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Abstract: Since the first approval of a protein kinase inhibitor (PKI) by the Food and Drug
Administration (FDA) in 2001, 55 new PKIs have reached the market, and many inhibitors are
currently being evaluated in clinical trials. This is a clear indication that protein kinases still represent
major drug targets for the pharmaceutical industry. In a previous work, we have introduced PKIDB,
a publicly available database, gathering PKIs that have already been approved (Phase 4), as well as
those currently in clinical trials (Phases 0 to 3). This database is updated frequently, and an analysis of
the new data is presented here. In addition, we compared the set of PKIs present in PKIDB with the
PKIs in early preclinical studies found in ChEMBL, the largest publicly available chemical database.
For each dataset, the distribution of physicochemical descriptors related to drug-likeness is presented.
From these results, updated guidelines to prioritize compounds for targeting protein kinases are
proposed. The results of a principal component analysis (PCA) show that the PKIDB dataset is
fully encompassed within all PKIs found in the public database. This observation is reinforced by a
principal moments of inertia (PMI) analysis of all molecules. Interestingly, we notice that PKIs in
clinical trials tend to explore new 3D chemical space. While a great majority of PKIs is located on
the area of “flatland”, we find few compounds exploring the 3D structural space. Finally, a scaffold
diversity analysis of the two datasets, based on frequency counts was performed. The results give
insight into the chemical space of PKIs, and can guide researchers to reach out new unexplored areas.
PKIDB is freely accessible from the following website: http://www.icoa.fr/pkidb.

Keywords: protein kinase inhibitors; clinical trials; approved drugs; database; chemometrics analysis;
kinome; molecular scaffolds; rings system

1. Introduction

The reversible phosphorylation of proteins plays a preeminent role in cell cycle regulation.
This process, which consists in the transfer of a phosphoryl group PO3

2− to the target substrate,
is catalyzed by enzymes pertaining to the protein kinase family. Protein kinases constitute one of the
largest protein families encoded by the human genome and counts 518 members (or 538 members when
atypical kinases are included) [1–3]. Numerous studies have shown that deregulation or mutation
of kinases is responsible for a variety of cancers [4], as well as for other diseases in the immune or
neurological area [5,6]. The majority of protein kinases, however, have not yet been fully explored [7],
and there is still a high potential for innovation in targeting the protein kinome for the treatment of cancer.

Molecules 2020, 25, 3226; doi:10.3390/molecules25143226 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
https://orcid.org/0000-0003-2627-7924
https://orcid.org/0000-0002-9640-9665
https://orcid.org/0000-0003-3785-1741
https://orcid.org/0000-0001-6485-138X
http://www.mdpi.com/1420-3049/25/14/3226?type=check_update&version=1
http://www.icoa.fr/pkidb
http://dx.doi.org/10.3390/molecules25143226
http://www.mdpi.com/journal/molecules


Molecules 2020, 25, 3226 2 of 17

The Food and Drug Administration (FDA) approved 55 small-molecule protein kinase inhibitors (PKIs)
by end of 2019, whereas the Chinese and European regulatory authorities have granted market access
to five more compounds, namely anlotinib, apatinib, icotinib, fasudil, and tivozanib (Figure 1). It is
worth mentioning that higher molecular weight inhibitors like macrocyclic lactones, such as sirolimus
and temsirolimus, or kinase-targeted antibodies, such as cetuximab and trastuzumab, have been
approved for the treatment of colorectal, head/neck, and breast cancers, respectively [8–10]. These large
molecules were excluded from this study, which focuses on small-molecule PKIs targeting the kinase
domain. The first PKI approved by the FDA was imatinib in 2001. Imatinib is a small-molecule type-II
inhibitor containing a phenylamino-pyrimidine scaffold. It targets the inactive conformation of ABL1
kinase and is used against chronic myelogenous leukemia (CML) [11]. Since then, at least one new PKI
reaches the market every year, with a significant acceleration since 2011. The exceptions to this rule are
2002, 2008, 2010, and 2016, with no compound approved in these years.
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Figure 1. Progression of Food and Drug Administration (FDA)-approved protein kinase inhibitors
(2001–2019) and their type of inhibition [12]. As of 11th December 2019, 55 kinase inhibitors were
approved by the FDA. Not shown here: tivozanib, approved by European Medicines Agency (EMA)
in 2017; anlotinib, apatinib, and icotinib, approved by the China Food and Drug Administration
(CFDA) in 2018, 2014, and 2011, respectively; and fasudil, approved in China and in Japan in 1995.
ND: not defined.

In addition to approved PKIs, many novel compounds are currently being evaluated in clinical
trials throughout the pharmaceutical industry. Taken collectively, these compounds show new trends
in terms of structures, physicochemical properties, and biological activities that foreshadows changes
in the PKI landscape. To collect and organize this data as well as keep up to date with their evolution,
we developed PKIDB [12], a curated, annotated and updated database of PKIs in clinical trials. In order
to enter the PKIDB, compounds should be currently in one development phase (from Phase 0 to
Phase 4), have a disclosed chemical structure, as well as an International Nonproprietary Name
(INN) [13]. Each compound is provided with comprehensive descriptive data, as well as with links to
external databases such as ChEMBL [14], PDB [15], PubChem [16], and others. The type of binding
mode specified in PKIDB has been manually entered and comply with Roskoski’s classification [12].
The database is freely accessible on a dedicated website (http://www.icoa.fr/pkidb). As of 11th of
December 2019, it contains 218 inhibitors: 60 approved and 158 in various stages of clinical trials (from
Phase 0 to Phase 3).

In this study, we compared PKIDB to a large dataset of 76,504 PKIs retrieved from ChEMBL
(referred herein as “PKI_ChEMBL”, see the Materials and Methods section). The objective is to be
able to better select PKIs from public databases based on structural and physicochemical property
information of PKIs already in clinical trials. Firstly, we performed a principal component analysis

http://www.icoa.fr/pkidb
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(PCA), and compared the projection of both datasets in a common factorial space. We also assessed
the structural shape diversity of PKIs using a principal moments of inertia (PMI) analysis. Secondly,
in addition to comparisons at the global molecular structure level, we performed a substructure analysis
based on PKI scaffolds. In medicinal chemistry, scaffolds are mostly used to represent core structures
of bioactive compounds. They are relevant for the medicinal and/or computational chemists, and have
proved to be useful in the identification of “privileged substructures” [17] in “scaffold hopping” [18] or
in structure–activity relationships (SAR) analyses [19]. The concept of the scaffold was first defined
by Bemis and Murcko, as frameworks that consist of rings and linkers, from which substituents are
removed [20]. From these scaffolds, two levels of abstraction were derived: the heteroatom framework
and the graph representation. The heteroatom framework only takes into account the atom type,
without considering bond types or aromaticity, whereas the graph representation (also known as cyclic
skeleton) turns every atom type to carbon and every bond type to a single bond, reducing the initial
molecule to a simple graph [21]. Finally, unfused rings present in the molecules are separated by
removing their connecting bonds.

The balance between the molecular diversity of scaffolds, and their frequency is an important
parameter in a chemical database. A high frequency associated to a small number of scaffolds
corresponds to a focused library composed of structurally similar molecules, bearing varying
substituents. Contrarily, a low frequency associated to a large number of scaffolds reflects a high
molecular diversity [12]. Thus, this criterion needs to be addressed when designing or selecting a
chemical library depending on its forecasted usage. We assessed scaffold diversity for the PKIDB and
PKI_ChEMBL datasets using the molecular Bemis and Murcko scaffolds and cyclic skeleton. The most
represented scaffolds (frequency) and the comparison of their distribution within the two studied
datasets are presented. Finally, an analysis of the rings of all molecules was performed. We first
considered all the rings devoid of substituent (first attached atoms were replaced by hydrogen atoms).
Then, we encoded the rings while retaining the position and atom type of their original substituents.
This scaffold diversity analysis reflects the chemical space of PKIs and can be useful for the medicinal
chemistry community to reach out new unexplored areas.

2. Results

2.1. Update on PKIDB

The description and analysis of PKIDB have been reported in a previous study by Carles et al. [22].
Referencing 218 molecules the 11th December 2019, PKIDB contains 38 more inhibitors (from phase 0 to
phase 4) than the first release (abivertinib, adavosertib, alvocidib, asciminib, avapritinib, bemcentinib,
berzosertib, bimiralisib, capivasertib, ceralasertib, derazantinib, dezapelisib, enzastaurin, fasudil,
lazertinib, leniolisib, mavelertinib, midostaurin, nazartinib, neflamapimod, nemiralisib, netarsudil,
ningetinib, parsaclisib, pralsetinib, ravoxertinib, ripasudil, ripretinib, rivoceranib, rogaratinib,
ruboxistaurin, samotolisib, sotrastaurin, tomivosertib, umbralisib, vactosertib, verosudil, zanubrutinib).

Among these 38 compounds, nine were FDA-approved in 2017, eight in 2018, and seven in 2019.
Fasudil, a ROCK inhibitor, approved in China and in Japan in 1995 was therefore the first kinase
inhibitor that reached the market, but it is not FDA approved. Those compounds were automatically
added to PKIDB database thanks to their name stem. Indeed, since the first release of PKIDB, the INN
made an update on the stems that assign the molecules with the “aurin” and “udil” suffixes to the
kinase inhibitor class. Moreover, the stem ‘cidib’ was also updated and has been replaced by ‘ciclib’
(see cumulative USAM stem list from AMA [23]). However, we also kept the stem ‘cidib’ to retrieve
information on alvocidib, not yet referenced as alvociclib.
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In addition to those compounds, Table 1 gathers the eight and seven PKIs that reached phase 4
and were FDA-approved in 2018 and 2019, respectively. Among those 15 PKIs, all were previously in a
phase lower than 4 in our database, except zanubrutinib, which was not in the first release. One should
note that FDA recently approved avapritinib, a selective dual KIT and PDGFRα inhibitor, after the
updated version of PKIDB, and is therefore not considered in this study.

Table 1. Protein kinase inhibitor (PKIs) approved in 2018 and 2019 with their respective targets extracted
from DrugBank (Uniprot ID extracted from https://www.uniprot.org/).

PKI Unitprot ID Gene Name

Alpelisib P42336 PI3KCA
Binimetinib Q02750 MAP2K1

Dacomitinib P00533 EGFR

Duvelisib
O00329 PI3KCD
P48736 PI3KCG

Encorafenib P15056 BRAF

Entrectinib

P04629 NTRK1
Q16620 NTRK2
Q16288 NTRK3
P08922 ROS1

Q9UM73 ALK

Erdafitinib P11362 FGFR1

Fedratinib
O60674 JAK2
P36888 FLT3
O60885 BRD4

Fostamatinib P43405 SYK

Gilteritinib
P36888 FLT3
P30530 AXL

Q9UM73 ALK

Larotractinib
P04629 NTRK1
Q16620 NTRK2
Q16288 NTRK3

Lorlatinib
Q9UM73 ALK
P08922 ROS1

Pexidartinib
P36888 FLT3
P10721 KIT
P07333 CSF1R

Upadacitinib P23458 JAK1

Zanubrutinib Q06187 BTK

This brings the total number of approved drugs on the market referenced in our database to 60.
As described in PKIDB, most of the PKIs are targeting more than one protein kinases, and since the
first version of PKIDB, new targets have emerged, such as the Wee1-like protein kinase inhibited by
adavosertib [24].

2.2. Physicochemical Analysis of PKI Datasets

2.2.1. Distribution of Physicochemical Properties of PKIs

To describe a molecule, it is common to compute its physicochemical properties to obtain
information on the size, the lipophilicity, the atomic composition, etc. Some descriptors, as described by
Lipinski or Veber, are still widely used to evaluate the potential oral bioavailability of a compound [25,26].

https://www.uniprot.org/
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Lipinski rule relies on four properties: molecular weight (MW) ≤ 500; number of hydrogen bond
donors (HBD) ≤ 5; number of hydrogen bond donors (HBA) ≤ 10 and logP ≤ 5. Veber rule relies on
the number of rotatable bonds (NRB) ≤ 10 and topological polar surface area (TPSA) ≤ 140 Å or the
sum of HBD and HBA ≤ 12. In addition, since they are also important in drug design, the number
of aromatic rings and the number of chiral atoms were also calculated [27,28]. During the search of
a lead compound in a virtual screening campaign, such descriptors may serve as a filter to discard
molecules, and therefore decrease the size of the chemical library, since a virtual library can be large.
The distribution of these descriptors calculated from inhibitors extracted from PKIDB is shown in
Figure 2.Molecules 2020, 25, x 5 of 17 
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Figure 2. Distribution of physicochemical properties of PKIs: (a) number of hydrogen bond acceptors
(HBA); (b) number of hydrogen bond donors (HBD); (c) ClogP (Rational Discovery Kit (RDKit));
(d) molecular weight (MW); (e) number of heavy atoms (NHA); (f) number of rotatable bonds
(NRB); (g) topological polar surface area (TPSA); (h) number of aromatic rings (NAR); (i) number
of chiral atoms (NCA). Pink areas represent values outside two standard deviation from the mean
(95.4% confidence interval).

In a previous study [22], we analyzed the ‘rule of five’ descriptors detailed by Lipinski [25] for
inhibitors in clinical trials and approved. Here, we updated the statistical analysis with new PKIs
included in PKIDB and we compared them to the ChEMBL dataset (Table 2).
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Table 2. Comparison of Lipinski’s rules violation between PKIs approved, in clinical trials and
in ChEMBL.

1 0 Ro5 Violation 1 Ro5 Violation 2 Ro5 Violations >2 Ro5 Violations

PKIs approved 33/60 (55.0%) 20/60 (33.0%) 7/60 (12.0%) 0/56 (0%)
PKIs in clinical trials 101/158 (64.0%) 41/158 (26.0%) 16/158 (10.0%) 0/158 (0%)

All PKIs 134/218 (61.5%) 61/218 (28.0%) 23/218 (10.5%) 0/218 (0%)
PKIs ChEMBL 51,858/76,504 (67.8%) 18,601/76,504 (24.3%) 5876/76,504 (7.7%) 169/76,504 (0.2%)

1 RDKit was used to calculate all descriptors including ClogP.

We found that 62% and 68% of PKIs in PKIDB and in ChEMBL, respectively, do not violate any
Lipinki’s rule. One single violation occurs in 28% and 24% of the PKIs for PKIDB and ChEMBL,
respectively, and two violations occur for about 10% of the PKIs in the two datasets. Finally, few PKIs
in ChEMBL dataset violates more than two rules (0.2%), and none for the PKIs in PKIDB. These results
may vary, depending on how the LogP is calculated. Here, we used Wildman-Crippen approach [29].
Compared to the initial study, we removed the counter ion during the standardization of the molecules,
such as the bromide ion in tarloxotinib. Despite the large different number of compounds in both
datasets (76,504 molecules in ChEMBL and 218 in PKIDB) we revealed that the two datasets exhibit
similar rule of five violation profiles.

The ratio of PKIs having descriptors out of the Lipinski’s or Veber’s rule are given in Table 3.
Here, again, we found that there is no significant difference between the two kinase subsets over all the
descriptors. Molecular weight (MW) and CLogP are the most discriminant descriptors. Interestingly,
less than 5% of the PKIs have descriptors out of Veber’s boundaries.

Table 3. Number of PKIs violating at least one Lipinski’s or Veber’s rule.

1 MW > 500 Da ClogP > 5 HBA > 10 HBD > 5 TPSA > 140 Å2 NRB > 10

PKIs approved 20/60 (33.3%) 12/60 (20.0%) 2/60 (3.3%) 0/60 (0%) 2/60 (3.3%) 2/60 (3.3%)
PKIs in clinical trials 46/158 (29.1%) 26/158 (16.5%) 1/158 (0.6%) 0/158 (0%) 4/158 (2.5%) 6/158 (3.8%)

All PKIs 66/218 (30.3%) 38/218 (17.4%) 3/218 (1.4%) 0/218 (0%) 6/218 (2.8%) 8/218 (3.7%)

PKIs ChEMBL 18,892/76,504
(24.7%)

10,897/76,504
(14.2%)

924/76,504
(1.2%)

208/76,504
(0.2%)

3695/76,504
(4.8%)

2051/76,504
(2.7%)

1 RDKit was used to calculate all descriptors including ClogP.

From these calculations, we propose a range of descriptors to guide the design of kinase inhibitors.
The proposed ranges do not consider the property values beyond two standard deviations from the
mean (95.4% confidence interval). Thus, the upper and lower limits of molecular descriptors better
represent the current chemical space of kinase inhibitors, either approved or in clinical trials.

One can notice that despite new PKIs in PKIDB, these guidelines have not changed much
compared to the ones presented in our first study. This shows that the define PKI chemical space seems
well defined.

Considering all PKIs from PKIDB, the guidelines for prioritization are:

• A molecular weight (MW) between 314 and 613 Da (average of 463.4 Da);
• A ClogP (calculated with a Rational Discovery Kit (RDKit)) between 0.7 and 6.3 (average of 3.5);
• Between 0 and 4 hydrogen bond donors (HBD) (average of 2.2);
• Between 3 and 10 hydrogen bond acceptors (HBA) (average of 6.4);
• A topological polar surface area (TPSA) comprised between 55 and 138 Å2 (average of 96.6 Å2);
• Between 1 and 11 rotatable bonds (NRB) (average of 6.0);
• Number of aromatic rings (NAR) between 1 and 5 (average of 3.4);
• Number of chiral atoms (NCA) between 0 and 2 (average of 0.5).



Molecules 2020, 25, 3226 7 of 17

2.2.2. Statistical Analysis of Protein Kinase Inhibitors

To compare the chemical space of the kinase inhibitors from PKIDB and from ChEMBL
(PKI_ChEMBL), we performed a principal component analysis (PCA). Each molecule was described
using 10 classical physicochemical descriptors (See Materials and Methods) well suited to characterize
chemical structures. The goal here is to compare PKI_ChEMBL to PKIDB.

The PCA plot (Figure 3) illustrates the chemical space of PKIs in a 2D reference frame, represented
by the two first principal components (PC1 and PC2).Molecules 2020, 25, x 7 of 17 
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Figure 3. (a) Principal component analysis (PCA) of PKIs from ChEMBL and PKIDB, containing 76,504
and 209 compounds, respectively. Black, yellow, and red ellipses encompass 95% of the individuals
from class “PKI_ChEMBL”, “Clinical_PKI”, and “Approved_PKI”, respectively; (b) correlation circle.

The two first principal components explain 35.6% and 20.0% of the total variance respectively.
PC3, not shown here, encompasses 13.2%. Thus, the 2D scatterplot of the factorial space illustrated
here represents around 56% of the total variance (Figure 3).

Each dot on the graph (Figure 3a) represents a molecule. Few compounds from PKI_ChEMBL are
projected in the upper right quadrant but none belongs to PKIDB. Most of the PKIDB compounds are
centered in the PCA plot. Approved (red dots) and in clinical trials (yellow dots) PKIs are projected
in the same chemical space. The graphical representation of normalized variables is shown in the
correlation circle (Figure 3b). The angle between two vectors indicates the correlation between the
two corresponding variables. A value close to 0◦ or 180◦ indicates positively or negatively correlated
variables, respectively. A value near 90◦ indicates that the variables are not correlated. On the
correlation circle (Figure 3b), one can see that the first factorial axis (PC1) is highly correlated with
TPSA, NRB, and MW. These three variables contribute to PC1 at 20.6%, 17.1%, and 16.1%. The variables
CLogP and NAR do not contribute to this axis, and are negatively correlated with the second factorial
axis (PC2). Their contribution to PC2 are 32.6% and 34.0%, respectively. To a lesser extent, this axis
is also positively correlated with FCSP3 and HBD (contributions of 11.8% and 5.8%, respectively).
These two descriptors are correlated to PC3 (contributions of 24.7% and 29.7%, respectively). A weak
angle between NAR and CLogP vectors is consistent with the fact that CLogP increases with the
number of aromatic rings.

In view of these results, PCA confirms our preliminary observations that there are few outliers in
PKI_ChEMBL dataset (dots on the upper right quadrant). It appears that these compounds correspond
to either small-modified peptides or macrocyclic lactones with high TPSA values. These molecules,
such as everolimus, were removed from PKIDB, since they do not inhibit protein kinases directly,
however, the macrocycles in PKI_ChEMBL are active on protein kinases and, thus, were not removed
from the dataset. Regarding the compounds in PKIDB, semaxanib, has the lowest MW (yellow dot,
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bottom-left). The two dots outside the circle and on the middle right of the quadrant corresponds to
barasertib (Clinical_PKI in yellow) and fostamatinib (Approved_PKI in red). Both of these molecules
contain phosphate group, increasing their TPSA, and therefore explaining their position on the
PCA map.

2.2.3. Principal Moments of Inertia

Until now, we only analyzed the molecules using 2D descriptors; therefore, to evaluate the
shape diversity, we represented the molecules on a principal moments of inertia (PMI) plot [30]. In a
triangular PMI map, the three corners represent distinctive shapes: rod (represented by diacetylene),
disk (benzene) and sphere (adamantane). Note that such a plot only describes molecular shapes,
without any consideration of other properties. In order to escape from the flatland, compounds should
get closer to the sphere [31].

The PMI plot (Figure 4) reveals a vast majority of kinase inhibitors are located along the rod-disc
axis, indicating a preponderance of flat molecules, explained by the fact that all these molecules target
a similar ATP active site. Indeed, most of the compounds in PKIDB are targeting the ATP site, thus,
presenting a similar shape. Some of the MEK inhibitors are targeting an allosteric site adjacent to the
ATP site. The three molecules from PKIDB closest to the extreme vertices are mubritinib near the rod,
mavelertinib near the disc, and galunisertib (yellow dot in Figure 4) and idelalisib (red dot in Figure 4)
near the sphere. They are all in clinical trials, in phase 1, 0, and 2, respectively. Unlike approved PKI,
a few compounds in development tend to adopt a disc shape that explores a new molecular space in
PKIs. We also observe some compounds from PKI_ChEMBL dataset getting closer to the sphere vertex,
showing that some spherical molecules could also inhibit protein kinases. These ones could open the
way to the exploration of a potential novel chemical space.
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from ChEMBL database (light blue).

Here again, there is a great resemblance between the two datasets, PKIDB being well encompassed
in PKI_ChEMBL regarding shape diversity.
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2.3. Scaffold Diversity Assessment

2.3.1. Analysis of Molecular Scaffolds

To get a deeper insight on the molecular diversity of PKIs, we focused on scaffolds and ring systems
of these compounds. The results of scaffold analysis are summarized in Table 4. First, we looked
for the presence of macrocyclic molecules (rings > 12 atoms). In PKIDB, there are four macrocycles.
Two of them are approved drugs: icotinib, approved by CFDA and lorlatinib, and two are in phase 3:
pacritinib and ruboxistaurin. This class of molecules might not be fully explored, since the percentage
of macrocycles found in PKI_ChEMBL is very weak (<1%). As mentioned above, it is important to note
that we excluded from PKIDB macrocycles containing the stem ‘imus’. However, these compounds do
not directly target a kinase binding site, but rather an upstream protein, causing a complex formation
that inhibits the kinase [32].

The different types of molecular scaffolds are shown in Figure 5. For this study we used two
types of scaffolds: Bemis and Murcko (BM) and a graph framework issued from BM. As a reminder,
Bemis and Murcko scaffold corresponds to the core of a molecule after removing side chains [20].
The graph framework corresponds to BM scaffold, where each heteroatom by a carbon and each
multiple bond was substituted by a single one. Therefore, such frameworks cover topologically
equivalent BM scaffolds differentiated by heteroatom substitutions and bond types.
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(BM) and in graph framework.

In PKIDB dataset, among 218 molecules, 207 present a unique BM scaffold and 195 a unique graph
framework (GF). Whereas, for the 76,504 PKIs present in ChEMBL, only 28,732 and 13,331 BM scaffolds
and GF, respectively, are found (Table 4). In other words, in PKIDB almost each compound has a
unique scaffold (218/207). The pairwise molecular similarity means between PKIDB and PKI_ChEMBL,
calculated with MACCS keys, indicates that both datasets are diverse, with a mean of Tanimoto similarity
of about 0.5 (Table 4). However, in the PKI_ChEMBL dataset, the scaffold diversity corresponding to the
total number of molecules over the total number of BM scaffolds, is much lower with about a BM scaffold
for about 2.7 molecules in average. Regarding the graph frameworks, their number tends to decrease
compared to BM scaffolds i.e., one GF for 1.1 and 5.7 molecules in PKIDB and PKI_ChEMBL, respectively.

Table 4. Data obtained for the Bemis and Murcko scaffolds for the two datasets.

No.
Molecules

No.
Macrocycles

No. BM
Scaffolds

No. Graph
Frameworks

Molecular Similarity
Mean a (SD)

PKIDB 218 4 (1.8%) 207 (95.0%) 195 (89.5%) 0.51 (0.11)
PKI_ChEMBL 76,504 487 (0.64%) 28,732 (37.6%) 13,331 (17.4%) 0.49 (0.11)

a Calculated with MACCS keys (166 bits) and the Tanimoto coefficient.
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The most represented BM scaffold in PKIDB, the indolinone derivative (Figure 6), is retrieved in
three inhibitors and differs from the one in PKI_ChEMBL, which is found 644 times. This scaffold is
prominent compared to others in PKI_ChEMBL: the second most retrieved scaffold, the quinazoline
derivative, is only found 239 times. It shows the importance of that scaffold in PKIs, which is found only
in erlotinib in PKIDB. The search for molecules containing PKIDB’s highest occurrence of BM scaffold
in PKI_ ChEMBL only returns 10 compounds, revealing a major difference between the two datasets.Molecules 2020, 25, x 10 of 17 
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Figure 6. Most retrieved Bemis and Murcko scaffolds in PKIDB dataset (a): (3Z)-3-(1H-pyrrol-2-ylmethylene)
indolin-2-one and in PKI_ChEMBL dataset (b): N-phenylquinazolin-4-amine.

Then, for each unique BM scaffold in PKIDB, we checked how many PKIs are obtained in
PKI_ChEMBL. From the 207 unique BM scaffolds available in PKIDB, only 107 are present in
PKI_ChEMBL, which represent 2423 molecules out of a total of 76,504 (3.2%). This result is surprising.
Firstly, we might expect that many analogues would be systematically provided for each PKI and, thus,
would be available in a public database. Secondly, because PKIDB covers similar chemical space to
PKI_ChEMBL according to PCA and PMI comparisons. Finally, using all unique graph frameworks
from PKIDB, we were able to match 7686 compounds (10.0%) in PKI_ChEMBL.

2.3.2. Ring Analysis

In PKIs, rings are making hydrogen bonds, van der Waals or π-stacking interactions with residues
of the active site. As example, an heterocycle may form hydrogen bonds, as does adenine in ATP
with protein kinase [33]. We applied a molecular decomposition method, using RDKit to fragment
molecules and retain only rings (Figure 7). After collecting all rings for both datasets, we searched for
the most represented ones by gathering them using their smiles representation. We focused on fused
heteroaromatic rings, since such fragments are present as a main scaffold in most kinase inhibitors.
Moreover, fused rings offer favorable interactions (van der Waals and hydrogen bonds) into the ATP
binding site compared to non-fused rings [34].

In both datasets, we found bicycles in around 65% of the molecules, demonstrating their importance
as a core during hit to lead or lead optimization steps. In PKIDB, we found 56 unique bicyclic scaffolds
among the total of 172. More surprising, 31 out of these 56 bicycles are singletons, i.e., the bicyclic
scaffold is found only once in the dataset. For the PKI_ChEMBL dataset, there are 918 unique bicycles
for a total of 57,438. However, among those 918 unique bicycles, only 26 are singletons. Since the
PKI_ChEMBL dataset contains more analogues of chemical series compared to PKIDB, this could
explain the lowest ratio of unique fused rings.
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Figure 7. Application of the ring-system ensemble classification. Ring-system ensembles are obtained
by removing substituents on acyclic bonds and by keeping attachment point (R1). The ring system
unpositioned ensembles do not keep information on the attachment point. Rings are shown in bold.

The number and the frequency of the top 10 most retrieved bicycles are illustrated in Figure 8.
In both datasets, the quinazoline scaffold is the most represented bicycle, it remains an important core,
and its substituted analogues, such as the 4-anilinoquinazoline, have been extensively studied [35].
Examples of PKIs containing quinazoline scaffold are gefitinib, lapatinib, erlotinib, afatinib, and,
more recently, canertinib [36]. Kinase inhibitors bearing this scaffold have mainly been designed
to target EGFR. The second most represented bicyclic scaffold is the quinolone, another fused
six-membered aromatic ring. It is worth noting that depending on the substituent types or the
tautomeric form present in the molecules, a Rational Discovery Kit (RDKit) may break the aromaticity
in the heterocyclic scaffolds. As an example, by removing the carbonyl functional group, considered as
a substituent, in the indole scaffold, a non-aromatic indoline scaffold is kept, as shown in Figure 8.
Most of the bicycles contain at least one heteroatom such as the nitrogen. This heteroatom allows
H-bond interaction (acceptor or donor), with the hinge region of the kinase. Interestingly, the PKIDB
and the PKI_ChEMBL datasets contain almost the same top ten bicyclic scaffolds. However, unlike
BM scaffolds where more than half of them from PKIDB were not retrieved in PKI_ChEMBL, here,
only three bicycles from PKIDB (not shown) are not retrieved in the PKI_ChEMBL dataset. We also
performed an analysis of the bicyclic scaffolds by considering the attached atom position and atom
type (Figure 9). Atoms involved in a double bond linked to the scaffold were not modified. However,
all atoms were replaced by a dummy atom labelled differently according to the atom type (Figure 9).
In this case, the 4,6,7-trisubstituted quinazoline is the most retrieved core in both datasets. Such a
scaffold is found in twelve inhibitors in PKIDB, and an ether group (often a methoxy) is always attached
on the 7 position. The second most retrieved bicycle is the 4,6,7-trisubstituted quinoline in PKIDB,
and this is the third most represented scaffold in PKI_ChEMBL. Here again, the substituent in the 7
position is always an ether. Interestingly, the second most retrieved substituted bicycle in PKI_ChEMBL
is not found in top tenth of PKIDB, as shown in Figure 8.
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Figure 8. Top ten bicycles retrieved in the PKIDB dataset (a) and in PKI_ChEMBL (b) with their
occurrence and their frequency in brackets. In PKIDB there are 172 bicycles (56 unique) and in
PKI_ChEMBL, there are 57,439 bicycles (918 unique).

In Figure 9, the great majority of bicycles are polysubstituted, confirming their use as core scaffolds
to link substituents. By considering the substituents during the analysis, the frequency of the bicycles
shows a different distribution in both datasets, and the top ten bicyclic scaffolds are different.
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Figure 9. Top ten most retrieved bicycles with their substituents in the PKIDB dataset (a) and in
PKI_ChEMBL (b) with their occurrence and their frequency in brackets. In PKIDB, there are 172 bicycles
(129 unique) and in PKI_ChEMBL, there are 57,438 bicycles (4480 unique). 1*—connected to an atom
not double bonded, not aromatic, not in a cycle and not halogen; 2*—connected to non aromatic ring;
3*—connected to aromatic atom; 4*—connected to an halogen.

3. Discussion

PKIDB is a freely available database containing all kinase inhibitors on the market or in clinical
trials gathered using their international nonproprietary name (INN). This database, regularly updated,
contains information on the structure of the kinase inhibitors, their physicochemical properties,
their protein kinase targets, as well as their therapeutic indications. It also contains links to various
external databases. We analyzed this dataset and compared it to active PKIs found in the ChEMBL
database. Classical physicochemical descriptors, such as Lipinski’s or Veber’s, showed that a significant
number of protein kinase inhibitors, either approved or in clinical trials, do not follow the recommended
drug-like thresholds, especially regarding molecular weight and calculated LogP. Moreover, all PKI
present in PKIDB violate a maximum of only two Lipinski’rules. Therefore, for this typical class of
compounds, we propose new boundaries to better characterize the chemical space of kinase inhibitors.
Moreover, all PKIS in PKIDB have a maximum of two chiral centers and five aromatic rings.

The projection of the chemical space resulting from a principal component analysis shows that
most of the inhibitors shared the same chemical space. However, the PKIs available in ChEMBL
fill a larger chemical space in the PCA plot compared to PKIs in PKIDB. The distribution of the
physicochemical descriptors for both datasets do not present major differences. This suggests that
most active PKIs available in the ChEMBL have drug-like properties.
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Concerning the molecular shape of the PKIs, the PMI plot reveals that PKIs from ChEMBL exhibit
a larger shape diversity compared to the ones in PKIDB. However, the majority of PKIs remain clustered
around the rod-disc axis because they target a common ATP binding site in the kinase domain, which is
highly conserved in this protein family. Yet, PKIs under development tend to explore wider topology,
particularly near the disc edge. More frequent macrocyclic structures could contribute to this specific
molecular shape. Moreover, moving to new chemical space will help medicinal chemists to escape
from a crowded intellectual property (IP) space. Regarding PKIs in ChEMBL, we also found some
compounds escaping from this rod-disc axis and get closer to the spherical form. This information
could be used to design new chemically-diverse kinase inhibitors.

Concerning the molecular scaffold analysis of the two datasets, it appears that PKIs in PKIDB
exhibit a great molecular scaffold diversity compared to the ones in ChEMBL. More than 100 scaffolds
from PKIDB are not present in the ChEMBL. Each molecule present in PKIDB and, more particularly,
the corresponding scaffold, was patented, preventing the design of analogues. Thus, each molecule
present in PKIDB is in fact a representative of a chemical series, but only one new molecular entity
(NME) was selected to continue its development in clinical phases. Most pharmaceutical companies
will not unveil all chemical analogues of the selected NMEs, limiting information on the chemical series.
On the opposite, in a public database such as ChEMBL, there are often lots of available analogues for a
specific scaffold. The ring analysis performed on the two datasets indicates a similar number of bicycle
singletons despite the large size difference in the two datasets, 218 vs. 76,504 molecules for PKIDB and
PKI_ChEMBL, respectively. By considering the position and the type of the substituents, a significant
part of the scaffolds in PKIDB are absent in ChEMBL, because most of the structures of pharmaceutical
companies are protected by patents.

The PKIDB database is regularly updated and is accessible from this website: http://www.icoa.fr/
pkidb. We hope that this resource will assist researchers in their quest for novel kinase inhibitors.

4. Materials and Methods

For the creation and maintenance of PKIDB please refer to our previous study [22]. All experiments
and calculations have been performed with Python 3.6. Molecular descriptors used for PCA (Table 5)
and PMI were calculated with RDKit (version ‘2018-09-01′, Palo Alto, CA, USA). Scaffolds analysis
and clustering were performed with RDKIT and with Butina algorithm [37] using Tanimoto similarity
and Morgan Fingerprint, with a radius of two (equivalent of FCPF4). The PCA was calculated with
an in-house library derived from Prince [38] and Scikit-learn [39] packages (Rocquencourt, France).
For PMI analysis, 3D conformations were generated using ETKDG method [40] followed with an
energy minimization using the MMFF94 forcefield [41]. To delimit the dots of the PMI triangle,
three compounds (diacetylene, benzene and adamantane) were considered and added to the dataset.
All the figures are made using matplotlib [42] and seaborn [43] packages. Molecules were drawn with
Biovia Draw 2018 (Velizy, France).

Table 5. Descriptors used for PCA.

Name Variable Descriptor

MW Molecular weight
LogP Wildman-Crippen LogP value
TPSA Topological polar surface area
HBA Number of Hydrogen Bond Acceptors
HBD Number of Hydrogen Bond Donors
NRB Number of Rotatable Bonds
NAR Number of aromatic rings

FCSP3 Fraction of C atoms that are SP3 hybridized
MQN8 Molecular Quantum Numbers

MQN10 Molecular Quantum Numbers

http://www.icoa.fr/pkidb
http://www.icoa.fr/pkidb
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The PKI_ChEMBL dataset results from ChEMBL (version ‘ChEMBL_24′, Cambridgeshire, UK).
To be included in this dataset, a compound must have at least one recorded activity, either IC50, Ki or
Kd, on a protein kinase with a pchembl value > 6 (< 1000 nM). We then removed duplicates, empty
SMILES and molecules from PKIDB. It is composed of 76,504 molecules. Both datasets (PKIDB and
PKI_ChEMBL) have been prepared and standardized with VSPrep [44], and for each compound we
kept the best tautomer as defined in VSPrep.
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