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Abstract: Lignin depolymerization for the purpose of synthesizing aromatic molecules is a
growing focus of research to find alternative energy sources. In current studies, the photocatalytic
depolymerization of lignin has been investigated by two new iso-propylamine-based lead chloride
perovskite nanomaterials (SK9 and SK10), synthesized by the facile hydrothermal method.
Characterization was done by Powder X-Ray Diffraction (PXRD), Scanning Electron Microscopy
(SEM), UV-Visible (UV-Vis), Photoluminescence (PL), and Fourier-Transform Infrared (FTIR)
Spectroscopy and was used for the photocatalytic depolymerization of lignin under UV light.
Lignin depolymerization was monitored by taking absorption spectra and catalytic paths studied by
applying kinetic models. The %depolymerization was calculated for factors such as catalyst dose
variation, initial concentration of lignin, and varying temperatures. Pseudo-second order was the best
suited kinetic model, exhibiting a mechanism for lignin depolymerization that was chemically rate
controlled. The activation energy (Ea) for the depolymerization reaction was found to be 15 kJ/mol,
which is remarkably less than conventional depolymerization of the lignin, i.e., 59.75 kJ/mol, exhibiting
significant catalytic efficiencies of synthesized perovskites. Products of lignin depolymerization
obtained after photocatalytic activity at room temperature (20 ◦C) and at 90 ◦C were characterized
by GC-MS analysis, indicating an increase in catalytic lignin depolymerization structural subunits
into small monomeric functionalities at higher temperatures. Specifically, 2-methoxy-4-methylphenol
(39%), benzene (17%), phenol (10%) and catechol (7%) were detected by GC-MS analysis of lignin
depolymerization products.
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1. Introduction

Society’s dependence on non-renewable energy sources and increasing demand for fuels and
chemicals are the most addressed concerns of researchers for the purpose of developing sustainable
technologies that would probably enable the efficient consumption of renewable resources [1–4]. Such a
striking source material is lignocellulose, which is produced in substantial quantities from agricultural
and forestry activity worldwide [5]. Lignin is the major renewable energy source in nature for aromatic
building blocks and has the utmost potential to produce bulk/functionalized aromatic compounds
and to offer suitable alternatives to universally employed petroleum-derived BTX (benzene, toluene,
and xylene) [6–8].

Lignin conversion is a potential challenge because of its high molecular weight and polymeric
nature [9–11]. The quest for novel catalytic methods to transform polymeric substrates like lignin into
value-added compounds initiated tremendous research in various fields, such as homogeneous
catalysis [12–14] and heterogeneous catalysis [15]. Several chemical and biological pathways
like thermochemical [16], oxidative [9], or biochemical [17] depolymerization methods have been
investigated for the conversion of lignin to various product classes, but these are not extensively used,
owing to their high operating costs [18].

Over the past ten years, light-mediated photochemistry has observed tremendous
developments [19–21]. The utilization of photon energy for chemical transformations offered versatile
chemical transformations, empowering numerous reactions and compounds that were previously
unreachable through traditional methods over the past decade [22–24]. Hence, photocatalysis [25] is one
of the advanced techniques that has applications in various fields of green energy, medicine, chemical
synthesis, and environmental technology, etc., [26]. Therefore, photocatalytic depolymerization of
lignin is likely to be the most environment friendly, operative, and capable method because of its
productivity, energy-saving, and low cost [27].

A lot of research interest is growing in organic/inorganic hybrid alkyl lead halide perovskites
(RPbX3), due to their most promising catalytic, energy, and light-harvesting applications [28]. They have
been widely investigated for a wide range of light-harvesting applicabilities, e.g., photovoltaics [29],
light-emitting diodes (LED) or lasers [30] and radiation detection [31]. MAPbX3 solar cells have had
excellent developments in efficiency in comparison to any other solar cells since their invention [32].
Metal halide-based perovskites are cost-effective materials processable in the solution, having
outstanding intrinsic properties that make them appropriate candidates for light harvesting technologies
in the future [33]. In particular, Pb-based hybrid perovskites have emerged as potential competitors in
photovoltaics and light harvesting applications due to their high absorption coefficient, direct bandgap,
long carrier lifetime, and enhanced balanced hole and electron mobility characteristics [34–36].

Various photoactive transition-metal oxides, metal oxide-based perovskites, and organic
chromophores were developed to catalyze the transformations of high molecular weight substrates
like lignin and have been reported previously [37–39]. However, reports on crystalline RPbX3 for
the photocatalytic transformation of high molecular weight polymeric substrates are relatively few.
Metal oxide-based perovskites are being employed for lignin depolymerization, but alkyl amine-based
perovskites are rarely reported for biomass conversion. Considering the importance of the subject,
this study was intended to synthesize the lead chloride perovskite materials SK9 and SK10 with new
alkyl moiety (iso-propylamine) for photocatalytic depolymerization of lignin not studied before.
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2. Results and Discussion

2.1. Characterization

2.1.1. Powder X-ray Diffraction (PXRD) and Scanning Electron Microscopic (SEM) Analysis

The phase composition and particle size of synthesized perovskite materials (SK9 and SK10) were
analyzed by PXRD and the data evaluated are listed in Table 1. Figure 1 shows Powder XRD patterns
of synthesized IAPbCl3 perovskite particulates milled from a piece of corresponding large-sized crystal.
The powder XRD of the crystalline IAPbCl3 perovskite material SK9 shows diffraction peaks at 22.01,
35.22, 39.34, 41.67, 51.04 2θ values, whereas SK10 shows at 23.2, 39.4, 41.63, 51.1 2θ values. Observed
intensities at 22–23, 35.22, 39–41 ranges of 2θ values correspond to the (100), (110), (200) lattice planes
of cubic structure, most probably at room temperature [40–42]. Powder XRD analysis indicated that the
crystal structure of the IAPbCl3 perovskites (SK9 and SK10) with the cubic system (space group Pm3m,
a = b = c = 5.6855 Å) at room temperature had quite similar intensities at corresponding 20 values to
that reported in the literature, as given in Figure 1a–c [36].

Table 1. PXRD and SEM parameters of perovskite nanomaterials (SK9 and SK10).

Samples SK9 SK10

PXRD Parameters

Average Crystallite Size D (nm) 77.10 ± 5 75.57 ± 7
Volume V = D3 1,162,604 1,051,104

Dislocation Density × 10−3 (nm)−2 (δ) 1.43 × 10−7 1.18 × 10−7

Microstrain (ε) 0.0017 0.0016

SEM Parameters

Material Nature Shiny Crystalline Shiny Crystalline
Dispersity Homogenous Homogenous

Structural Appearance Broad Elliptical Leaflets Broad Elliptical Leaflets
Color White White
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Other parameters from PXRD, i.e., crystallite size, dislocation densities, crystallite volume,
and microstrain, were evaluated for SK9 and SK10, given in Table 1. Particle size calculation was
performed by employing the Debye–Scherrer Equation (1) [43].

D = 0.91λ/βcos θ (1)

where D is the crystallite size of the material and λ is the wavelength of the X-ray beam with 1.54 Å
value. The cos θ is an angle at which diffraction occurs and β represents the value at FWHM (full width
at half maximum) [44].

The average crystallite size calculated at their corresponding intensities was found to be 77.10 nm
for SK9 and 75.59 nm for SK10. The dislocation density (δ) is defined as the length of dislocation lines
per unit volume of the crystal, which explains the measure of defects in the material and was calculated
using the Equation (2) [45].

δ = 1/D2 (2)

The volume of crystalline (V) is measured, employing the relation (V = D3) [46], whereas the
strain-induced broadening in materials because of imperfection in crystals and distortion in them is
calculated as microstrain (ε) [47]. Positive values of ε indicate the tensile strain, whereas a negative
value gives a compressive type of strain. Microstrain in synthesized perovskites was calculated
following Equation (3) [47]:

ε = β/4tan θ (3)

Very low positive values of microstrain and dislocation densities reveal the extent of defect found
to be less in perovskite materials (SK9 and SK10), showing greater stability and negligible distortion
or crystal imperfections.

SEM parameters calculated for perovskite nanomaterials (SK9 and SK10) are given in Table 1,
whereas SEM images of SK9 and SK10 are depicted in Figure 2. Images indicated homogenous
morphology incorporating very broad elliptical leaflet like structures for both materials, having
somewhat rugged surface appearance. The broad elliptical structure of perovskites can play an
important role in providing a greater surface for the adsorption of high molecular weight substrate for
photocatalytic depolymerization.
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2.1.2. UV and Photoluminescence (PL) Analysis

UV-Visible spectra of perovskite nanomaterials (SK9–SK10) and PbCl2 are shown in (Figure 3).
SK9 and SK10 prepared with different concentrations of iso-propyl amine (4 mL in SK9 and 5 mL in
SK10) have shown higher absorption than PbCl2 at 209 nm wavelength. Extended absorption in the
UV range, i.e., down to 280 nm, signifies the interesting optical characteristics of these materials [48].
It is seen from the figure that both perovskite materials show higher absorption intensities at 209 nm as
compared to PbCl2, whereas increasing the concentration of IA in SK10 (5 mL), there is a significant
decrease in absorption peak intensity in the UV light range. High absorption intensity corresponds to
using a small amount of IA (4 mL) in SK9, indicating the capability of the material to be employed in
catalytic and optoelectronic applications. High absorption intensities of perovskite catalysts may play
an important role for photocatalytic activities as the subject of this study is to depolymerize lignin
using UV as light source.
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Tauc plots for the direct bandgap have been drawn with the help of the absorption spectra of
SK9 and SK10, given in Figure 4. The bandgap values were obtained through Tauc plots [49], as in
Equation (4).

(αhυ)2 = A (hυ − Eg) (4)

where h is called Planck’s constant, ν is frequency, Eg is optical bandgap, A is the energy-independent
constant. The exponent ‘2′ explains the direct transitions, in this case, as this exponent has different
values for different kinds of transitions [50]. The calculated band gap energy for SK9 and SK10 is 5.6
and 5.3 eV, respectively, which indicate that the samples can absorb light in UV to the visible region
and can be utilized as efficient photocatalytic applications [50–52].

PL emission spectra of SK9 and SK10 have been obtained through a PL spectrophotometer
with an exciton wavelength of 450 nm. Figure 5 shows the PL spectra of the PbCl2 giving a sharp
peak at 532 nm, whereas synthesized perovskites SK9 and SK10 exhibiting prominent PL peaks
at 469, 488, 532, and 677 nm correspond to 2.6, 2.5, 2.3 and 1.83 eV energy range. An increase in
the emitted intensity in perovskites SK9 and SK10 in comparison to lead chloride was observed.
The narrower PL peaks also designate a lower trap density in the synthesized materials, which is
beneficial for them to be applied in solar cells and as efficient catalysts [53]. High emission intensities
may correspond to significant photocatalytic efficiencies, as higher emissions specify low trap densities.
Hence, synthesized perovskites may show excellent catalytic behaviors.
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2.1.3. FTIR Analysis

The Fourier-Transform Infrared (FTIR) analysis of synthesized perovskites SK9 and SK10 along
with PbCl2 is given in Figure 6 (some characteristic peaks are highlighted with marks in the figure).
Generally, perovskite nanomaterials show absorption bands in the Raman and fingerprint region of
IR due to interatomic vibrations which lie below 1000 cm−1, hence, most of the peaks in IR spectra
are due to organic (iso-propylamine) moiety. Spectra showed almost similar peaks with reported
methyl amine-based lead chloride perovskites [54]. The strong absorption band at the wavenumber
about 3400 cm−1 is due to the presence of OH- in PbCl2 [55]. The small peaks at 974–980 cm−1 were
originated from C-N stretching in SK9 and SK10. The intense peak near 1000 cm−1 was associated
with the CH3

+ rocking vibration.

2.2. Photocatalytic Depolymerization of Lignin Under UV Light

For all sample aliquots taken during the photocatalytic lignin (L1) depolymerization activity
at different time intervals, absorbance at 280 nm was measured by UV spectra. The %lignin
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depolymerization was evaluated from the absorbance, as explained in Section 3.3. Abs280 corresponds
to the aromatic rings of lignin structure, and the decrease in it signifies the alteration of the aromatic
ring structure [56].
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With the increasing photocatalytic activity time duration, the absorption peaks at 280 nm tend to
decrease, representing the transformation of the aromatic backbone of lignin. Likewise, various factors,
i.e., effect of catalytic dosage, starting lignin concentrations, and varying temperature, were studied
at various time intervals by calculating %lignin depolymerization. Perovskites exhibited high
photocatalytic efficiency with an increase in %lignin depolymerization, with increasing time intervals
for all the factors studied.

2.2.1. Effect of Time

Lignin depolymerization was studied for SK9 and SK10 at different time intervals, i.e., 10, 20,
30, 40, 50, and 60 min, as shown in Figure 7 and %depolymerization was calculated, given in Table 2.
SK9 and SK10 exhibited proficient catalytic efficiency to depolymerize the 0.1 g/L lignin. After every
10 min interval of irradiation under UV light, a decrease in absorption intensity of the lignin solution
was observed, as shown in Figure 7. A total of 17% depolymerization was calculated after 10 min of
UV light irradiation, which increased to 31, 48, 72, 79, 86.5% after 20, 30, 40, 50 and 60 min, respectively,
for SK9. Meanwhile, 10% depolymerization was calculated after 10 min of UV light exposure, which
increased to 20, 31, 45, 65.5, 72.5% after 20, 30, 40, 50, and 60 min, respectively, for SK10. The proficient
catalytic efficiencies of SK9 and SK10 perovskites to depolymerize lignin were credited to their larger
surface areas, which provided a greater number of active sites. Correlation between the experimental
data of lignin depolymerization was calculated to be very significant, as R2 values were close to 1
(Figure 8). SK9 was found more catalytically efficient than SK10, hence, other factors were studied
with SK9.
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Figure 8. Correlation between the %depolymerization of lignin (L1100ppm) by SK9 (0.1 g) and SK10
(0.1 g) and the time intervals.

2.2.2. Effect of Catalyst Dosage

Effect of the catalyst SK9 dosage on the lignin depolymerization was analyzed by variating
catalyst dose from 0.025 to 0.1 g/L for 60 min irradiation under UV light. After every 10 min interval of
irradiation under UV light, a decrease in absorption intensity of the lignin solution was observed at
each catalyst dosage, as shown in Figure 9. The %depolymerization of lignin (100 ppm of L1) was
calculated for different doses of SK9 at various time intervals, as given in Table 3. A decrease in
absorption intensity, hence, increase in %depolymerization, was found with increasing time intervals
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from 10 to 60 min for each catalyst dose, i.e., 0.025, 0.05, 0.075 and 0.1 g/L of catalyst dose, as shown in
Figure S1 (supplemental data).
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Figure 9. Photocatalytic lignin (L1100ppm) depolymerization by different catalyst doses of SK9 after
60 min of catalytic activity.

Table 3. %Lignin (L1100ppm) depolymerization by different catalytic doses of SK9 at different
time intervals.

Time %Lignin (L1100ppm) Depolymerization at Different Catalyst Doses of SK9

(min) 0.025 g 0.05 g 0.075 g 0.1 g

0 0 0 0 0
10 5 10 14 17
20 12 19 24 31
30 22.5 31 36 48
40 28 47 55.5 72
50 38 59 62 79
60 41.5 67 73 86.5

In total, 41.5% lignin depolymerization was calculated for 0.025 g SK9, 67% for 0.05 g, and 73%
by using 0.075 g SK9 after 60 min of UV light irradiation to lignin solution. The maximum lignin
depolymerization (86.5%) was attained at 60 min of UV light exposure for dosage 0.1 g/L of SK9.
A total of 17% depolymerization was calculated after 10 min of UV irradiation, which increased up to
31, 48, 72, 79, and 86.5% after 20, 30, 40, 50, and 60 min respectively for 0.1 g SK9. The maximal increase
in the dose of SK9 (0.1 g/L) resulted in maximum lignin depolymerization, most possibly because
of more surface given by the catalyst, which caused a greater number of photons to interact at the
catalyst’s surface and increase the passage of UV irradiation through the L1 solution. The correlation
between the %lignin depolymerization and the catalyst dosage was calculated to be significant as R2

values were close to 1 (Figure 10).

2.2.3. Effect of Initial Lignin Concentration

The effect of starting concentrations of the lignin on its depolymerization was studied for 0.1 g
SK9, with the lignin concentration variating from 50 to 200 ppm and investigating the %lignin
depolymerization. After every 10 min interval of irradiation under UV light, a decrease in absorption
intensity of the lignin solution was observed at each lignin concentration, as shown in Figure 11
(detailed in Figure S2 of supplemental data). Photocatalytic %lignin depolymerization by SK9 was
observed to decrease with the increase in lignin concentration from 50 to 200 ppm, listed in Table 4.
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In total, 92.5% of lignin depolymerization was achieved after 60 min of irradiation of UV light at a
50 ppm initial lignin concentration, which was decreased as 86.5% for 100 ppm, 73% for 150 ppm and
62.5% for 200 ppm.
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Figure 11. Photocatalytic depolymerization of the different lignin concentrations by 0.1 g SK9 after
60 min of catalytic activity.

Table 4. %Depolymerization of the different lignin concentrations by SK9 (0.1 g) at the different
time intervals.

Time %Lignin (L1) Depolymerization at the Different Lignin Concentrations

(min) 50 ppm 100 ppm 150 ppm 200 ppm

0 0 0 0 0
10 15 17 7 8
20 27 31 19 15
30 53 48 39.5 23
40 72.5 72 56 43
50 81 79 67 59
60 92.5 86.5 73 62.5

The lower efficiency observed going towards high lignin concentration is possibly ascribed to the
greater number of lignin molecules adsorbed on the catalyst’s surface. Adsorption of the number of
molecules caused a significant decrease in the availability of active sites on the catalyst’s surface, hence,
a smaller number of active species generated. Besides this, increasing lignin concentration resulted
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in a significant decrease in the number of photons reaching the catalyst’s surface. This caused less
UV light availability to excite the particles of the catalyst due to significant absorption by the lignin
molecules. The correlation constant R2 between the %depolymerization of the lignin concentrations by
SK9 at the different time intervals was calculated to be close to 1, as given in Figure 12.Molecules 2020, 25, x FOR PEER REVIEW 14 of 25 
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2.2.4. Effect of Variating Temperature

The dependence of rate constant of lignin depolymerization on temperature was investigated by
0.1 g SK9 (using 100 ppm of L1) at 20, 35, and 65 and 90 ◦C. After every 10 min interval of irradiation
under UV light, a decrease in absorption intensity of the lignin solution was observed at each increase
in temperature, as depicted in Figure 13 (detailed in Figure S3 of supplemental data). %Lignin
depolymerization was evaluated at different time intervals at each temperature. Depolymerization
reaction rate along with %lignin depolymerization tended to increase with the increasing range of
temperature, as given in Table 5. Maximum %depolymerization was obtained at 90 ◦C with 0.1 g SK9,
which showed an increase in %depolymerization with the increasing temperature. In total, 86.5% lignin
depolymerization was calculated at room temperature (20 ◦C), whereas 89% for 35 ◦C, 92% for 65 ◦C
and 97.5% for 90 ◦C temperature was achieved. The increase in %depolymerization of lignin upon
increasing temperature range was mainly because of the thermal breakdown of the aromatic backbone
of the lignin crosslinked structure. Going to high temperatures caused the breakdown of crosslinked
functionalities, resulting in depolymerization into monomeric compounds [57]. Correlation between
%lignin depolymerization by SK9 at various temperatures was calculated to be close 1, as given in
Figure 14.

Table 5. %Lignin (L1100ppm) depolymerization by SK9 (0.1 g) at the different temperatures and the
time intervals.

Time %Lignin (L1100ppm) Depolymerization at Different Temperatures

(min) 20 ◦C 35 ◦C 65 ◦C 90 ◦C

0 0 0 0 0
10 17 21 22 26.5
20 31 26 27 31
30 48 32 47 48
40 72 50 64 69
50 79 76.5 81 89
60 86.5 89 92 97.5
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2.3. Kinetic Analysis

To determine adsorption kinetics of liquid/solid systems, pseudo kinetic models i.e., Pseudo-first
order and pseudo-second order kinetics are often employed [58–60]. Kinetics of depolymerization of
the lignin on the solid perovskite’s surface was demonstrated best by the pseudo-second order kinetic
model by following Equation (5):

t/Ct = 1/k2Ct
2 + t/Co (5)

where Ct is the concentration of the lignin solution at a specific time interval, Co is the initial lignin
concentration, t is the time at which sample aliquot is taken and k is the rate constant at equilibrium for
the pseudo-second order reaction. In the rate-controlling step, chemical reaction was found significant
for all the factors studied. The R2 values at 0.025, 0.05, 0.075, and 0.1 g catalyst SK9 doses calculated
were around 1, as depicted in Figure 15. Meanwhile, R2 values for 50, 100, 150, and 200 ppm lignin
concentrations were also around 1, as shown in Figure 16. Pseudo-second order kinetics offered a
significant correlation between the experimental data and the reaction mechanism was evaluated to be
chemically rate-controlled [58].
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Activation Energy (Ea)

During temperature treatment, the depolymerization stage is kinetically controlled by an energy
barrier that encompasses multiple processes, like breaking of hydrogen bonds, water diffusion,
and evaporation, among others [61]. Hence, activation energy values most probably depend upon
the mechanistic clues of conversion, for example, the number of reaction steps involved in lignin
depolymerization [62]. The pseudo-second order kinetic model was applied to data obtained during
photo depolymerization of lignin with temperature variation and is depicted in Figure 17. It was
observed that the depolymerization kinetic rate constant (k) correspondingly increased with increasing
temperature, as given in Table 6.

Table 6. Pseudo-second order kinetic parameters at different temperatures.

Pseudo Second Order Kinetic Parameters at Different Temperatures

Temperature Rate Constant (k) (g−1min−1) R2

20 ◦C 0.011 0.97
35 ◦C 0.018 0.97
65 ◦C 0.132 0.98
90 ◦C 0.186 0.99
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Figure 17. Pseudo-second order kinetics of the lignin depolymerization at different temperatures
(20–90 ◦C).

By plotting the logarithm of apparent depolymerization kinetic constants (lnk) against 1/T,
the linear curve was obtained, as depicted in Figure 18, with 0.97 R2 value following the Arrhenius
equation (k = A−Ea/RT) rearrangement [63] as:

lnk = −Ea/RT + lnA (6)

where k is the reaction constant, Ea is the activation energy (kJ/mol), A is the frequency factor (h−1),
R is the gas constant (8.314 J/mol·K) and T is the temperature (K). The Ea for lignin depolymerization
calculated from the slope of the line (Slope = −Ea/R) is 15 kJ/mol. Higher Ea indicates the
depolymerization reaction was less influenced by temperature according to the rule. The calculated
activation energy was remarkably lower in comparison to conventional lignin depolymerization,
i.e., 59.75 kJ/mol [64]. Hence, a lower activation energy value signifies the efficiency of catalyst to
depolymerize lignin more expediently.Molecules 2020, 25, x FOR PEER REVIEW 19 of 25 
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2.4. Characterization of Depolymerization Products

GC-MS Analysis

The lignin depolymerization product (L1-SK9) was collected in liquid form after 60 min of
photocatalytic activity of lignin (L1) with SK9 under UV light at room temperature (20 ◦C). The
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second product L1-SK9 (90 ◦C) was collected after 60 min of photocatalytic activity under the UV
light of lignin by SK9 at 90 ◦C to check the effect of higher temperature on lignin depolymerization.
The GC is shown in Figure 19, which is characterized by the lignin solution peak before activity
represented by ‘A’ in the chromatogram. Different peaks of lignin depolymerization products (L1-SK9)
and L1-SK9 (90 ◦C) represent the different monomeric lignin functionalities (listed in Table 7). MS
corresponding to each GC signal is given in S4 section (supplemental data) with the structure of the
expected compound present.Molecules 2020, 25, x FOR PEER REVIEW 20 of 25 
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Figure 19. Gas spectrum (GC) of lignin (L1) and lignin depolymerization products L1-SK9 and L1-SK9
(90 ◦C); Samples after 60 min of photocatalytic activity under UV light at room temperature and at
90 ◦C, respectively.

Table 7. GC-MS data of the lignin depolymerization products L1-SK9 and L1-SK9 (90 ◦C).

GC Peak
No.

Retention Time
(RT)

m/z of Molecular
Ion Peak Name Concentration

(%)

L1-SK9
1 1.6 71 Butadienol 18
2 3.1 137 2-methoxy-4-methylphenol 39
3 3.6 164 2-methoxy-5-propenyl phenol 7

4 3.8 244 5-[2-(3-hydroxyphenyl)ethyl]-2-methoxyphenol
(guaiacyl dimer) 6

L1-SK9 (90 ◦C)
1′ 1.9 75 Methoxypropane 14
2′ 2.1 78 Benzene 17
3′ 2.3 81 Cyclohexene 19
4′ 2.6 95 Phenol 10
5′ 2.8 110 Catechol 7
6′ 3.1 137 2-methoxy-4-methylphenol 16

In the depolymerization product of lignin (L1-SK9), peak 1 (RT = 1.6) represents 18% butadienol
(m/z = 71), which may be produced depolymerization of subunits between aromatic backbone of
lignin [65,66]. Peak 2 (RT = 3.1) and Peak 3 (RT = 3.6) are attributed to 39% of 2-methoxy-4-methylphenol
(m/z = 137) and 7% 2-methoxy-5-propenyl phenol (m/z = 164), which are interlinking subunits in the
lignin structure [67]. Peak 4 (RT = 3.8) is due to 6% of 5-[2-(3-hydroxyphenyl)ethyl]-2-methoxyphenol
(m/z = 244), which is basically the guaiacyl subunits of lignin structure [65]. On the other hand, in the
depolymerization product of lignin L1-SK9 (90 ◦C), peak 1′ (RT = 1.9) represents 14% methoxypropane
(m/z = 75), which possibly originated due to further cracking of lignin interlinking subunits between
the aromatic moieties due to temperature treatment. Peak 2′ (RT = 2.1) and peak 3′ (RT = 2.3)
attributed to 17% of benzene (m/z = 78) and 19% cyclohexene (m/z = 81), whereas peak 4′ (RT = 2.6)
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and peak 5′ (RT = 2.8) are due to 10% phenol (m/z = 95) and 7% catechol (m/z = 110), which are part
of aromatic backbone of lignin structure along with 16% 2-methoxy-4-methylphenol (m/z = 137 at
RT = 3.1) represented by peak 6′. From the GC-MS analysis, it was indicated that temperature treatment
assisted in increasing catalytic depolymerization of lignin structural subunits into small monomeric
functionalities, which was in accordance with %depolymerization obtained from temperature treatment
during photocatalytic activity of lignin with SK9.

3. Materials and Methods

3.1. Chemicals and Reagents

Lignin was extracted from wood powder through the literature-reported organosolv acid
treatment [68,69] reported in our recent study [70]. Lead chloride, HCl, and iso-propyl amine
were purchased from Sigma Aldrich (Saint Louis, MO, USA). All of the chemicals were of analytical
grade and utilized without further purification.

Powder X-ray Diffraction (PXRD) analysis was carried out in an X-ray diffractometer
(Bruker, AXS D8; Yokohama-shi, Japan) with Cu-Kα radiation (1.54 Å) in the 2θ range from 20◦ to 60◦.
Scanning Electron Microscopy (SEM) (JEOL, JSM-6360 EO; Tokyo, Japan) analysis was performed to
determine the morphological features of catalysts. Functional group characterization was done by an
Infra-Red Spectrophotometer (Shimadzu; Osaka, Japan) in the range of wavenumber 500–4000 cm−1.
Optical characterization was done by an Ultraviolet (UV) Spectrophotometer (Shimadzu; Osaka,
Japan) in the frequency range of 250–800 nm and a Photoluminescence (PL) Spectrophotometer
(Shimadzu; Osaka, Japan) at excitation wavelength 480 nm. Catalytic depolymerization was studied by
taking absorption spectra by an Ultraviolet (UV) Spectrophotometer (Shimadzu; Osaka, Japan) in the
range of wavelength 250–800 nm. Characterization of liquid lignin depolymerization products was done
by Gas Chromatography Mass Spectrometry (GC-MS) (Shimadzu QP2010; Osaka, Japan, (MS Detector
SPD 20A, Column: C-18 (250 × 4.6 mm)), Temperature; 300 ◦C). A UV Lamp (length: 288 mm, pipe
diameter: 16 mm, voltage: 220 V, power: 8 W, wavelength range: 240–285 nm) was used as a light
source for lignin depolymerization activity.

3.2. Synthesis of iso-Propyl Amine Lead Chloride Perovskites (IAPbCl3) (SK9–SK10)

SK9 was prepared hydrothermally by taking 1 g PbCl2 salt into a Teflon lined autoclave container.
Then, 50% 10 mL HCl and 4 mL iso-propyl amine (IA) were added. The container was tightly closed
and heated at 150 ◦C for 24 h. The shiny white crystals of the obtained material were filtered and
air-dried. The SK9 obtained as white crystalline material which was characterized and used for
catalytic activities. PXRD; D (77.19 ± 5). SK10 was synthesized following the same way as for SK9 by
utilizing the 5 mL IA. The material SK10 was also obtained as white crystalline material, which was
characterized and used for catalytic activities. PXRD; D (75.59 ± 7).

3.3. Photocatalytic Activity under UV Light

Photocatalytic depolymerization of the lignin was done according to our recently reported
photocatalytic activity under sunlight [70] modifying the light source in current studies. Lignin was
extracted from the wood powder of Oryza sativa through the organosolv acid treatment method
discussed in detail in our recent work about lignin depolymerization [70].

For photocatalytic activity experiments, 100 ppm lignin (L1) solution was prepared in dioxane.
In total, 50 mL of this solution was stirred under UV light irradiation with 0.1 g amount of catalysts
(SK9 and SK10) separately. Aliquots of 5 mL from the reaction mixture were taken at time intervals
of 10, 20, 30, 40, 50, and 60. A UV absorption spectrum was taken for all the taken aliquots at
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different time intervals. From the spectrum, the absorbance of samples at 280 nm was noted, and the
%depolymerization for all the sample aliquots was calculated by following Equation (7) [26].

%Depolymerization = Co − Ct/Co × 100 (7)

In the equation, C0 is the starting concentration and Ct is the concentration of samples at a
specific time interval. The lignin concentration at certain time intervals was calculated by drawing the
calibration curve between the known lignin concentration and absorbance. The unknown concentration
of lignin for noted absorbance at the different time intervals was measured by the linear equation of
the known data.

The calculation of kinetic parameters was done by varying the initial lignin concentrations (50, 100,
150, and 200 ppm) and varying catalyst dosage (0.025, 0.05, 0.075 and 0.1 g) at the different time intervals
through the same method as explained above. Meanwhile, thermodynamic parameters were evaluated
by varying the temperature range (20, 35, 65, 90 ◦C) at different time intervals. Representative samples
(L1-SK9, L1-SK9 (temperature treated)) after the photocatalytic lignin depolymerization activity were
analyzed by GC-MS.

4. Conclusions

The presented work described the synthesis of two iso-propylamine-based lead chloride perovskite
nanomaterials (SK9 and SK10) employed for photocatalytic applications. These perovskites were
synthesized by employing a facile hydrothermal treatment and characterization was done by PXRD,
SEM, UV, PL, and FTIR for determining the phase purity, structural composition, optical characteristics,
and surface morphological features. Photocatalytic activity study was done by depolymerizing the
lignin under UV light, which was extracted from the wood powder of Oryza sativa, reported in a previous
work. Catalytic depolymerization of lignin by SK9 and SK10 was checked by absorption spectra at
various time intervals and %lignin depolymerization was calculated. The effect of increasing catalyst
dosage, starting lignin concentrations, and varying temperature indicated a considerable increase in
%depolymerization of lignin. The kinetic study of investigated factors termed that pseudo-second order
was the best suited kinetic model, with R2 > 0.9 representing that the reaction mechanism for lignin
depolymerization was chemically controlled. The Ea for the reaction was calculated to be 15 kJ/mol,
which is much less than conventional depolymerization reactions, i.e., 59.75 kJ/mol, and shows the
good catalytic proficiencies of perovskites to depolymerize the lignin. Depolymerization products of
the lignin were characterized by GC-MS analysis. GC-MS analysis of the liquid product of the lignin
depolymerization was obtained with SK9 at room temperature (20 ◦C) and at 90 ◦C, which indicated
that temperature treatment assisted in increasing catalytic depolymerization of lignin structural
subunits into small monomeric functionalities. Specifically, 39% 2-methoxy-4-methylphenol, 17%
benzene, 10% phenol, and 7% catechol were confirmed by GC-MS analysis of lignin depolymerization.
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