370 (3.36) nm; IR: νmax 3353, 1667, 1540, 1513, 1260, 1030, 1095 cm−1; HR-ESI-MS: [M–H]− m/z 338.1029
(calcd. for C19H16NO5 338.1028).

Compound 2: brownish white powder; UV (MeOH): λmax (log ε) 230 (3.85), 260 (3.79), 335 (3.66),
365 (3.49) nm; IR: νmax 3359, 1658, 1632, 1551, 1510, 1268, 1037, 1091 cm−1; HR-ESI-MS: [M–H]− m/z
368.1129 (calcd. for C20H18NO6 368.1134).

3.4. Assay for Neuroprotective Activity

Cell Culture: SH-SY5Y cells were cultured in growth medium containing DMEM-F12,
supplemented with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin. The cells were
maintained under 5% CO2 for 2 h. The medium was replaced with new medium every 2 days and
subcultured once the cell confluence was 80–90%. There were no more than 50 cell passages to ensure
the cell uniformity and reproducibility. 6-OHDA was dissolved in 0.02% ascorbic acid in the same
medium to prevent the degradation of 6-OHDA. The toxic dose of 6-OHDA was determined by
preliminary screening at different concentrations after 2 h incubation of SH-SY5Y cells at 37 ◦C under
5% CO2 [15,16].

Assay for protective activity against 6-OHDA: The assay was carried out following established
methods [17,19]. Neuroblastoma SH-SY5Y cells (5 × 104 cells/well) were seeded into each well. After
24 h incubation of the cells at 37 ◦C under 5% CO2, the sample was added to each well in four different
concentrations (10, 25, 50, 100 µM), and the mixture was preincubated for 1 h. Then, the toxicity inducer
6-OHDA (6-hydroxy dopamine hydrobromide) was added, and the mixture was further incubated for
2 h. Ten microliters of resazurin was added to each well 1 h before the end of the incubation to obtain
the final resazurin concentration of 0.01 mg/mL. Finally, the neuroprotective activity of each sample
against 6-OHDA was determined by measuring the fluorescence intensity at 530 nm excitation and
590 nm emission wavelengths using a microplate reader. Then, the percentage of cell survival was
calculated. Oxyresveratrol was used as a positive control.
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Cytotoxicity: The assay for the cytotoxicity of each sample was performed in a manner similar to
the above-described procedure but in the absence of 6-OHDA, and the mixture was incubated for a
longer period of 24 h (instead of 2 h) after the addition of the test sample. The cytotoxicity at each
concentration of the sample was described as the percentage of cell viability.

3.5. Assay for α-Glucosidase Activity

The assay was carried out following the method in our previous report [4]. It was based on the
ability of the sample to inhibit the hydrolysis of p-nitrophenyl-d-glucoside (pNPG) by α-glucosidase
to release p-nitrophenol (PNP), a yellow color agent that can be monitored at 405 nm. Briefly, 10 µL
of the sample solution and 40 µL of 0.1 unit/mL α-glucosidase were incubated at 37 ◦C for 10 min.
Then, 50 µL of 2 mM pNPG was added, and the mixture was further incubated at 37 ◦C for 20 min.
One hundred microliters of 1 M Na2CO3 was added, and the progress of the enzyme inhibition was
observed by measuring the absorbance at 405 nm. Acarbose was used as a positive control.

3.6. Assay for Glucose Uptake Stimulatory Activity

The glucose uptake assay was performed following our earlier described protocol [21,22]. Briefly,
rat L6 myoblasts were maintained in α-MEM supplemented with 10% fetal bovine serum (FBS) and 1%
penicillin-streptomycin at 37 ◦C under a 5% CO2 atmosphere. For the treatment with test compounds,
the cells were plated in a 24-well plate at a density of 2 × 104 cells/well. Once the cell reached a 90%
confluence, the media were switched to α-MEM with 2% FBS and 1% penicillin-streptomycin (the
differentiation medium). The cells were allowed to differentiate into myotubes for 5–7 days, with the
media changed every other day. The assay was initiated by incubating the myotubes at 37 ◦C under
5% CO2 for 24 h with the test compound (1, 10, and 100 µg/mL) or insulin (500 nM). The differentiation
medium plus 0.1% DMSO was used as the diluent and the negative control. After the incubation,
the medium was collected and analyzed for the glucose level using a glucose oxidase assay kit.

Cytotoxicity: Continuously, after the 24 h treatment for the glucose determination, the medium
was added to adjust the volume to 200 µL per well. The cells were then treated with 20 µL of the MTT
solution (5 mg/mL) and incubated at 37 ◦C under 5% CO2 for 2 h. To dissolve the formazan crystal,
to each well was added 200 µL of solubilization solution (40% DMF, 2% glacial acetic acid, 16%w/v
SDS in distilled water), and the mixture was shaken for 20 min. Then, the supernatant was collected
and measured for the absorbance at 595 nm. Cytotoxicity was expressed as the percent cell viability.

Statistical analysis: The results of the glucose uptake stimulation and cytotoxicity assays were
described as the mean± standard deviation. An analysis of variance was performed using the GraphPad
Prism Version 7.00 for Windows (GraphPad Software, Inc., San Diego, CA, USA). The statistical
significance of the difference between the means was evaluated using the uncorrected Fisher’s least
significant difference post hoc test. A P value <0.05 was considered statistically significant.

4. Conclusions

This study is the first report of the chemical and biological studies of Huberantha jenkinsii. Two new
8-oxoprotoberberine alkaloids, namely huberanthines A and B (1 and 2), and five known compounds
(3–7) were isolated and structurally characterized. The isolated compounds were evaluated for their
neuroprotective, α-glucosidase inhibitory, and glucose uptake stimulatory activities. The C-glucosidic
xanthone mangiferin (7) appears to be a potential lead compound for the development of preventive
agents for NCDs, since it showed significant activity in all the three test systems.
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