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Abstract: Extraction of the lipid fraction is a key part of acquiring lipidomics data. High-throughput 

lipidomics, the extraction of samples in 96w plates that are then run on 96 or 384w plates, has 

particular requirements that mean special development work is needed to fully optimise an 

extraction method. Several methods have been published as suitable for it. Here, we test those 

methods using four liquid matrices: milk, human serum, homogenised mouse liver and 

homogenised mouse heart. In order to determine the difference in performance of the methods as 

objectively as possible, we used the number of lipid variables identified, the total signal strength 

and the coefficient of variance to quantify the performance of the methods. This showed that 

extraction methods with an aqueous component were generally better than those without for these 

matrices. However, methods without an aqueous fraction in the extraction were efficient for milk 

samples. Furthermore, a mixture containing a chlorinated solvent (dichloromethane) appears to be 

better than an ethereal solvent (tert-butyl methyl ether) for extracting lipids. This study suggests 

that a 3:1:0.005 mixture of dichloromethane, methanol and triethylammonium chloride, with an 

aqueous wash, is the most efficient of the currently reported methods for high-throughput lipid 

extraction and analysis. Further work is required to develop non-aqueous extraction methods that 

are both convenient and applicable to a broad range of sample types. 
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1. Introduction 

Lipidomics is of increasing interest in metabolic and other biological studies. Trials comprising 

sizeable numbers of samples are now being attempted in order to provide sufficient statistical power 

to answer questions about human and animal metabolism, development and dysregulation of 

metabolism, and development [1–6], as well as in particular sample types [7]. This has encouraged 

research efforts to overcome the practical concerns that pertain to determining the lipid composition 

of biological samples (lipidomics). This comes against a background of investigations of a variety of 

sample formats and scales, including mammalian plasma [8–13], fibrous tissues [14–16], dried blood 

spots [17–19] and even milk [20,21]. General methods for isolating lipids for low- and medium-

throughput studies have been reviewed [22,23]. 

However, due to its relatively recent arrival and particular needs, high-throughput lipidomics 

and methods associated with it are less widely researched. Despite that, considerable progress has 

been made in recent years in laboratory infrastructure and methods for the high-throughput 
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lipidomics required for large human trials. Spectroscopic innovations such as Direct Infusion Mass 

Spectrometry (DI-MS) [21,24] and dual spectroscopy [14] have been published. Lipid extraction 

methods for the particular challenges of high-throughput lipidomics have also been developed, such 

as those by Maytash et al. [8] and the Meikle group [9,10], and from our own laboratory [14,25]. 

However, questions and challenges about high-throughput lipidomics remain. Some of these 

are general questions about sample handling and lipid extraction that have existed for some time 

[22]. These include problems with the suitability of solvents for the lipid species of interest, chemical 

degradation associated with particular solvents and the activity of endogenous enzymes ex vivo. 

However, some questions are unique to high-throughput lipidomics. For example, there is a clear 

need to find a compromise between the practicalities of large numbers of simultaneous extractions of 

lipid material from small biological samples and the desire for thorough molecular profiling. Some 

of these problems have been solved by using glass-coated deep-well plates accompanied by 96 

channel pipettes mounted on a movable platform for liquid transfer and mixing. However, the need 

to strike a compromise between a large number of samples, analytical soundness and acquiring 

quantitative data relevant to hypotheses has led to the development of at least four methods of 

extracting lipids for high-throughput lipidomics using mass spectrometry. However, it is not clear 

how they perform when compared to one another. This is partly due to the lack of an objective means 

for measuring extraction efficiency, but also because the reported methods are distinct from one 

another. For example, there are two categories of extraction, those that comprise an aqueous wash as 

part of the process and those that do not. The absence of an aqueous wash is attractive in practical 

terms, as it simplifies sample preparation for chromatography or infusion. However, it is not clear 

whether this approach can be applied to more proteinaceous or more viscous sample matrices. This 

led us to the hypothesis that a solvent-based extraction method that comprises an aqueous wash and 

the facility to dissolve lipid classes with a range of polarities works best for high-throughput 

lipidomics. 

In order to test this hypothesis, we investigated for four lipid extraction methods reported for 

high-throughput lipidomics on four distinct matrices. The four lipid extractions were ’TBME’ (tert-

butylmethyl ether) [8], ’BuMe’ (butanol/methanol, 1:1) [9,10], ’DMT’ 

(dichloromethane/methanol/triethylammonium chloride, 3:1:0.005) [14,21,26] and ‘‘XMI’ 

(xylene/methanol/isopropanol, 1:2:4) [25]. These methods are in common use for lipidomics and have 

shown reliability with at least one sample type. The TBME method [8] was amongst the first to be 

reported for high-throughput lipidomics, and has received wide attention and considerable use in 

lipidomics. It has been used particularly frequently in plasma and serum sample sets, and has been 

found to be consistent. DMT has been reported more recently, has been used across a number of 

sample types and has been used where several sample types are required in a given study [14,21]. 

BuMe was developed solely for human plasma samples, and has not yet been reviewed for other 

sample types [9,10]. XMI is the newest method, developed by us for isolating the lipid fraction from 

dried milk spots, and it too is untested on other matrices [25]. Notably, DMT and TBME are both 

aqueous methods, they both comprise a wash with water as part of sample preparation. BuMe and 

XMI methods involve dispersing the biological sample into the solvent mixture before infusion into 

the ion source. 

The four matrices used in this study were bovine milk (milk), human serum (serum), murine 

liver homogenate (liver) and murine heart homogenate (heart). These were chosen to represent the 

breadth of biological samples commonly requested in lipidomics, with heart representing a 

proteinaceous sample and milk representing sample types with a particularly high proportion of 

triglycerides (phospholipid:triglyceride = 1:49). Sets of subtypes or pools of these sample matrices 

were used to assess the precision of the methods. The data for this study were collected in one 

analytical run using Direct-Infusion Mass Spectrometry (DI-MS). This is a typical high-throughput 

method (30 samples/h) with a sample queue that minimizes or avoids batch effects altogether and 

thus tests the methods in a high-throughput manner. 

It is important to test the hypothesis that the solvent-based extraction method that comprises an 

aqueous wash and the facility to dissolve lipid classes with a range of polarities works best for high-
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throughput lipidomics, as understanding the limits of lipid extraction methods is key to choosing the 

appropriate method for answering scientific questions about lipid metabolism. Questions requiring 

a focus on one or two particular classes or particular sample matrices may be answered by methods 

that are particularly amenable to the chemical and physical properties of that class/sample type. It 

may also be helpful to know which lipid classes are extracted less efficiently using a given isolation 

method. This study represents an advance because previous attempts at comparing extraction 

methods have focused on low-resolution profiling and the undried lipid extracts, meaning that data 

in this area is weak [22]. The present study uses a novel method to quantify the quality of lipid 

extraction, using both the number of lipid isoforms (variables) identified and the total signal strength 

of lipid variables the extracts. Isoforms are defined by the configuration of their FA or acylated 

sphingosinyl portion, i.e. phosphatidylcholine with two palmitate residues will be referred to as the 

isoform PC(32:0), while that with two arachidonate residues will be referred to as PC(40:8). The 

combination of signal strength and number of variables provides an objective measure for ranking 

the efficiency of lipid extraction that has not previously been used in assessing the quality or 

efficiency of this process. 

2. Results 

2.1 Extraction Efficiency 

Twenty measurements, each of the four methods (DMT [14,21,26], TBME [8], BuMe [9,10] and 

XMI [25]) across the four matrices (JerseyMilk, serum, liver and heart), were taken. Strikingly, the 

Jersey Milk matrix was extracted efficiently across all methods tested, and in both ionisation modes. 

The number of variables was highest in extracts using BuMe with the highest signal strength using 

the DMT method (Figure 1).   

Aqueous methods (DMT and TBME) performed best across all matrices, with particular 

superiority in proteinaceous tissue homogenates (liver, heart), as shown in Figure 1. Sample 

preparation using non-aqueous methods, XMI and BuMe, was quick and straightforward. However, 

the mass spectrometry infusions that of XMI and BuMe samples were characterised by poor injection 

performance. This is ascribed to the high protein abundance in those samples. It should be stressed, 

however, that XMI and BuMe were developed for dried milk spots and plasma, respectively, and not 

high-protein samples. This may also explain the weaker performance of these methods on serum, 

which is more viscous than the plasma that the BuMe method was developed for. 
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Figure 1. The signal strength and number of lipid variables detected in lipid extracts from four 

different matrices using four different extraction methods for high-throughput lipidomics (n = 20 

measurements of each). Panel (A), total signal strength in positive ionisation mode; (B), number of 

variables identified in positive mode; (C), total signal strength in negative ionisation mode; (D), 

number of variables identified in negative mode. Error bars show standard deviation. BuMe, 

butanol/methanol 1:1; DMT, dichloromethane/methanol/triethylammonium chloride 3:1:0·005; 

TBME, tert-butylmethylether; XMI, xylene, methanol, isopropanol 1:2:4. Samples: serum, human 

blood serum; milk; unhomogenised Jersey cows’ milk; heart, murine heart homogenate; liver, mouse 

liver homogenate. ^p < 0·05; * p < 0·01; ** p < 0·001. 

The TBME and DMT methods performed better than the non-aqueous methods, presumably 

assisted by the aqueous fraction’s ability to dissolve and separate proteinaceous and perhaps 

carbohydrate material from the organically-soluble fraction. The isolates prepared using the DMT 

method comprised more variables and gave rise to a higher total signal strength than those prepared 

using TBME. 

Whether or not class abundance differed between extraction methods was then tested by 

assessing the relative abundance of representative lipid classes. A major lipophilic component 

(triglycerides) and an abundant zwitterionic phospholipid (phosphatidylcholine), as well as a lower 

abundance lipophilic class, sterols (cholesteryl esters and cholesterol itself) in serum and heart 

preparations, Figure 2, were used. These classes represent the bulk of the signal strength recorded, 

and are of interest in metabolic studies and thus are important in deciding which method(s) are most 

appropriate or efficient for a given study. The relative abundance scores of phosphatidylcholine (PC), 

triglycerides (TGs), cholesteryl esters (CEs) and cholesterol indicated that the relative abundance of 
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PC was higher and TG lower in DMT extractions. Further, the number of variables was higher for 

DMT extractions, as was the total signal strength. Importantly, all four of these classes dissolved 

easily in dichloromethane and dichloromethane-methanol mixtures, with ionic species dissolving 

less well in ethereal solvents. 

The suggestion that isolates of lipids from a range of pipettable biological samples, prepared 

using DMT, were more concentrated and contained more species of interest than those of other 

methods led us to test the precision of the method. 

 

Figure 2. Relative abundance of lipid classes and the numbers of lipid isoforms (variables) in each 

class, extracted from either murine heart or human serum using either TBME or DMT. Blue columns 

show DMT extracts, and green columns show TBME extracts. Hatched columns represent serum 

samples, whereas open columns represent heart samples. Number of variables are shown in white 

figures. Panel (A), abundance of phosphatidylcholines and triglycerides with number of variables 

marked; (B), abundance of cholesteryl esters and cholesterol. Five isoforms of cholesteryl ester were 

identified. Error bars show standard error. CE, cholesteryl ester; Chol, cholesterol; PC, 

phosphatidylcholine; TG, triglyceride. **p < 0·001. 

2.2 Coefficient of Variance 

In order to test the precision of the DMT method, four subtypes of each matrix were employed. 

Commercially-available milks from four different sources (Jersey and ordinary bovine milk, caprine 

milk and soya drink), and two pools of homogenates prepared from tissues from mice of two different 

feeding phenotypes, were used. 

Multivariate analysis (principal component analysis, PCA in Figure 3) showed that the profiles 

of these groups divided up as expected, with two broadly similar pairs of profiles of lipids from 

murine hearts and four distinct groups for milk extracts. The latter was shaped by the difference 

between soya drink and the three animal milks. However, the difference between them was clear 

from their profile in positive ionisation mode. This was as expected; around 98% of the lipophilic 

material extracted from milk is the tri- and diglycerides, which ionise very well in positive mode and 

only poorly in negative mode. 
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Figure 3. Principal component analyses of lipid signals from organically-soluble extracts of pooled 

murine hearts and four animal milks. Panel A, lipid signals from commercial animal milks in positive 

ionisation mode; B, lipid signals from commercial animal milks in negative ionisation mode; C, lipid 

signals from murine hearts in positive ionisation mode; D, lipid signals from murine hearts in 

negative ionisation mode. Murine hearts were drawn from two pools of individuals each from two 

phenotypes. Coefficient of variance (CV) values are shown in Table 1 and in Supplementary 

information. 

The same samples were used to characterise the precision of the extraction, both through the 

number of variables identified, total uncorrected signal strength and the coefficient of variance. The 

number of variables was relatively consistent across each matrix, as was the total signal strength, 

with expected variation in milk samples (Figure 4). Some trivial differences between phenotypes 

were observed. Calculations of the coefficient of variance (CV) showed that around two thirds of 

variables had a CV of less than 50%, with typically 30–40% of variables having a CV of less than 20%. 

One notable exception to this is milk samples (especially in negative ionisation mode), which perform 

less well. This is ascribed to the variation in composition between bovine, caprine and soya sources. 

In general, across the four matrices, the measurements in positive and negative ionisation modes are 

consistent, suggesting that the CV for both glyceride isoforms (principally TGs, ionising in positive 

mode) and anionic/zwitterionic phospholipids is similar. 
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Figure 4. The uncorrected signal strength and number of variables detected in lipid extracts from four 

different matrices using four different extraction methods for high-throughput lipidomics (n = 20 

measurements of each). Panel A, total signal strength in positive ionisation mode; B, number of 

variables identified in positive mode; C, total signal strength in negative ionisation mode; D, number 

of variables identified in negative mode. Error bars show standard deviation. Extractions were 

performed using DMT, dichloromethane/methanol/triethylammonium chloride 3:1:0·005 with an 

aqueous wash. Samples: Serum, human blood serum; Milk (set1, unhomogenised Jersey milk; set2, 

whole caprine milk; set3, soya drink; set4, whole, homogenised bovine milk); heart, murine heart 

homogenate; liver, mouse liver homogenate. Murine heart and liver samples were drawn from two 

pools of two feeding phenotypes. Milk sample values were scaled (reduced by an order of magnitude) 

to fit. ^p < 0·05; * p < 0·01; ** p < 0·001. 
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Table 1. Variables stratified by parameters for chemical structures. The proportion (%) of variables in 

strata of variance for each of four matrices. Coefficient of variance calculated from the standard 

deviation of 16-20 samples of each of four groups, divided by the mean for the same group. Milk 

samples and human serum were drawn from four different commercial sources (Milk1, un-

homogenised Jersey milk; Milk2, whole caprine milk; Milk3, soya (Glycine max) drink; Milk4, whole, 

homogenised bovine milk). Murine heart and liver samples were drawn from two pools of two 

feeding phenotypes. 

 Fraction of Variables (%) 

 +ve Ionisation Mode −ve Ionisation Mode 

CV Serum Milk Liver Heart Serum Milk Liver Heart 

0–10% 19 37 20 28 19 6 26 40 

10–20% 16 10 20 20 17 7 16 18 

20–30% 11 3 7 6 13 5 13 11 

30–50% 14 5 10 10 18 13 16 13 

>50% 41 45 43 36 33 69 28 19 

Total 100%, 197 variables 100%, 273 variables 

3. Discussion 

In this study, it was found that the performance of lipid extraction methods differed 

considerably between both the format of the extraction (solvent type, use of aqueous wash) and 

sample type (high/low protein). All methods tested performed well on milk samples, with human 

serum and tissue homogenates (mouse tissues, heart and liver) being more challenging. Investigation 

of both total signal and the number of variables observed showed that DMT is a more effective solvent 

system for isolating the lipid fraction than TBME. 

The increased number of variables and apparent mass of material isolated using the DMT 

method is encouraging for high-throughput lipidomics studies, as it offers greater insight in the 

molecular composition of the biological system it represents. This also allows researchers to make 

better use of equipment. However, it does raise questions about how such data should be handled. 

A typical and very useful approach is to assess lipidomes through a normalised or semi-quantitative 

abundance, i.e. relative abundance based on signal strength. It is arguable that this is more difficult 

where more signals are found, as the abundance of any one thus falls. This means that the abundance 

of less prevalent species may be more difficult to compare between phenotypes. However, such a 

problem has been common with low-abundance species for some time. This problem may be 

addressed by following up DI-MS profiling of the lipidome with liquid chromatography-mass 

spectrometry on a select group of samples, shedding light not only on the comparative abundance of 

low abundance species between samples but also for isoform analysis of such species [14]. 

The difference in performance of the DMT and TBME methods naturally raises the question of 

why this should be. It is well known that chlorinated solvents and others such as ethyl acetate are 

broad-spectrum solvents, often able to dissolve ionic organic compounds easily. Ethereal solvents are 

typically better at dissolving more lipophilic compounds, as they are less able to support salts. This 

suggested to us that a solvent mixture such as DMT may be a good all-round solvent system, where 

TBME may be better for more lipophilic compounds. The choice of solvent therefore depends upon 

the question being asked. Certain questions, for example, centring on the TG markers of de novo 

lipogenesis, may be answered by using either DMT or TBME methods, as the species of interest are 

abundant and expected to dissolve in either solvent. However, where hypotheses are based around 

changes to several members of a class or several isoforms across classes, a broader-spectrum system 

may be preferable. 

This study was predicated on the notion that lipid extraction efficiency can be measured 

quantitatively. In a previous report, we collected 16–20 measurements of each sample type or method 

of interest and used a combination of the number of lipids identified and the total signal strength (a 

proxy for mass) to rank extraction methods. This was followed by a calculation of coefficient of 

variance to assess the precision of the method [25]. This three-layered structure represented an 
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advance in objective comparison of extraction protocols, which was previously wanting [22]. This 

represents the strongest way yet found for comparing lipid extraction protocols objectively. 

Lastly, the approach to assessing the efficiency of lipid isolation described in this paper is useful 

because it facilitates choice of extraction method for the sample type at hand. This is increasingly 

useful, as there is increasing demand for lipidomics, an on a broadening range of sample types. The 

present assessment characterises the available methods in greater depth. This increases our 

understanding of the lipidomics tools at our disposal. For example, as this study has shown that fresh 

milk is a suitable sample type for BuMe [9,10] (developed for plasma) and XMI [25] (developed for 

dried milk spots) extractions, it shows that fresh milk and either plasma or dried milk spots may be 

extracted in the same plate easily. They may even be compatible with greater automation. Further 

research, comprising development of other methods for high-throughput lipidomics, may be useful 

for expanding our understanding of this process. 

4. Conclusions 

This study was based on the hypothesis that a solvent-based extraction method that comprises 

a water-wash and the facility to dissolve lipid classes with a range of polarities works best for high-

throughput lipidomics. It was found that a lipid extraction method based on dichloromethane and 

methanol, doped with a lipophilic carbocation (triethylammonium), was the best all-round solvent 

system. However, this was found not to be mutually exclusive with the performance of other methods 

in particular areas. There appear to be several methods compatible with milk for high-throughput 

lipidomics. These observations allow greater insight into the tools available for high-throughput 

lipidomics on an increasingly broad range of lipid-containing tissue samples. 

5. Materials and Methods 

5.1. Ethics 

All procedures were conducted in accordance with the UK Home Office Animal (Scientific 

Procedures) Act 1986 and local ethics committees at Aston University. Animals were maintained at 

Aston University’s biomedical research facility as described previously [27]. 

5.2. Reagents and Standards 

Solvents were purchased from Sigma-Aldrich Ltd. (Gillingham, Dorset, UK) of at least HPLC 

grade and were not purified further. Lipid standards were purchased from Avanti Polar lipids 

(Alabaster, AL; through Instruchemie, Delfzijl, NL) and used without purification. Consumables and 

anonymised pooled human serum were purchased from Sarstedt AG and Co (Leicester, UK) and 

Thermo Fisher (Hemel Hempstead, Herfordshire, UK). Milk samples were purchased from British 

supermarkets in 2019. 

5.3. Sample Processing 

The data for this study were acquired in one analytical run of 813 samples, including blank and 

QC samples. The four examples of heart, liver, milk and serum matrices for measuring coefficient of 

variance (CV) were prepared as follows. Twelve existing liver and heart homogenates each, from two 

feeding groups (wither low-protein/high carbohydrate or control), were mixed to make four pooled 

mixtures each of liver and heart homogenates, prepared as previously described [14,28]. 

Commercially available, pooled serum was used. Pasteurised Jersey, whole bovine and whole 

caprine animal milk and soya (Glycine max.) drink, purchased from British supermarkets in 2019/2020 

and stored at −80 °C, were used. The samples used for comparing lipid extraction methods were 

prepared as follows. All liver and heart homogenates used above were mixed from all stocks used 

above. Whole caprine milk and one commercially available human serum were used. 
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5.4. Quality Control 

QC samples were used to establish which variables’ signal strength correlated with their 

concentration. Three QC levels were used, representing 0.25, 0.5 and 1.0× of the total (20 µL). Several 

reference materials were used, namely, (a) mouse placenta homogenate, (b) mouse liver homogenate, 

(c) mouse heart homogenate, (d) commercially available pooled human blood serum and (e) whole 

caprine milk. 

5.5. Isolation of Lipid Fractions 

DMT—This procedure was similar to a high-throughput technique described recently [14,21]. 

Heart homogenate (60 µL), liver homogenate (20 µL), milk (20 µL) and serum (20 µL) samples were 

placed along with blank and QC samples in the wells of a glass-coated 2.4 mL/well 96w plate 

(Plate+™, Esslab, Hadleigh, UK). Methanol (150 µL, HPLC grade, spiked with Internal Standards, 

See Table S1) was added to each of the wells, followed by water (500 µL) and a mixture of solvents 

(500 µL) comprising dichloromethane and methanol (3:1) doped with triethylammonium chloride 

(500 mg/L). The mixture was agitated (96 channel pipette) before being centrifuged (3,200× g, 2 min). 

A portion of the organic solution (20 µL) was transferred to a high-throughput plate (384w, glass-

coated, Esslab Plate+™) before being dried (N2 (g)). The dried films were redissolved (TBME, 

30 µL/well) and diluted with a stock mixture of alcohols and ammonium acetate (90 µL/well; propan-

2-ol:methanol, 2:1; CH3COO.NH4 7.5 mM). The analytical plate was heat-sealed and run immediately. 

TBME—This procedure was as similar as possible to the original protocol for extracting lipids 

from biological samples [8]. Heart homogenate (60 µL), liver homogenate (20 µL), milk (20 µL) and 

serum (20 µL) samples were placed along with blank and QC samples in the wells of a glass-coated 

2.4 mL/well 96w plate (Plate+™, Esslab, Hadleigh, UK). Methanol (150 µL, HPLC grade, spiked with 

Internal Standards, See Table S1) was added to each of the wells, followed by water (500 µL) and 

TBME (500 µL). The mixture was centrifuged (3,200× g, 2 min). A portion of the organic solution 

(20 µL) was transferred to a high-throughput plate (384w, glass-coated, Esslab Plate+™) before being 

dried (N2 (g)). The dried films were redissolved (TBME, 30 µL/well) and diluted with a stock mixture 

of alcohols and ammonium acetate (90 µL/well; propan-2-ol:methanol, 2:1; CH3COO.NH4 7.5 mM). 

The analytical plate was heat-sealed and run immediately. 

BuMe—This procedure was as similar as possible to the original protocol for extracting lipids 

from biological samples [9,10]. Heart homogenate (60 µL), liver homogenate (20 µL), milk (20 µL) 

and serum (20 µL) samples were placed along with blank and QC samples in the wells of a glass-

coated 2.4 mL/well 96w plate (Plate+™, Esslab, Hadleigh, UK). A prepared mixture of methanol 

(spiked with Internal Standards, See Table S1) and n-butanol (1:1, 200 µL) was added to each of the 

wells and agitated until homogenous. A portion of the mixture (20 µL) was transferred to a shallow 

96w plate before being dried (N2 (g)). The dried films were redissolved (TBME, 30 µL/well) and diluted 

with a stock mixture of alcohols and ammonium acetate (90 µL/well; propan-2-ol:methanol, 2:1; 

CH3COO.NH4 7·5 mM) before being transferred to a high-throughput plate (384w, glass-coated, 

Esslab Plate+™) before being dried (N2 (g)). The analytical plate was heat-sealed and run immediately. 

XMI—This procedure has not been described before. Heart homogenate (60 µL), liver 

homogenate (20 µL), milk (20 µL) and serum (20 µL) samples were placed along with blank and QC 

samples in the wells of a glass-coated 2.4 mL/well 96w plate (Plate+™, Esslab, Hadleigh, UK). A 

prepared mixture of solvents and xylene/methanol/isopropanol (1:2:4, 500 µL, methanol spiked with 

Internal Standards, See Table S1) was added to each of the wells and agitated until homogenous. A 

portion of the mixture (20 µL) was transferred to a shallow 96w plate before being dried (N2 (g)). The 

dried films were redissolved (TBME, 30 µL/well) and diluted with a stock mixture of alcohols and 

ammonium acetate (90 µL/well; propan-2-ol:methanol, 2:1; CH3COO.NH4 7.5 mM) before being 

transferred to a high-throughput plate (384w, glass-coated, Esslab Plate+™) before being dried (N2 (g)). 

The analytical plate was heat-sealed and run immediately. 
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5.6 Mass Spectrometry 

Instrument—Samples were infused into an Exactive Orbitrap (Thermo, Hemel Hampstead, UK), 

using a Triversa Nanomate (Advion, Ithaca US). Samples were ionised at 1·2 kV in the positive ion 

mode. The Exactive started acquiring data 20 s after sample aspiration began. After 72 s of acquisition 

in positive mode, the Nanomate and the Exactive switched over to negative mode, decreasing the 

voltage to −1·5 kV. The spray was maintained for another 66 s, after which the analysis was stopped 

and the tip discarded, before the analysis of the next sample. The sample plate was kept at 15 °C 

throughout the acquisition. Samples were run in row order. 

Data processing—Raw high-resolution mass-spectrometry data were processed using XCMS 

(www.bioconductor.org) and Peakpicker v 2.0 (an in-house R script [24]). Lists of known species (by 

m/z) were used for both positive ion and negative ion mode (~8·5k species). Variables whose mass 

deviated by more than 9 ppm from the expected value had a signal/noise ratio of <3 and had signals 

for fewer than 50% of all samples that were discarded. The correlation of signal intensity to 

concentration of human placenta, mouse liver, human serum and pooled human seminal plasma 

samples as QCs (0.25, 0.5, 1.0×) was used to identify the lipid signals, the strength of which was 

linearly proportional to abundance (threshold for acceptance was a correlation of 0·75). Remaining 

signals (passes) were then divided by the sum of signals for that sample and expressed per mille (‰). 

Each m/z signal identified was interpreted as a given isoform of a lipid with an appropriate adduct 

for that m/z. Like isoforms with different adducts were not summed. Zero values were interpreted as 

not measured. All statistical calculations were done on these finalised values. 

5.7 Statistical Analyses 

The analysis was structured according to a prepared analysis plan. Uni- and bivariate analyses 

were carried out using Excel 2016. Multivariate analyses were run using MetaboAnalyst 4.0 [29]. 

Abundance of lipid(s) is shown as mean ± standard deviation unless otherwise stated. 

Supplementary Materials: Mass Spectrometry signals sheets and Table S1: List of internal lipid standards, are 

available online. 
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