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Abstract: Monolithic fillings used in chromatography are of great interest among scientists since
the first reports of their synthesis and use were published. In the 20 years since silica-based
monolithic columns were introduced into the commercial market, numerous papers describing their
chromatographical properties and utility in various branches of industry and scientific investigations
were presented. This review is focused on possible applications of commercially available silica-based
HPLC monolithic columns in the analysis of biological samples.

Keywords: monolithic column; stationary phases in HPLC; drug analysis; plant analysis

1. Introduction

High-performance liquid chromatography (HPLC) is a dynamically developing technique widely
used in almost all branches of industry and pharmaceutical, chemical, and agri-food investigations, as
well as in laboratory practice and scientific research [1]. This technique is based on the separation of
target compounds from a matrix of samples containing other accompanying constituents; therefore,
the chromatographic column filled with the stationary phase where the separation process takes place
is named “the heart of the chromatographic system”. Currently, columns with various types of fillings
are commercially available; however, spherical packed columns are still most commonly used.

The historical background of all monolithic columns was brilliantly presented by Svec et al. [2].
Monolithic stationary phases were the subject of interest for many research groups over the last 30 years.
They are often called “monolithic rods” [3] or “silica rods” in the case of silica monolithic columns [4].
Due to the characteristic structure that distinguishes them from traditional spherical fillings and
their numerous advantages, including low susceptibility to clogging and low flow resistance, they
are a very interesting alternative for many scientists [5]. Considering the type of material used for
synthesis, monolithic columns can be divided into two groups; the first is based on silica gel and the
second is based on polymeric materials [6]. Vyviurska et al. presented an exhaustive comparison
of both types of commercially available monoliths [7]. The major disadvantage of most polymeric
monolithic fillings is their inability to separate small molecules [8]; hence, their significance in the
analysis of samples with a complex matrix such as plant material is low. They are mostly applied for
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analysis of compounds with high molecular weight such as proteins or polynucleotides [9–12] and they
have greater importance in electrochromatographic techniques [13,14]. Moreover, although polymeric
monolithic columns are produced by some manufacturers such as BIA Separations (Ljubljana, Slovenia),
Bio-Rad Laboratories (Hercules, CA, USA), or Thermo Scientific (Dionex Corporation) (Sunnyvale, CA,
USA) [15], the majority of reports concern home-made fillings and, in these cases, the reproducibility
of results is difficult to obtain because the process of synthesis conducted by different researchers may
slightly differ [14,16].

Many published studies showed the applicability potential of silica-based monolithic columns in
investigations of various samples, including plants [17–20], food [21–23], dietary supplements [24],
and drugs [25–27]. So far, numerous review papers described the analytical use of monolithic
columns [1,4,5,28–35]. Namera et al. showed applications of different types of commercially available
silica-based monolithic columns in the analysis of active compounds in biological materials. It is worth
noting that the Chromolith® Performance RP-18e column (100× 4.6 mm) was used most commonly [32].
Maruška et al. presented possible applications of monolithic equipment in phytochemical analysis [20].
Monolithic columns are also widely used in proteomics and metabolomics. Rigobello-Masini et al.
presented detailed information on the potential applications of this type of chromatographic filling in
this research area [31]. The aim of our study is to summarize and update the possible applications of this
type of fillings. The review covers papers published after 2006 and focuses on commercially available
columns, as, due to the complexity and diversity of the manufacturing process, the batch-to-batch
reproducibility of home-made fillings is poor. Currently, two companies produce monolithic columns
based on silica for HPLC—Merck KGaA (Darmstadt, Germany) and Phenomenex (Torrance, CA, USA).
Their products are available under trade names Chromolith® and Onyx™, respectively.

2. Way of the Silica Monolith to the Commercial Market

Initial work on the synthesis of monolithic silica dates to the early 1990s when Nakanishi and
Soga presented the process of continuous silica synthesis with two types of pores [36–38]. A patent
describing the synthesis of the silica-based monolithic rod was registered in Japan in 1993 and then
in the United States in 1997 [3]. In 1996, Tanaka et al. used this synthesized monolithic stationary
phase for the first time to separate aromatic hydrocarbons and insulin [39]. In 2000, Merck launched
the first generation of commercially available silica-based monolithic columns from the Chromolith®

series [40]. This moment was a breakthrough and caused a significant increase in interest in this
type of chromatographic filling [3,4]. The monolithic structure of the silica rod from which the
first-generation monoliths were built was not perfect and had some limitations, such as the broad
size distribution and accidental distribution of through-pores [41]. Moreover, Gritti et al. indicated
radial heterogeneity as one of the disadvantages of the first-generation monoliths [42,43]. Changes
introduced in the process of the synthesis of a monolithic rod (increased amount of porogen) led to
creation of the so-called second-generation monoliths [44]. Better control of the production process
and reduced size of macropores meant that the second generation of monoliths had better separation
efficiency and better peak symmetry [40]. This resulted in the introduction of commercially available
second-generation monoliths under the trade name Chromolith® High Resolution by Merck in 2011.
A detailed comparison of the chromatographic and physicochemical features of both generations of
monoliths was presented in several papers [45–48].

3. Main Features and Synthesis of the Silica-Based Monolithic Rod

HPLC silica-based monolithic columns are made from one continuous, rigid piece of porous
silica sealed in a polyether ether ketone (PEEK) tube. Numerous advantages of monolithic fillings
result from the characteristic morphology of silica gel. This structure is characterized by a bimodal
pore size distribution and two types of pores, macropores and mesopores, can be distinguished [3,4].
Macropores, also called “through-pores” [3] or “flow pores” [41], form a network of connections and
are responsible for the high permeability of the bed, whereas mesopores provide the surface needed
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for proper chromatographic separation [49]. The high permeability of the monolithic bed and the low
backpressure allow high flow rates of the mobile phase and, thus, a significant reduction of the analysis
time while maintaining satisfactory chromatographic separation parameters [50].

The sol–gel process including the hydrolysis reaction and polycondensation of organosilica
compounds in the presence of a water-soluble polymer is applied in the process of manufacturing of
monolithic silica rods. Tetraalkoxysilanes, i.e., tetramethyl-ortosilane (TMOS) and tetraethyl-ortosilane
(TEOS), are silica precursors during the synthesis [51]. Currently, TMOS is the most commonly used
alkoxysilane to prepare silica-based HPLC monolithic columns [28]. Nakanishi and Soga were pioneers
in the synthesis of monolithic silica rods. In the first paper describing the process of synthesis of a
monolithic silica bed, they used a mixture of TMOS and poly(sodium styrene sulfonate) with different
molecular weights as a starting solution [36]. Later, this method was modified by replacing poly(sodium
styrene sulfonate) with polyacrylic acid with the addition of nitric acid as a hydrolysis catalyst [38].
Subsequent modifications consisted of a change in the molecular weight of polyacrylic acid [37] and,
next, the introduction of polyethylene oxide [39,52]. Subsequent synthesis steps include aging, drying,
and chemical modification of the obtained gel. Modifications at each of these stages cause changes in
the morphology of the monolithic silica. An increase in the TMOS concentration in the starting solution
increases the mechanical strength of the monolith. The most popular additive used in the synthesis is
polyethylene glycol. Both the concentration and the molecular weight of the additives used in the
starting solution have an impact on the morphology of the gel. An increase in the polyethylene glycol
concentration causes a decrease in the size of the through-pores [28]. The characteristics and detailed
description of the individual stages of the synthesis were comprehensively presented in reviews by
Guichon [3] and Rieux et al. [28].

4. Applicability of the Monolithic Column

HPLC equipped with reverse-phase spherical packed columns is commonly used to identify and
evaluate the content of active compounds in plant- and human-derived material. The multitude of
commercial products available on the market and the diverse properties of the fillings allow choosing a
column dedicated to particular types of analytes. However, the main problem of biological samples is
their rich matrix, which may cause clogging of adsorbent pores. This in turn decreases the separation
efficacy and, consequently, shortens the longevity of the bed. The unique structure of the monolithic
column can partly solve such problems; therefore, the application potential of monolithic beds was
intensively studied over the last 20 years. Monolithic analytical HPLC columns with different lengths
(100, 50, 25 mm) and different internal diameters (2, 3, 4.6 mm) are currently available on the commercial
market. Short columns allow ultra-fast separation of samples with a relatively simple matrix, while
longer columns facilitate analysis of much more complex mixtures. The most popular and the most
frequently used column from the Merck Chromolith® series is Chromolith® Performance RP 18e
100 × 4.6 mm. Some authors did not provide the full trade name of the column used. During our
research, we found numerous descriptions such as “Chromolith™ RP-18e”, “Monolithic RP-18e”,
“Chromolith RP-18e”, “Chromolith C18”, and “Chromolith RP-18”. To the best of our knowledge, all
these descriptions refer to the same column.

4.1. Plant Samples

The analysis of plant material is very difficult because of the multitude of components often
hindering the proper separation analytes from accompanying compounds. However, there are quite
many reports describing the application of monolithic columns for the determination of compounds
from various chemical groups, such as flavonoids [53–59], phenolic acids [59–62], alkaloids [63–66],
furocoumarins [67], and saponins [19]. It can be observed that the efficacy of separation of particular
groups of analytes strongly depended on the chromatographic conditions used. For instance, Biesaga
et al. [54] obtained full separation of six flavonoids, including quercetin and naringenin, using isocratic
elution with 50 mM phosphate buffer and acetonitrile (75:25, v/v). In turn, the resolution of these
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compounds in the chromatographic conditions proposed by Repollés et al. [55] was poor. Good
resolution between quercetin, miricetin, and kampferol at a flow rate increased to 4 mL/min was
obtained for an eluent composed of acetonitrile and orthophosphate buffer (38:62, v/v), which ensured
shortening of the analysis time from 11 min to 60 s [58], compared with the aforementioned papers.
Generally, different conditions of separation were proposed for the same group of analytes, taking into
account the accompanying matrix. For polyphenols in apple peel extract, Chinnici et al. [59] developed
a gradient elution program using 0.5% methanol in 0.01 M phosphoric acid and acetonitrile at a flow
rate of 2.5 mL/min and a temperature of 25 ◦C. In turn, a similar group of compounds in grapes were
analyzed using gradient elution with water and methanol acidified with acetic acid [60]. On the other
hand, isocratic elution with the mobile phase consisting of acetonitrile and 0.05% trifluoroacetic acid
(12:88, v/v) at an increased flow rate (4 mL/min) and temperature (35 ◦C) ensured good separation of
polyphenols in Vanilla planifolia extract. Generally, evaluation of the chromatographic performance
systems reported in the literature is very difficult because no detailed chromatographic parameters
were shown. In most papers, only retention times of investigated analytes were given, and some
authors included the resolution (RS) between neighboring peaks as the most important factor from the
point of view of the applicability of monolithic columns. Table 1 summarizes the chromatographic
conditions used in the analysis of particular classes of compounds in various plant samples.

The main advantage of monolithic fillings is the high permeability of the bed and the low
backpressure generated on the column, which makes it possible to use high mobile phase flow rates
without loss of separation efficacy. The mobile phase composition used in monolithic fillings is
typical for the HPLC technique; however, many chromatographic separations are conducted using
a higher flow rate, even up to 6 mL/min, which results in shortening of the time necessary for the
chromatographic run. Some authors compared the capabilities of monoliths and columns with spherical
filling. Barbero et al. separated five capsaicinoids from hot peppers using a mobile phase flow rate of
6 mL/min, which significantly reduced the analysis time compared to analysis carried out with the use
of traditional fillings [68]. Sharma et al. applied a flow rate of 4 mL/min and presented the separation
of four components from vanilla extracts in less than 3 min. The authors compared the developed
method for the monolith with UPLC. Most of the chromatographic parameters (except the theoretical
plate number) were better using the HPLC method with a monolithic bed, whereas the UPLC method
was characterized by lower consumption of the mobile phase and higher sensitivity [61]. Using a
flow rate of 4 mL/min, Mehrad et al. specified the conditions for separation of three major flavonol
aglycones from Rhus coriaria. The method yielded good resolution of the analyzed compounds in less
than 1 min [58]. Pellati et al. analyzed polyacetylenes and polyenes from Echinacea pallida roots using a
monolithic bed and obtained shorter retention times and better separation of the analytes than in the
case of a spherical packed column [17]. Rahim et al. presented simultaneous determination of eight
catechins and caffeine in tea samples on the monolithic stationary phase. The authors highlighted the
short time of analysis as the main advantage of their methodology [63]. The influence of the increased
flow rate on resolution parameters was also studied. Liazid et al. [60] investigated the separation of
polyphenolic compounds using different flow rates of the mobile phase in the range of 2–5 mL/min.
Generally, a slight decrease in the Rs values was observed, but some compounds co-eluted at a higher
flow rate.

An interesting alternative is the possibility of connecting several monolithic columns, which
allows lengthening the separation way and, hence, increasing the efficacy of separation. For example,
Schmidt developed a fast method for quality control of Harpagophytum procumbens using two coupled
monolithic columns at a flow rate of 5 mL/min. This method contributed to shortening the analysis
time by almost 25 min in comparison with the use of a spherical packed column. The same method
was successfully used to distinguish between the Harpagophytum species [69,70].

Another application of the monolithic column is fingerprinting, which is accepted by the World
Health Organization (WHO) as a valuable tool for assessing the quality of plant samples [71]. Alaerts
et al. coupled four monolithic columns together and obtained chromatographic fingerprints for four
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Artemisia species [72], whereas Hefny Gad et al. used two combined monoliths to obtain HPLC
fingerprints of Ipomea aquatica samples [73].

4.2. Medical and Pharmaceutical Application

Over the last few years, monolithic columns were also widely used in the analysis of drugs
and their metabolites in various matrices. Some reports presented the usefulness of monoliths in
the analysis of urine, saliva [74,75], whole blood [76], plasma [75,77], serum, and human breast
milk samples [78]. The papers described the chromatographic analysis of compounds from different
therapeutic groups, such as antibiotics [25,77,79,80], diuretics [75,77,81], antidepressants [82,83],
analgesics [74], antidiabetics [84,85], benzodiazepine derivatives [76,86,87], and anti-allergic [88]
and antiviral drugs [26,89]. Table 2 presents examples of applications of monolithic columns in
medical analysis.

For instance, Galaon et al. [77] and Wenk et al. [75] developed very fast methods for determining
furosemide in human plasma, which can be useful in bioequivalence and pharmacokinetic studies.
In the conditions reported in the papers, furosemide was eluted at approximately 4 and 2 min,
respectively; however, the eluent proposed by Galaon et al. [77] had more components, including
sodium heptane-sulfonate, trimethylamine, methanol, and acetonitrile, while retention was based on
the ion-pair mechanism. In turn, Wenk et al. [75] used gradient elution with a simple mobile phase
containing acetonitrile and water with the addition of acetic acid.

Three different chromatographic systems including various eluent compositions and flow rate
values were designed for determination of similar analytes from the benzodiazepine group in human
blood samples. In all cases, the obtained retention times were similar and the compounds were well
separated from the matrix [76,86,90]. Karageorgou et al. presented the first method for separation and
quantification of residues of eight cephalosporins in milk in a shorter time than 16 min. The use of the
monolithic column ensured a significantly shorter total analysis time than other analytical columns
(22 min for Inertsil ODS-3 5 µm, 250 × 4 mm and 43 min for Orbit 100 C18 5 µm, 250 × 4 mm); hence,
the consumption of eluents was lower [80]. Ardakani et al. described a rapid method for determination
of tramadol and its main metabolites with the use of simple isocratic elution without conditioning of
the bed between injections [74]. The total analysis time was about 7 min in the case of the monolithic
column and about 26.5 min for the traditional column [91].

Monolithic filings also help to avoid the time-consuming preparation of the sample for
chromatographic analysis. Bugey et al. developed a semi-automatic method to analyze benzodiazepines
in whole blood samples, in which two monolithic columns of different lengths and various purposes
were switched together. The first one (Chromolith® Flash, 25 × 4.6 mm) was used for sample clean-up,
while the other (Chromolith® Performance RP-18e, 100 × 4.6 mm) served as an analytical column. This
solution ensured purification and proper separation during one injection; hence, the whole analytical
process was substantially shortened [76].

4.3. New Generation of Monolithic Columns—Short Characterization and Applications

Chromolith® High Resolution is an example of second-generation monolithic columns, which
were introduced on the market in 2011 [44]. The main goal in the development of the manufacturing
process of second-generation monoliths was to enhance the separation efficiency and decrease the
peak asymmetry [40]. The reduced size of macropores and the more homogeneous structure of the
high-resolution monolithic rod are the main features distinguishing both generations [40,46]. Changes
in the morphology of monolithic silica contributed to improving column efficiency by reducing the
height of the individual theoretical plate [48]. The second generation of monoliths shows performance
similar to the sub-3-µm core shell and sub-2-µm fully porous particles [92]. Changes in the morphology
of second-generation monoliths resulted in improvement of the chromatographic parameters and an
increase in the efficacy of separation; however, an increase in the backpressure compared to the first
generation was observed [40]. Although the permeability of the second-generation monoliths is even
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four times lower than in the first generation [44], the backpressure during analysis is still much lower
than in a particle packed column.

Table 3 summarizes the applications of the Chromolith® High Resolution (100 × 4.6 mm) column.
Most of them are associated with the analysis of drugs in biological fluids. Kučerová et al. proposed a
very interesting comparison of the second generation of monoliths, as well as core–shell and particle
packed columns, in the analysis of retinol and α-tocopherol in various matrices using the UHPLC
system. It was found that the High Resolution monoliths were comparable and, in some cases, even
better than the other UHPLC columns [78]. Koyuturk et al. presented a method where they used
a double gradient, i.e., both the mobile phase and the flow rate, for simultaneous determination
of irbesartan and hydrochlorothiazide in urine samples. The method developed with the use of
Chromolith® High Resolution yielded the highest theoretical plate number, compared with other
tested columns (with dimensions 100 × 4.6 mm) [81].

4.4. Preparative and Semi-Preparative Silica-Based Monolithic Column—Applications

Raw materials of plant origin are a valuable source of active compounds widely used in many
fields, e.g., natural medicine and pharmaceutical and herbal industries. Some species are a valuable
source of biological active compounds with desirable therapeutic effects useful for treatment of various
disorders. The preparative and semi-preparative chromatography technique allows purification of raw
extracts from ballast substances and separation into particular fractions rich in compounds with similar
chemical and biological properties. In the case of chromatographic columns used on a preparative
and semi-preparative scale, a crucial point is the possibility of loading a high volume of a sample,
conducting the separation process without the risk of overloading the entire system. Silica-based
monolithic columns for preparative and semi-preparative purposes with dimensions 100 × 25 mm and
100 × 10 mm, respectively, are offered by Merck (Darmstadt, Germany). There are several examples of
the use of this type of column in purification and isolation processes [93–96]. For instance, Lai et al.
applied a monolith for isolation of proanthocyanidin from Blechnum orientale [96], and Malek et al. used
a monolithic column for preparative scale separation of active components from Curcuma manga [94].
A combination of a few columns was also applied for preparative purposes, e.g., Kokotkiewicz et al.
used two semi-preparative Chromolith® columns connected in series for the isolation of phenolic
compounds from Cyclopia subternata [97].
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Table 1. Application of Chromolith® Performance RP 18-e (100 × 4.6 mm inner diameter (i.d.)) in analysis of plant samples.

Sample/Analytes Part of Plant/Matrix Type of Elution/Mobile Phase
Conditions

(Flow Rate/Temperature/Numbero
f Monolithic Columns)

Detector Ref.

orientin, isovitexin, vitexin,
luteolin-7-O-glucoside,

hyperoside, luteolin, apigenin

tincture from
Passiflora incarnata L.

gradient elution/
H2O/MeOH a/ACN b/THF c

acidified with 0.05% acetic acid

1.0 mL/min/30 ◦C/one column
2.0 mL/min/30 ◦C/two columns

2.5 mL/min/30 ◦C/three columns
PDA [53]

polyacetylenes and polyenes roots from
Echinacea pallida

gradient elution/
H2O/ACN 2.0 mL/min/20 ◦C/one column PDA [17]

(fingerprinting)
Artemisia vulgaris,

A. absinthium, A. annua,
A. capillaris

gradient elution/
H2O/MeOH

(both with 0.05% of TFA d)
1.0 mL/min/35 ◦C/four columns DAD [72]

catechins and caffeine
tea samples

(green tea, Oolong tea,
“fermented” black tea)

isocratic elution/
H2O/ACN/MeOH (83:6:11, v/v) 1.4 mL/min/-/one column UV [63]

quercetin, naringenin, naringin,
myricetin, rutin, kaempferol tomatoes

isocratic elution/
A: 50 mM phosphate buffer
(pH = 2.2)/ACN (75:25, v/v)
B: 2 mM formic acid/ACN

(75:25, v/v)

1.0 mL/min/25 ◦C/one column A: UV
B: MS [54]

gallic acid, protocatechuic
aldehyde, gentisic acid, catechin,

vanillinic acid, caffeic acid,
vanillin, epicatechin,

syringaldehyde, p-coumaric acid,
ferulic acid, sinapic acid,

resveratrol

musts from grapes:
Riesling and Monastrell

gradient elution/
90% H2O, 2% acetic acid in

MeOH/90% MeOH, 2% acetic acid
in H2O

2.5 mL/min/25 ◦C/one column PDA and FL [60]

catechin, epicatechin, quercetin,
kaempferol, apigenin, fisetin,

morin, naringenin, hesperetin,
chrysin

green tea, red wine,
orange, propolis and
Ginkgo biloba extracts

gradient elution/
H2O/MeOH/ACN

each containing 0.05% (v/v) TFA
2.0 mL/min/25 ◦C/one column DAD [55]
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Table 1. Cont.

Sample/Analytes Part of Plant/Matrix Type of Elution/Mobile Phase
Conditions

(Flow Rate/Temperature/Numbero
f Monolithic Columns)

Detector Ref.

(fingerprinting) aerial parts from
Ipomoea aquatica

gradient elution/
MeOH/H2O containing 0.05% TFA 1.0 mL/min/25 ◦C/two columns UV [73]

gastrodin Gastrodiae Rhizoma gradient elution/H2O/ACN 1.0 mL/min/-/one column DAD [18]

echitamine,
N-demethylalstogustine,

loganetin

stem, stem bark, root, root
bark, fruits, leaves from

Alstonia scholaris

isocratic elution/
ACN/0.01 M buffer (KH2PO4)

containing 0.1% TFA (20:80, v/v)

0.5 mL/min/25 ◦C/two columns
(total length 150 mm) DAD [98]

oroxylin A, chrysin,
baicalein, hispidulin

roots from
Oroxylum indicum

isocratic elution/ACN/H2O
(acidified with 0.1% TFA) (34:66,

v/v)
1.0 mL/min/30 ◦C/one column PDA [56]

6-gingerol, 8-gingerol,
10-gingerol, shogaol

rhizome from
Zingiber officinale

gradient elution/
H2O/ACN 3.0 mL/min/room temp./one column PDA [99]

schizandrin, gomisin A,
deoxyschizandrin, γ-schizandrin,

gomisin N, wuweizisu C

callus from Schisandra
chinensis

isocratic elution/
ACN/H2O (50:50, v/v) 2.0 mL/min/-/one column PDA [100]

bacopaside I, bacoside A3,
bacopaside II, bacopaside X,
bacopasaponin C, apigenin

herbs of
Bacopa monnieri

isocratic elution/
ACN/H2O (30:70, v/v) 0.7 mL/min/25 ◦C/one column ELSD [19]

vanillin, vanillic acid,
p-hydroxybenzoic acid,

p-hydroxybenzaldehyde

pods from
Vanilla planifolia

isocratic elution/
ACN/0.05% TFA in H2O (12:88, v/v) 4.0 mL/min/35 ◦C/one column PDA [61]

furocoumarins:
heraclenol and bergapten

fruits from
Heracleum candicans

gradient elution/
H2O/H3PO4 (99.7:0.3, v/v)/

ACN/H2O/H3PO4 (79.7:20:0.3, v/v)
0.5 mL/min/-/one column PDA [67]

tannins and polyphenols
commercial products

Filipendula ulmaria
Rosa canina

gradient elution/ACN/H2O
containing 0.2% (v/v) formic acid 2.5 mL/min/-/one column UV [101]
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Table 1. Cont.

Sample/Analytes Part of Plant/Matrix Type of Elution/Mobile Phase
Conditions

(Flow Rate/Temperature/Numbero
f Monolithic Columns)

Detector Ref.

phenolic acids: vanillic, gallic,
syringic,

p-coumaric, ferulic, chlorogenic,
benzoic, p-hydroxybenzoic,

p-hydroxyphenylacetic

plum fruits
gradient elution/

50 mM phosphate buffer
(pH = 2.2)/ACN

1.0 mL/min/-/one column DAD [62]

niaziridin and niazirin leaves, pods, and bark
from Moringa oleifera

isocratic elution/
MeOH/sodium dihydrogen
phosphate–acetic acid buffer
(0.1 M, pH = 3.8) (20:80, v/v)

0.7 mL/min/25 ◦C/one column PDA [102]

A. fatty acid methyl esters
B. phosphatydylocholine —

isocratic elution/
A. ACN/H2O (97:3, v/v)

B. ACN/MeOH/H2O
(33:64.5:2, v/v/v)

2.0 mL/min/25 ◦C/two columns
A. radioisotope

detector
B. UV

[103]

iridoid glycosides: harpagoside
and

8-p-coumaroyl-harpagide

extracts from
Harpagophytum

procumbens and H. zeyheri

gradient elution/
H2O (pH = 2.0)/ACN 5.0 mL/min/30 ◦C/two columns PDA [70]

harpagoside, acetoside, cinnamic
acid, 8-p-coumaroyl-harpagide

root tubers
from H. procumbens

gradient elution/
H2O (pH = 2.0)/ACN 5.0 mL/min/30 ◦C/two columns PDA [69]

curcuminoids: curcumin,
demethoxycurcumin,

bisdemethoxy curcumin
herbal medicament

isocratic elution/
H2O/ACN/glacial acetic acid

(60:40:1, v/v/v)
1.0 mL/min/-/one column UV–Vis [104]

rutin Buckwheat Tea and seeds
from Fagopyrum tataricum

isocratic elution/MeOH/H2O
(5:5, v/v)

with 10 mM acetate buffer at
pH = 4.1

1.5 mL/min/30 ◦C/one column UV–Vis [57]

glycyrrhizic and glycyrrhetinic
acids

roots from
Glycyrrhiza glabra

gradient elution/H2O/ACN
both acidified with 0.05% TFA 2.5 mL/min/room temp./one column PDA [105]
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Table 1. Cont.

Sample/Analytes Part of Plant/Matrix Type of Elution/Mobile Phase
Conditions

(Flow Rate/Temperature/Numbero
f Monolithic Columns)

Detector Ref.

reserpine, ajmaline, ajmalicine roots from
Rauvolfia serpentina

gradient elution/
0.01 M phosphate buffer containing

0.5% glacial acetic acid
(pH = 3.5)/ACN

1.0 mL/min/26 ◦C/one column PDA [106]

myricetin, quercetin, kaempferol fruits and leaves from
Rhus coriaria

isocratic elution/ACN/10 mM
potassium dihydrogen

orthophosphate buffer (pH = 3.0)
(38:62, v/v)

4.0 mL/min/40 ◦C/one column PDA [58]

allosecurinine, securinine biomasses from
Phyllanthus glaucus gradient elution/H2O/ACN 1.0 mL/min/25 ◦C/one column PDA [64]

proanthocyanidins

pea from Pisum sativum,
lentil from Lens

culinaris,faba bean from
Vicia faba

gradient elution/
H2O/ACN both with 1% acetic acid

(v/v)
3.0 mL/min/30 ◦C/two columns DAD [107]

gallic acid, (+)-catechin,
chlorogenic acid, procyanidin B2,

p-coumaric acid,
(-)-epicatechin, ferulic acid,
hyperin, rutin, phloridzin

fresh peel or pulp from
Golden Delicious apples

gradient elution/
0.5% MeOH in 0.01 M H3PO4/ACN 2.5 mL/min/25 ◦C/one column PDA [59]

capsaicinoids:
nordihydrocapsaicin, capsaicin,

dihydrocapsaicin, homocapsaicin,
homodihydro-capsaicin

peppers
(pericarp and placenta)

from Capsicum frutescens

gradient elution/
H2O/MeOH both with 0.1% acetic

acid
6.0 mL/min/30 ◦C/one column FL [68]

anthocyanins red cabbage
Brassica oleracea

gradient elution/
5% formic acid/ACN 4.0 mL/min/27 ◦C/one column DAD [108]

protopine, allocryptopine,
berberine, chelidonine,

chelerythrine, sanguinarine,
coptisine

roots from
Chelidonium majus

gradient elution/
15 mM ammonium acetate

(pH = 4.0)/ACN/MeOH
2.0 mL/min/25 ◦C/three columns DAD [65]
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Table 1. Cont.

Sample/Analytes Part of Plant/Matrix Type of Elution/Mobile Phase
Conditions

(Flow Rate/Temperature/Numbero
f Monolithic Columns)

Detector Ref.

vincristine, vinblastine,
catharanthine, vindoline

leaves from
Catharanthus roseus

isocratic elution/ACN/0.1 M
phosphate buffer containing 0.5%

glacial acetic acid (pH = 3.5),
(21:79, v/v)

1.2 mL/min/25 ◦C/one column PDA [66]

gallic acid, protocatechuic acid,
gentisic acid, chlorogenic acid,

caffeic acid, ferulic acid,
rosmarinic acid

aerial part from
Hyssopus officinalis

gradient elution/
H2O with 1% acetic acid/ACN 2.0 mL/min/26 ◦C/one column DAD [109]

proanthocyanidins cleavage
products

hop cones from
Humulus lupulus and

grapes from Vitis vinifera

gradient elution/H2O/ACN
(each containing 1% acetic acid) 3.0 mL/min/30 ◦C/two columns DAD [110]

daidzin, gycitin, genistin,
acetyldaidzin, acetylglycitin,

daidzein, glycitein, acetylgenistin,
genistein

extracts from
Gycine max

gradient elution/
ACN/H2O with acetic acid

(0.1:0.99, v/v)

flow gradient 3.0 mL and 4.0 mL/min/
two columns

DAD
MS [111]

α-amyrin, α -amyrin acetate,
β-amyrin, β-amyrin acetate,

lupeol, lupeol acetate

flowers, leaves, roots and
stems from five species of

Carlina

isocratic elution/ACN/H2O
(95:5, v/v) 2.0 mL/min/25 ◦C/one column PDA [112]

daidzin, glycitin, genistin,
malonyl daidzin, malonyl
glycitin, malonyl genistin,

daidzein, glycitein, genistein

extracts from soybeans gradient elution/MeOH/H2O
each containing 0.1% acetic acid 0.8 mL/min/-/two columns PDA [113]

cis-resveratrol, trans-resveratrol,
cis-piceid, trans-piceid wine samples

gradient elution/
H2O/acetic acid (94:6, v/v)

/H2O/ACN/acetic acid (65:30:5,
v/v/v)

gradient flow 4.0 mL and 7.0
mL/min/two columns PDA [114]
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Table 1. Cont.

Sample/Analytes Part of Plant/Matrix Type of Elution/Mobile Phase
Conditions

(Flow Rate/Temperature/Numbero
f Monolithic Columns)

Detector Ref.

lysergol and chanoclavine seeds from
Ipomea muricata

isocratic elution/
ACN/0.01 M sodium dihydrogen
phosphate buffer (with 0.2% TFA)

(pH = 2.5) (15:85, v/v)

1.0 mL/min/25 ◦C/one column PDA [115]

rutin,
isorhamnetine-3-O-rutinoside,
isorhamnetine-3-O-glukoside,

quercetin,
isorhamnetin

berries from
Hippophaë rhamnoides

gradient elution/H2O/ACN
(both acidified with 1% acetic acid) 3.0 mL/min/40 ◦C/one column UV [116]

geraniin, ellagic acid, gallic acid rind from
Nephelium lappaceum

isocratic elution/ACN/H2O
(30:70, v/v) 0.5 mL/min/room temp./one column UV–Vis [117]

(fingerprinting) Ginkgo biloba dry extract
gradient elution/

iso-propanol/THF/H2O with 0.05%
TFA

1.0 mL/min/35 ◦C/two columns UV–ELS [118]

carnosic acid, carnosol,
rosmarinic acid

leaves from
Rosmarinus officinalis

binary gradient/ACN–H2O–H3PO4
(65.1%:34.9%:0.02%)/ACN–H2O–H3PO4

(22%:78%:0.25%)
1.5 mL/min/-/one column UV–Vis [119]

α-solanine and α-chaconine potato tubers isocratic elution/20 mM phosphate
buffer (pH = 7.8)/ACN (65:35, v/v) 0.6 mL/min/-/one column CL [120]

a MeOH- methanol; b ACN- acetonitrile; c THF- tetrachedrofurane; d TFA- trifluoroacetic acid.
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Table 2. Chromolith® Performance RP 18-e 100 × 4.6 mm in analysis of drugs in various matrices.

Name of Drug Matrix Type of Elution/Mobile Phase
Conditions

(Flow Rate/Temperature/Number
of Monolithic Columns)

Detector Ref.

raltegravir human plasma
isocratic elution/10 mM ammonium
formate in water (pH = 3.0)/ACN b

(3:7, v/v)
1.2 mL/min/40 ◦C/one column MS/MS [89]

amphotericin B human plasma
gradient elution/

5 mM ammonium acetate
(pH = 6.0)/ACN/MeOH a

1.8 mL/min/-/one column MS/MS [25]

lamivudine human plasma

isocratic elution/
50 mM sodium dihydrogen

phosphate/triethylamine (pH = 3.2)
(996:4, v/v)

1.5 mL/min/20 ◦C/one column UV [26]

mirtazapine and metabolites:
N-desmethyl mirtazapine,

8-hydroxymirtazapine
human plasma

isocratic elution/
ACN/0.025 M monobasic potassium

phosphate buffer (pH = 3.0) (20:80, v/v)
2.0 mL/min/-/one column FL [83]

montelukast and fexofenadine human plasma
isocratic elution/

20 mM ammonium formate/ACN
(20:80, v/v)

1.2 mL/min/5 ◦C/one column MS/MS [88]

clonazepam, diazepam,
flunitrazepam, lorazepam,

midazolam,
N-desalkylflurazepam,

nordiazepam, oxazepam

whole blood
samples

isocratic elution/
5 mM ammonium formate (pH = 3.0)/ACN

(65:35, v/v)
1.5 mL/min/-/one column MS [76]

furosemide and norfloxacin human plasma

isocratic elution/
0.015 M sodium heptane-sulfonate,

0.2% triethylamine (pH = 2.5)/
ACN/MeOH (70:15:15, v/v/v)

3.0 mL/min/25 ◦C/one column FL [77]

omeprazole human plasma
isocratic elution/

0.01 M disodium hydrogen phosphate
buffer/ACN (pH = 7.1) (93:7, v/v),

1.5 mL/min/-/one column UV [121]
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Table 2. Cont.

Name of Drug Matrix Type of Elution/Mobile Phase
Conditions

(Flow Rate/Temperature/Number
of Monolithic Columns)

Detector Ref.

cefadroxil, cefaclor, cephalexin,
cefotaxime, cefazolin, cefuroxime,

cefoperazone and ceftiofur
milk

gradient elution/
0.1% formic acid/

MeOH/ACN (75:25 v/v)
1.5 mL/min/-/one column PDA [80]

pantoprazole human plasma
isocratic elution/

ACN/potassium dihydrogen phosphate
buffer (pH = 3.0) (25:75, v/v)

1.5 mL/min/-/one column UV [122]

codeine human plasma
isocratic elution/

ACN/10 mM acetic acid (pH = 3.5)
(50:50, v/v)

1.0 mL/min/25 ◦C/one column MS/MS [123]

pioglitazone human serum and
urine

isocratic elution/
ACN/10 mM phosphate buffer (pH = 2.5)

(30:70, v/v)
2.0 mL/min/-/one column DAD [124]

diazepam, clonazepam,
lorazepam, midazolam whole blood

isocratic elution/
phosphate buffer (pH = 2.5)/ACN

(65/35, v/v)
2.0 mL/min/-/one column DAD [90]

nimesulid and major metabolite
4′-hydroxy-nimesulide human plasma

isocratic elution/
0.2% triethylamine (pH = 3.0)/MeOH

(50:50, v/v)
1.5 mL/min/25 ◦C/one column DAD [125]

chloramphenicol human blood
isocratic elution/

100 mM phosphate buffer (pH = 2.5)/ACN
(75:25, v/v)

1.5 mL/min/28 ◦C/one column UV–Vis [126]

a MeOH- methanol; b ACN- acetonitrile.
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Table 3. Chromolith® High Resolution RP 18-e 100 × 4.6 mm in analysis of active compounds in various matrices.

Active Compound/Drug Matrix Type of Elution/Mobile Phase
Conditions

(Flow Rate/Temperature/Number
of Monolithic Columns)

Detector Ref.

retinol and α-tocopherol serum and human
breast milk 100% MeOH a 1.5 mL/min/50 ◦C/one column FL [78]

terpenoids and flavonoid
aglycones

aerial parts from
Lippia origanoides

gradient elution/H2O/MeOH
both containing 0.1% (v/v) formic acid 1.0 mL/min/32 ◦C/one column UV [127]

rutin, piceatannol, resveratrol,
naringenin, kaempferol, emodin,

physcion

root, stem and leaf
from five species of

Rumex L.

gradient elution/
H2O (0.1% formic acid)/ACN b 0.4 mL/min/room temp./one column MS [128]

avanafil and its degradation
products

pharmaceutical
preparation

isocratic elution/H2O/ACN
both with 0.1% formic acid

(pH = 2.6,75:25, v/v)

0.5 mL/min/40 ◦C and 15 ◦C/one
column

DAD,
MS/MS [129]

vitamins K3, D3, E, and A capsules and
pediatric drops

isocratic elution/ACN/MeOH
both with 0.1% (v/v) formic acid

(pH = 2.6, 25:75, v/v)
4.0 mL/min/room temp./one column DAD [130]

metformin, linagliptin, sitagliptin,
vildagliptin human plasma

isocratic elution/
0.01 M ammonium formate buffer

(pH = 3.0)/ACN (80:20, v/v)
0.4 mL/min/20 ◦C/one column MS/MS [85]

aspirin and dipyridamole human plasma isocratic elution/MeOH/0.1% formic acid in
H2O (90:10, v/v) 1.0 mL/min/-/one column MS/MS [131]

irbesartan and
hydrochlorothiazide tablets and urine

gradient elution/
ACN/0.025 M phosphate buffer

(pH = 6.3)/H2O (3:87:10, v/v)

flow gradient: 0.8 mL and 1.5
mL/min/40 ◦C/one column DAD [81]

dapsone and N-acetyl dapsone human plasma isocratic elution/ACN/2 mM ammonium
acetate in H2O (90:10, v/v) 0.8 mL/min/-/one column MS/MS [132]

a MeOH- methanol; b ACN- acetonitrile.
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5. Conclusions

As shown in our study, columns with monolithic beds have great application potential for a
wide range of analytes, including polar and low-polarity compounds from various chemical groups.
Moreover, due to their unique pore structures, which result in numerous advantages such as low
backpressure at high flow rates of eluents and low susceptibility to clogging, they are a useful tool
in the analysis of samples with a rich matrix, including plant material and human-derived samples.
Many chromatographic conditions, including various compositions of the mobile phase, flow rate
values, temperatures, and types of elution were elaborated, taking into account the type of samples
and analytes. Additionally, the combination of a few columns enhances the separation effectiveness of
monoliths. The possibility of applying an increased flow rate of eluents allows shortening the time
of analysis. Columns with monolithic filling also have increasing significance for preparative and
semi-preparative applications, and they are used for isolation and purification of target compounds.
The new generation of monolithic columns with improved efficiency of separation can increase their
importance in chromatography in the future.
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