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Abstract: Metal complexes are currently potential therapeutic compounds. The acquisition of
resistance by cancer cells or the effective elimination of cancer-affected cells necessitates a constant
search for chemical compounds with specific biological activities. One alternative option is the
transition metal complexes having potential as antitumor agents. Here, we present the current
knowledge about the application of transition metal complexes bearing nickel(II), cobalt(II), copper(II),
ruthenium(III), and ruthenium(IV). The cytotoxic properties of the above complexes causing apoptosis,
autophagy, DNA damage, and cell cycle inhibition are described in this review.
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1. Introduction

The discovery of an antitumor effect of cisplatin (transition metal) led to the creation of the
field of metal-based chemotherapeutics [1]. Platinum-based drugs such as cisplatin, oxaliplatin, and
carboplatin are routinely used alone or in combination with other agents, to treat various malignancies
such as testicular, lung, ovarian, colorectal, head and neck cancers [2–7]. Cisplatin binds to DNA,
blocking the transcription and replication, which initiates the apoptosis process [8–11]. Cisplatin
application is nevertheless limited due to an increasing resistance as well as due the side-effects
associated with its toxicity [12–14]. Therefore, several non-platinum metallopharmaceuticals such
as ruthenium(III)-, gold(I)-, gallium(III)-, copper(II)-, cobalt(II)- and nickel(II)-based compounds
have been investigated for their anticancer potential [15–23]. Some of the ruthenium(III) complexes
(NAMI-A and KP1019) are currently being tested in clinical trials [17]. The cytotoxic properties of metal
complexes are widely studied; therefore, this review aims to gather this knowledge, with particular
emphasis on the proposed mode of action. The main types of cell death induced by metal-based
anticancer compounds are apoptosis and autophagy. Phenotypic changes associated with cell death
may vary depending on the stimuli and cell type [24–26].

2. The Role of Metal Complexes in Apoptosis Generation

Apoptosis is the first genetically identified programmed cell death process that can be induced by
both external and internal factors. There are two main pathways of apoptosis: extrinsic (associated
with cell death receptors) and intrinsic (mitochondrial) (Figure 1) [27,28]. During apoptosis, the initial
symptoms are observed at the nucleus level, where chromatin condenses and is located just below the
cell membrane. As a result, it comes to condensation and nucleus fragmentation. The next step is the
condensation of cytoplasm and forming vesicles to the cell surface. As a result of their separation, the
apoptotic bodies are formed. They include concentrated chromatin, cytoplasm, and cell organelles. In
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the end, apoptotic bodies are phagocytized by macrophages. This process involves the degradation of
cellular components by a group of cysteine proteases called caspases. Caspases, by their structure and
function, are divided into initiators (caspase −2, −8, −9 and −10) and effectors (executive) (caspase −3,
−6 and −7). In response to the stress factor, the initiator caspases are activated in an intrinsic pathway
through the apoptosome, or extrinsically formed by the DISC signaling complex (death-inducing
signaling complex). Effector caspases are activated as a result of digestion by initiator caspases. The
activation of the caspase cascade causes the proteolysis of important cellular proteins, including the
DFF40/CAD endonuclease inhibitor—ICAD proteins (inhibitor of caspase-activated DNase). As a
result of the proteolysis of nuclear lamine (the fibrillar protein that performs structural and regulatory
functions in the cell nucleus during mitosis), the nucleus shrinks and fragments. In turn, they activate
proteolytically active DNA endonuclease. As a result of the cytoskeleton protein (actin) digestion,
the cell breaks down into apoptotic bodies (Figure 1). Effector caspases, mainly caspase 3, are also
activated by proteins associated with the DNA damage pathway—DDR (DNA Damage Response).
These include PARP (poly (ADP-ribose) polymerase), DNA-PKcs, and serine/threonine protein kinase
ATM. An important protein in the process of apoptosis is also p53, which is involved in the various
stages of activation of the extrinsic and intrinsic pathways. This protein is a transcription factor for
proapoptotic genes and also blocks the action of anti-apoptotic proteins. It also stimulates many types
of non-coding microRNAs, which in turn silence the proteins associated with the cell cycle and DNA
repair [27,28].
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The extrinsic (receptor) path of apoptosis is initiated by nutrient deficiency, as well as a local
increase in the hormone and cytokine levels. Besides, the activating agents for the apoptosis receptor
pathway are chemical compounds, such as cytostatic and physical factors, e.g., various types of
radiation and temperature. The extrinsic pathway of apoptosis occurs via specific transmembrane
receptors belonging to the tumor necrosis factor receptor (TNFR) superfamily. In addition to CD95/FAS
and TRAILR (receptor of TNF-related apoptosis-inducing ligand), TNFR1 is also one of them. Ligand
binding, e.g., Fas (type II transmembrane protein belonging to the TNF family), TNFR (tumor necrosis
factor receptor), and tumor necrosis factor ligand TRAIL with death receptors, cause the oligomerization
of the cell surface receptor and initiates the apoptotic cascade. The binding of the FADD adapter
protein to Fas initiates the process of apoptosis by forming a signaling complex (DISC). The FADD–Fas
complex also causes autoproteolysis and the activation of caspase 8, which initiates the extrinsic
pathway of apoptosis (Figure 1) [30,31].

The intrinsic pathway is initiated by cellular stimuli, e.g., DNA damage and oxidative stress. These
stimuli cause mitochondrial dysfunction, including changes in the inner membrane, channel opening,
and the loss of mitochondrial membrane potential [32]. Proapoptotic proteins, such as cytochrome
c, are released from the mitochondrial intermembrane space into the cytosol. Cytochrome c binds
and activates the apoptotic protease-activating factor 1 (APAF-1) as well as procaspase 9, forming an
apoptosome. As a result of these changes, caspase 9 is activated [33]. The regulation of the release
of mitochondrial factors, including cytochrome c, depends on the proteins from the BCL−2 family
(Figure 2). This family consists of a large and diverse group of globular proteins. To date, 25 genes have
been identified from this family. Most BCL−2 homologues are anti-apoptotic proteins, such as BCL−2,
BCL-X, BCL-XL, BCL-XS, BCL-W, and BAG. In contrast, proapoptotic proteins include BCL−10, BAX,
BAK, BID, BAD, BIM, and BIK [34].
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The antitumor properties associated with apoptosis show, among others, two ruthenium complexes
[imiH][trans-[Ru(N-imi)(S-dmso-S)Cl4] (imi = imidazole, dmso = dimethylsulfoxide), named NAMI-A,
and [indH][trans-[Ru(N-ind)2Cl4] (ind = indazole), named KP1019, qualified for clinical studies [17].
Arena ruthenium(II) complexes binding to DNA have great potential as anticancer drugs [35].
The complex [(η6-aren)Ru(N,N-en)Cl]+, where en = 1,2-diaminoethane, aren = para-terphenyl,
developed by Sadler’s research group, induces apoptosis by the inhibition of DNA synthesis,
the activation of p53 protein, the downregulation of p21 and BAX gene expression, and nuclear
fragmentation [36]. Organometallic ruthenium(II) compounds of the Ru(II)-PTA type exhibit promising
antitumor properties. Ruthenium complexes from the above group, e.g., the RAPTA-C complex Ru(η6-
cymene)(PTA)Cl2, PTA = (1,3,5-triaza-7-phosphatricyclo [3.3.1.1]decane) induce apoptosis against
Ehrlich ascites cancer by the mitochondrial pathway. This causes the changes in BAX to BCL-2 ratio,
the release of cytochrome c, and the activation of caspase 9 [37–41].

Further examples of compounds widely used in medicine are 67Ga and 68Ga compounds. Gallium
nitrate has anticancer properties and is used in a therapy under the trade name Ganitet. The mode
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of action of this compound is associated with the induction of apoptosis via the mitochondrial
pathway [42]. Some gallium(III)-containing pyridine complexes have a higher antitumor activity than
cisplatin. The activation mechanism of the [GaIII(LI2)2]ClO4 complex (where LI2

− is a deprotonated
ligand with a 4,6-diiodophenol pyridine molecule) is associated with the inhibition of proteasome
activity and the induction of apoptosis [43,44]. Similarly, Ga(III) complexes with thiosemicarbazone,
show a 20 times stronger activity compared to commonly used cisplatin. The Ga(III) complex with
thiosemicarbazone induces a p53-dependent and -independent apoptosis [45]. Cisplatin is also a
compound that induces cell death by apoptosis, which causes DNA damage. It also induces autophagy
as a cytoprotective response [46].

2.1. The Role of Metal Complexes in the Autophagy Process

Autophagy is a tightly regulated, basic catabolic process [47], in which the damaged cytoplasmic
material and organelles are initially captured by autophagosomes, then sequentially combined with
lysosomes to form autolysosomes (Figure 2) [48]. Autophagosome formation regulates the conserved
autophagy-related proteins (Atg proteins). Currently, over 30 genes have been identified for these
proteins [49] with those coding Beclin-1 (also called ATG-6) and LC3 (ATG-8), the two basic elements
of cell autophagy [50,51]. The regulation of autophagy is quite complex. Important regulators of
autophagy, both in normal and cancer cells, are mTOR kinase (the so-called mammalian target of
rapamycin) and AMPK protein kinase. The mTOR plays a key role in transmitting autophagic
stimuli [52]. AMPK protein kinase is the main indicator of metabolism that regulates lipid, cholesterol,
and glucose metabolism [53]. The decrease in intracellular ATP production activates AMPK, which
in turn inhibits the action of mTOR, thus causing autophagy [54]. Protein kinase B/Akt, which is an
important effector for Class I phosphoinositide 3-kinase 2class III PI3K induces autophagy [55,56].

Autophagy, as previously mentioned, is a cytoprotective process antagonizing oxaliplatin-induced
apoptosis. Unlike apoptosis, autophagy is not uniquely identified with the state of cell death. It is a
mechanism activated in response to stress conditions, which results in the degradation of cytoplasmic
proteins (damaged or unnecessary) or the elimination of whole organelles. Autophagy can function as
a strategy of cell survival in the conditions of the limited availability of nutrients or stress. Although
the exact role of autophagy in cell survival compared to death is highly context-dependent, increasing
evidence indicates that autophagy may promote tumor cell survival in response to both cytotoxic and
targeted chemotherapy [57,58]. The oxaliplatin treatment of hepatocellular carcinoma cells stimulated
the autophagic response both in vitro and in vivo. On the other hand, the suppression of autophagy
with pharmacological inhibitors (3-methyloadenine or chloroquine) and the RNA interference of
important autophagic genes increased hepatocellular carcinoma death [59]. Similar results were
obtained for the oxaliplatin treatment of gastric cancer cells MGC-803 [60]. In contrast, an oxaliplatin
derivative E-Platinum-induced autophagy in BGC-823 gastric gland cancer cells, by suppressing
the mTOR signaling pathway [61]. Autophagy was proven to be a mechanism that stimulates the
death of cancer cells because its inhibition by the 3-methyloadenine or chloroquine causes cancer
cell proliferation [61]. Brasseur et al. [62–65] described a panel of platinum(II) complexes tested on
dependent- (ER+) and estrogen-independent (ER-) cells. The platinum(II) complex with 17-β-estradiol
marked VP-128 showed a selective antiproliferative activity to hormone-dependent breast cancer cells.
The mechanisms of this compound activity on ER-positive and ER-negative tumor cells turned out to be
different [62–65]. It induced the activation of caspase 9/3 and the cleavage of PARP (poly-ADP-ribose) in
ER+ cells, whereas, in ER- cells, the caspase-independent apoptosis was observed where the compound
VP-128 induced the translocation of the proapoptotic factor (AIF) to cell nucleus [66].

2.2. Inhibition of Proteasome Activity by Metal Complexes

The proteasome is a multi-enzymatic complex that plays an important role in regulating cellular
processes and cell proliferation. The human proteasome is named to as 26S and consists of a 20S core
(also referred to as the 20S proteasome) and two 19S regulatory particles. It degrades the regulatory
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proteins, cyclin-dependent kinase inhibitors (e.g., p21 and p27), tumor suppressors (e.g., p53), and
nuclear factor inhibitors (NF)-κB (e.g., IκB-α) that are necessary for tumor growth [67]. The potential
therapy target of copper and its complexes could be the proteasome activity, by an ion-dependent
inhibition. The disturbance in the proteasome regulation consequently will influence the degradation
of cell cycle regulatory proteins, NF-kB pathway activation, the mitogen-activated protein kinase
pathway (p44/42 MAPK) and the degradation of the apoptosis-inducing factor (AIF), altogether having
a cytotoxic effect on cancer cells (Figure 3)[68].
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An organic copper complex [Cu(8-OHQ)2] (8-OHQ - 8-hydroxyquinoline hemisulfate) showed
the ability to inhibit chymotrypsin-like proteasome activity in cancer cells, which is associated with
the induction of apoptosis [69]. Cu(II) and Zn(II) complexes with diethyldithiocarbamate ligand
antitumor properties against MDAMB-23 cells inhibited the activity of the 26S proteasome in the cell
more intensively than the purified core particle of the 20S proteasome itself. The authors suggested
that this might be associated with the inhibition of the JAMM domain in the 19S proteasome cover.
The 19S proteasome molecule is responsible for the recognition of ubiquitinated proteins and their
further processing (cutting the ubiquitin chain) before degradation. The deubiquitinating activity of
the 19S particle is dependent on a metalloisopeptidase with a coordinated zinc ion, and this structural
motif in the 19S particle (JAMM domain) has been suggested as prospective target for anticancer
drugs [70]. Gold(III) complex with dithiocarbamate, also showing antitumor properties against
MDA-MB-231 breast cancer cells, inhibited the activity of the purified rabbit 20S and cellular 26S
proteasome. This resulted in the accumulation of ubiquitinated proteins, the proteasome target protein
p27 and the induction of apoptosis [71]. The copper complex with the pyrrolidine dithiocarbamate
(PDTC) ligand was able to reduce the chymotrypsin-like activity of the proteasome, to suppress
cell proliferation, to induce apoptotic cell death, and to inhibit the uptake of radiopharmaceutical
2-[18F]fluoro-2-deoxy-D-glucose in cultured human prostate cancer cells [72]. Similarly, the cobalt
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complex [CoIII(L1)2ClO4] with the [NN′O] tridentate ligand HL1 inhibited the chymotrypsin-like
activity of the proteasome in PC-3 cancer cells [73].

3. Interaction of Metal Complexes with DNA

Metal complexes can interact with DNA either directly or indirectly. Generated reactive oxygen
species (ROS) in cells interact indirectly with DNA, where the hydroxyl radical is added to the double
bonds of heterocyclic DNA bases and abstracting the hydrogen atom from the thymine methyl group,
and each of the five 2’-deoxyribose carbon atoms causing DNA strand breaks and the formation of AP
sites. In reaction with OH. the thymine radical and sugar radicals, as well as the OH-adduct with DNA
bases are formed. The resulting radicals of thymine residues can react with oxygen to form peroxides.
It leads to the formation of three isomers of thymidine peroxide that have a peroxide group in the
5-position or 6-position pyrimidine ring, or a carbon-bonded methyl group. The first two peroxides
form a thymidine derivative called thymidine glycol. The third thymidine peroxide breaks down
to form 5-hydroxymethyl-2’-deoxyuridine and 5-formyl-2’-deoxyuridine. Reactions of the hydroxyl
radical with cytosine also cause the formation of derivative products analogous to thymine [74].

The hydroxyl radicals are also added to the purines giving rise to C4-OH-, C5-OH- and
C8-OH-adduct radicals. The resulting adducts then dehydrate and oxidize purine radicals,
which leads to the formation of 8-hydroxypurines (7,8-dihydro-8-oxopurine) and formamide
pyrimidines, respectively. The addition of OH. to C8 guanine produces 8-hydroxyguanine
and 2,6-diamino-4-hydroxy-5-formamido-pyrimidine. The analogous reaction of adenine forms
8-hydroxyadenine and 4,6-diamino-5-formamidopyrimidine [75].

The unique reaction of the C5-centered radical of the sugar in DNA is the addition to the C8
position of the purine ring in the same nucleoside, which leads to intramolecular cyclization, resulting
in 8.5’cyclopurine-2’-deoxynucleosides [75].

DNA–protein bonds are also formed in free radical reactions. Thymine–tyrosine binding has been
identified in mammalian chromatin in vitro and in cells exposed to free radical-generating systems.
The DNA–protein cross-links are the result of the allyl thymine radical addition to the C3-position of
the tyrosine ring in a protein placed near the DNA chain [75].

Hydroxyl radical generates multiple products in DNA, which generate various modifications of
nitrogen bases and sugars, AP sites, thread breaks, and DNA–protein cross-links. The disruption of
the cellular redox state can be initiated by an excessive ROS generation or by interfering with ROS
metabolism [76]. The main compound that binds ROS in cells is glutathione (GSH). Lowering GSH
levels and increasing ROS levels in cells are associated with the redox imbalance.

The copper(II) complex with N-(2-hydroxyacetophenone)glycinate was proved to be a redox
disruptor, reducing the intracellular GSH level due to the formation of water-soluble Cu–GSH conjugates.
The treatment with the above compound caused the release of cytochrome c from the mitochondrial
membrane, and activated the internal pathway of apoptosis [77]. Zhou et al. described the copper(II)
complex with phenanthroline (phen) [Cu(phen)2], which induced the apoptosis in the Bel-7402 liver
cancer cell line [78]. Cai et al. showed that the apoptosis pathway in the [Cu(phen)2]-treated cell line
could be initiated by the accumulation of excessive copper, ROS generation, and the reduction in the
GSH/GSSG (Glutathione disulfide) ratio [79]. This complex also exhibited strong cytotoxicity against
human HL60 leukemia cells and SGC-7901 gastric cancer cells [80].

Metal complexes can also directly cause DNA damage. The most known anticancer compound that
interacts with DNA is cisplatin. It is now widely accepted that the cisplatin mode of action is associated
with DNA interaction. However, only a small amount of intracellular cisplatin was associated with
genomic DNA (33%). The vast majority of the drug interacted with proteins or small molecules of
the cell (e.g., glutathione) [81]. Cisplatin hydrolysis occurs in the cell and its cationic forms react with
DNA to give numerous cisplatin–DNA adducts. It forms cross-links with 1,2-intrastrand between
adjacent guanines d(GpG), between adjacent guanine and adenine d(ApG), and 1,3-intrands between
purines separated by one or more bases d(GpNpG). Besides, inter-strand cross-links and DNA–protein
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cross-links may be formed. The most important interaction is 1,2-intrastrand d(GpG) binding to
platinum, which is coordinated with adjacent N7 guanine atoms [82]. Platinum(II) complexes also can
intercalate into DNA. A series of active complexes with antitumor properties of the type [Pt(IL)(AL)]2+

have an intercalating ligand (IL) and a non-intercalating ancillary ligand (AL). Complexes such as
[Pt(phen)(en)]2+ intercalate with DNA minor groove, mainly between the base pairs C3-G4 and T2-A5,
as a result of which the helix is lengthened and rigidified [83–86].

Metal coordination compounds can interact with DNA in several different ways. The simplest
example is the [Pt(terpyridine)Cl]+ complex, initially intercalating with DNA, and losing the labile
chloride ligand forms covalent bonds with nitrogen base pairs [83].

The ruthenium(III) complex marked with KP1019 prepared in Keppler laboratories interacts
with DNA causing damage of different quantity and quality compared to cisplatin activity,
but the exact mechanism is not yet elucidated. The ruthenium complex NAMI-A was
also shown to interact with DNA in vitro, however, it is not critical for its anti-metastatic
activity [82]. Intercalating metal complexes are also combined with N4-tetradentate
ligands, such as combinations of copper(II), nickel(II) or zinc(II) complexes with the cation
[M(N,N’-bis-5-(triethylammoniummethyl)-salicylidene-2,3-naphthalendiiminato)]n+. These complexes
bind to DNA through the intercalation. It was observed that the mentioned nickel(II) complex with
a square planar coordination geometry of the coordinating sphere, penetrates deeply between base
pairs in DNA compared to other metal compounds. The copper(II) and zinc(II) complexes discussed
above have an octahedral arrangement of donor atoms, which is probably the reason for the weaker
interaction with DNA.

The bis-(1,10-phenanthroline) copper(II) complex is well known for its ability to cleave DNA,
especially in the presence of hydrogen peroxide [87]. The exact mechanism of action is still being studied,
but it probably intercalates with DNA at the minor groove [88,89]. The DNA–copper complex is then
oxidized in the presence of an activator, triggering the oxidetive stress pathways, which consequently
leads to the hydrolysis of DNA–hydrogen bonds. Another copper(II) complex, [Cu(N9-ABS)(phen)2]
(where N9-ABS = N-(9H-purin-6)-yl)benzenesulfonamine) in the presence of ascorbate intercalates
with a DNA strand causing bond hydrolysis [90]. Copper(II) complexes, in which two phenanthroline
ligands are linked by a serinol bridge at the 3 or 2 positions, showed an increased DNA affinity and
nuclease activity [83,91].

Cobalt(III) complexes such as [Co(en)3]3+, [Co(en)2(bpy)]3+ and [Co(en)2(phen)]3+ (en =

1,2-diaminoethane, bpy = 2,2′-bipyridine, phen = phenanthroline)) bind to DNA by groove mode
resulting in hydrolysis. Zinc(II) and copper(II) dinuclear complexes with a cis or trans bridge
azobenzene, bind within a minor DNA groove and can hydrolytically cleave the strand, but only in the
cis form [83].

Zhang et al. [92] described the synthesis and characterization of 1-[3-(2-pyridyl)pyrazol-1-ylmethyl]
naphthalene ligand and its octahedral complexes [M(L)3][ClO4]2 (M = Cu(II), Zn(II)) and the copper(II)
complex showed a high affinity to DNA and cytotoxicity against human leukemia cell lines HL-60,
gastric cancer BGC-823 and mammary tumor MDA-MB-435 [92]. The inhibition of the metabolic
activity of the aforementioned cell lines was also caused by the [Cu(L)2(NO3)][NO3] complex based
on the same ligand. Its activity was also confirmed against other cell lines, including prostate cancer
PC-3M-1E8, hepatoma cells Bel-7402, and cervical cancer HeLa). The cytotoxic properties were
associated with the ability to intercalate and generate DNA breaks [93].

4. Cell Cycle Inhibition by Metal Complexes

Stress inducers, including DNA-damaging agents, activate cell checkpoints functions, leading to
cell cycle arrest. Cycle checkpoints existing in the G1/S, G2, and M phases have specialized systems
to detect specific DNA structures indicating the damage or ongoing repair and replication process.
An intracellular signal transduction cascade is initiated and the S phase is blocked. This is due to the
inhibition of D/CDK cyclins that phosphorylate the retinoblastoma protein. Another way is to block
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the initial phase of mitosis by phosphorylating Cdc2 tyrosine and preventing CDK activation [94].
DNA-induced cell cycle arrest may consequently lead to cell death, e.g., by apoptosis (Figure 4).
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An example of a compound that causes cell death by inhibiting the cell cycle is the Pt(II) complex
with terpyridine. It non-covalently interacts with DNA forwarded by the necrosis induction. This
compound arrests the cell cycle in the G1 phase. It also induces a response to DNA damage by
increasing the expression level of the γH2AX, p53, p21 genes, as well as phosphorylated kinase 2
(CHK2), an enzyme necessary for cell cycle arrest and DNA-induced apoptosis [95]. Some Ru(II) and
Os(II) arenum complexes containing azopyridine or iminopyridine ligands stoped the cell cycle in the
G0/G1 phase and induced the apoptosis through the caspase 3 activation [96]. Ruthenium(II) complexes
containing carboline derivatives did the same but in the G2/M phase in HeLa cells, increasing ROS levels
and mitochondrial damage [97]. Fluorescent Ru(II) complexes containing the HDAC group (histone
deacetylases) caused the ROS generation, G0/G1 phase cycle arrest, and mitochondrial-mediated
apoptosis [98]. The aforementioned RAPTA-C ruthenium complex inhibited the growth of Ehrlich
ascites tumor cells in the G2/M phase accompanied with increased levels of p21 and a decreased
expression of cyclin E [37–40]. Similarly, N-heterocyclic carbene Pd(II) complexes inhibit tumor cell
proliferation by stopping the cell cycle in the G2/M phase and inducing apoptosis via the p53-dependent
pathway [99]. In turn, the nitridoosmium(VI) complex, halt the cell cycle in S and G2/M phases killing
HeLa cells [100]. Osmium(VI) complexes with pyrazole derivatives also show high cytotoxic effects
in vitro through DNA damage, phase arrest S cell cycle, and apoptosis in HeLa cells [24,100]. Bolos et al.
synthesized a copper(II) complex with a 2-amino-5-methylthiazole ligand, which was cytotoxic to
human cells (cervical cancer HeLa, breast T47D, colon HT-29), while not affecting the normal mouse
fibroblasts L-929. In cell lines treated with this compound, the inhibition of cell cycle progression as
well as of DNA synthesis was observed, but not accompanied by the apoptosis process. The cell cycle
arrest in the G2/M phase is probably associated with the inhibition of p34cdc2 kinase by the tyrosine
phosphorylation and/or the induction of cyclin-dependent p21WAF1 kinase inhibitor [101]. Copper(II)
complexes, [Cu(phen)(aa)(H2O)]NO3.xH2O (phen = 1,10-phenanthroline; aa = gly or DL-ala, sar,
C-dmg) caused higher cytotoxicity in cisplatin-resistant MDA-MB-231 breast cancer cells than MCF10A.
These complexes induced the apoptosis, cell cycle arrest, ROS generation, and double-stranded DNA
breaks [102].
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5. Conclusion

This article presents the main mechanisms of the in vitro anticancer activity of metal complexes
(apoptosis, autophagy, cell cycle inhibition, DNA damage) described in the literature to date. Studies
on cell lines indicate that metal complexes, especially copper complexes, are selective for cancer
cells [103–105]. Metal complexes might soon prove to be good alternatives to cisplatin, which is still
the most popular, but with many side effects and fast emerging drug-resistance in cancer cells. Metal
complexes are an interesting option in the diagnostics and therapy of cancer. Due to their structure
and properties, many of these compounds additionally have a high antitumor, anti-inflammatory, and
antibacterial activity. Copper(II) complexes are very promising as an antitumor agent because their
action is directed at copper levels and increases only in the cancer cell, with potential for proteasome
inhibition and induction of apoptosis.

Due to intensive research work, metal complex compounds, as shown in the present article, show
great application potential and may soon be used as anticancer drugs.
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