Adhesion and Stability of Nanocellulose Coatings on Flat Polymer Films and Textiles

Raha Saremi ^{1,2}, Nikolay Borodinov ³, Amine Mohamed Laradji ¹, Suraj Sharma ^{1,2}, Igor Luzinov ³, and Sergiy Minko ^{1,2,*}

- ¹ Nanostructured Materials Laboratory, University of Georgia, Athens, GA 30602, USA; raha@uga.edu (R.S.); alaradji@wustl.edu (A.M.L.); ssharma@uga.edu (S.S.)
- ² Department of Textiles, Merchandising and Interiors, the University of Georgia, Athens, GA 30602, USA
- ³ Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA; nikolab@g.clemson.edu (N.B.); luzinov@clemson.edu (I.L.)
- * Correspondence: sminko@uga.edu

Figure S1. Schematics for the multilayered samples of nanocellulose coatings on the surface of polymer materials according to Protocols 1-4.

Figure S2. Structure of the P(GMA-OEGMA) copolymer

Figure S3. Pore size distribution of cotton fabrics

Figure S4. Pore size distribution of nylon fabrics

Figure S5. Pore size distribution of cotton/polyester fabrics

Figure S6. Pore size distribution of polyester fabrics

Figure S7. FT-IR spectra of (a) cotton-NCC and cotton-NCC treated with MA and (b) cotton-NFC and cotton-NFC treated with MA

Figure S8. AFM topography image of the cellulose coating on the Si-wafer after the scratch with a steel needle

Figure S9. Schematic of a sample for the T-peel test