# Supplementary material

| Peak<br># | Retention<br>time<br>(min.) | UV max<br>(nm) | Tentative<br>identification                    | Formula<br>[M-H] <sup>-</sup>                    | Theoretical mass ( <i>m</i> / <i>z</i> ) | Measured mass ( <i>m/z</i> ) | Accuracy<br>(δppm) | MS <sup>n</sup> ions<br>( <i>m</i> / <i>z</i> )                                                              | Extract |
|-----------|-----------------------------|----------------|------------------------------------------------|--------------------------------------------------|------------------------------------------|------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------|---------|
| 1         | 1.52                        | -              | malic acid*                                    | $C_4H_5O_5^-$                                    | 133.01425                                | 133.01352                    | -5.48              |                                                                                                              | Me, Aq  |
| 2         | 1.63                        | -              | citric acid*                                   | $C_6H_7O_7^-$                                    | 191.01973                                | 191.01926                    | -2.46              |                                                                                                              | Me, Aq  |
| 3         | 1.83                        | 280-330        | 2,4,5-<br>trihydroxybenzoic<br>acid            | C <sub>6</sub> H <sub>5</sub> O <sub>5</sub> -   | 169.01425                                | 169.01373                    | -3.07              | 125.02364<br>(C <sub>6</sub> H <sub>5</sub> O <sub>3</sub> <sup>-</sup> ,M <sup>-</sup> -CO <sub>2</sub> )   | Me, Aq  |
| 4         | 2.22                        | 280-325        | 4-hydroxy-3,5-<br>dimethoxybenzoic<br>acid     | C9H9O5 <sup>-</sup>                              | 197.04555                                | 197.04515                    | -2.03              | 109.02856<br>(C <sub>6</sub> H <sub>5</sub> O <sub>2</sub> <sup>-</sup> )                                    | Me, Aq  |
| 5         | 3.15                        | 292-320        | 2,4-<br>dihydroxybenzoic<br>acid               | C <sub>7</sub> H <sub>5</sub> O <sub>4</sub> -   | 153.01933                                | 153.01866                    | -4.37              | 109.02855<br>(C <sub>6</sub> H <sub>5</sub> O <sub>2</sub> <sup>-</sup> , M <sup>-</sup> - CO <sub>2</sub> ) | Me      |
| 6         | 3.12                        | -              | dihydroxyheptanoic<br>acid                     | C <sub>7</sub> H <sub>13</sub> O <sub>4</sub> -  | 161.08193                                | 161.08122                    | -4.41              | 109.02856<br>(C <sub>6</sub> H <sub>5</sub> O <sub>2</sub> <sup>-</sup> )                                    | Me      |
| 7         | 3.89                        | -              | dihydroxyheptanoic<br>acid glucoside           | $C_{13}H_{23}O_{9}^{-}$                          | 323.13476                                | 323.13461                    | -0.46              | 135.04433<br>(C <sub>8</sub> H <sub>7</sub> O <sub>2</sub> <sup>-</sup> , M <sup>-</sup> - CO <sub>2</sub> ) | Me      |
| 8         | 4.83                        | 233-291        | Caffeic acid*                                  | $C_9H_7O_3^-$                                    | 179.03498                                | 179.03448                    | -2.79              | 135.04433<br>(C <sub>8</sub> H <sub>7</sub> O <sub>2</sub> <sup>-</sup> , M <sup>-</sup> - CO <sub>2</sub> ) | Me, Aq  |
| 9         | 8.23                        | 235sh-289      | Opened 2,5-<br>dihydroxy-<br>filifolinoic acid | C <sub>17</sub> H <sub>23</sub> O <sub>7</sub> - | 339.14493                                | 339.14542                    | 1.44               |                                                                                                              | Me, Aq  |

**Table. S1.** UHPLC PDA-HR-MS<sup>n</sup> identification of metabolites in *H. taltalense* (methanolic and aqueous extract)

| 10 | 8.91  | 235sh-289 | Opened 5-hydroxy-<br>filifolinoic acid                | $C_{17}H_{23}O_{6}^{-}$                          | 323.15001 | 323.14996 | -0.15 |                                                                                                                                                                  | Me     |
|----|-------|-----------|-------------------------------------------------------|--------------------------------------------------|-----------|-----------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 11 | 9.2   | 210       | tetrahydroxy-<br>tetradecadienoic<br>acid-O-glucoside | $C_{20}H_{33}O_{11}$                             | 449.20284 | 449.20282 | -0.04 | 138.04434<br>C <sub>8</sub> H <sub>7</sub> O <sub>2</sub> <sup>-</sup>                                                                                           | Me     |
| 12 | 9.51  | 266-354   | Kaempferol- 3-O-<br>rutinoside                        | $C_{27}H_{29}O_{15}$                             | 593.15119 | 593.15045 | -1.24 |                                                                                                                                                                  | Me, Aq |
| 13 | 9.55  | 327       | Rosmarinic acid*                                      | $C_{18}H_{15}O_8^-$                              | 359.07724 | 359.07703 | -0.58 | 161.02396 (C <sub>9</sub> H <sub>5</sub> O <sub>3</sub> <sup>-</sup> );<br>179.03428 (C <sub>9</sub> H <sub>7</sub> O <sub>4</sub> <sup>-</sup> )<br>cafeic acid | Me, Aq |
| 14 | 9.63  | 235sh-289 | Opened 2-hydroxy-<br>filifolinoic acid                | C <sub>17</sub> H <sub>23</sub> O <sub>6</sub> - | 323.15001 | 323.14987 | -0.43 |                                                                                                                                                                  | Me     |
| 15 | 9.74  | 292       | ferulic acid                                          | $C_{10}H_9O_4^-$                                 | 193.05063 | 193.05013 | -2.59 | 133.02864 (C <sub>8</sub> H <sub>5</sub> O <sub>2</sub> <sup>-</sup> )                                                                                           | Me     |
| 16 | 11.11 | 235sh-289 | opened filifolinoic<br>acid                           | C <sub>17</sub> H <sub>23</sub> O <sub>5</sub> - | 307.15510 | 307.15490 | -3.29 | 161.02370 (C <sub>9</sub> H <sub>5</sub> O <sub>3</sub> <sup>-</sup> )                                                                                           | Me, Aq |
| 17 | 11.55 | 280-310   | p-hydroxybenzoic<br>acid                              | C <sub>7</sub> H <sub>5</sub> O <sub>3</sub> -   | 137.02442 | 137.02365 | -5.62 |                                                                                                                                                                  | Me, Aq |
| 18 | 12.01 | 235sh-289 | 2,5-dihydroxy-<br>filifolinoic acid                   | $C_{17}H_{21}O_{6}^{-}$                          | 321.13436 | 321.13434 | -0.06 | 135.04430 (C <sub>8</sub> H <sub>7</sub> O <sub>2</sub> <sup>-</sup> )                                                                                           | Me, Aq |
| 19 | 12.08 | 235sh-289 | 5-hydroxy-<br>filifolinoic acid                       | $C_{17}H_{21}O_{5}$                              | 305.13945 | 305.13947 | 0.07  | 135.04439 (C <sub>8</sub> H <sub>7</sub> O <sub>2</sub> <sup>-</sup> )                                                                                           | Me, Aq |
| 20 | 12.32 | 282       | Eriodictyol*                                          | $C_{15}H_{11}O_{6}^{-}$                          | 287.05611 | 287.05606 | -0.17 | 135.04436 (C <sub>8</sub> H <sub>7</sub> O <sub>2</sub> <sup>-</sup> )                                                                                           | Me, Aq |
| 21 | 12.45 | 254-354   | Quercetin*                                            | $C_{15}H_9O_7^-$                                 | 301.03538 | 301.03540 | 0.07  | 151.00285 (C <sub>7</sub> H <sub>3</sub> O <sub>4</sub> -)                                                                                                       | Me, Aq |
| 22 | 12.73 | 235sh-289 | 2-hydroxy-<br>filifolinoic acid                       | $C_{17}H_{21}O_{5}$                              | 305.13945 | 305.13950 | 0.16  | 161.02365 (C <sub>9</sub> H <sub>5</sub> O <sub>3</sub> <sup>-</sup> )                                                                                           | Me, Aq |
| 23 | 13.52 | 254-354   | Isorhamnetin*                                         | C <sub>16</sub> H <sub>11</sub> O <sub>7</sub> - | 315.05103 | 315.05184 | 2.57  | 271.02454 (C <sub>14</sub> H <sub>7</sub> O <sub>6</sub> <sup>-</sup> )                                                                                          | Me, Aq |

| 24 | 13.75 | 255-355   | Myricetin 3',4',7-<br>trimethyl ether       | $C_{16}H_{11}O_7^-$      | 373.09289 | 373.09277 | -0.32 | 271.02454 (C <sub>14</sub> H <sub>7</sub> O <sub>6</sub> <sup>-</sup> ) | Me, Aq |
|----|-------|-----------|---------------------------------------------|--------------------------|-----------|-----------|-------|-------------------------------------------------------------------------|--------|
| 25 | 14.06 | 293       | p-methoxyferulic<br>acid                    | $C_{11}H_{11}O_4^-$      | 207.06628 | 207.06580 | -2.31 |                                                                         | Me, Aq |
| 26 | 14.09 | 287       | 3-hydroxyhesperetin                         | $C_{16}H_{13}O_7^-$      | 317.06668 | 317.06662 | -1.19 |                                                                         | Me     |
| 27 | 14.17 | 235sh-289 | 6-hydroxy-<br>filifolinoic acid             | $C_{17}H_{21}O_5^{-1}$   | 305.13945 | 305.13947 | 0.07  | 161.02353 (C <sub>9</sub> H <sub>5</sub> O <sub>3</sub> <sup>-</sup> )  | Me, Aq |
| 28 | 14.32 | 287       | Pinostrobin*                                | $C_{15}H_{11}O_4^-$      | 269.08193 | 269.08190 | -0.3  |                                                                         | Me, Aq |
| 29 | 14.65 | 266-362   | Kaempferol 4',7-<br>dimethyl ether          | $C_{17}H_{13}O_{6}^{-1}$ | 313.07176 | 313.07175 | -0.03 | 161.02367 (C <sub>9</sub> H <sub>5</sub> O <sub>3</sub> <sup>-</sup> )  | Me, Aq |
| 30 | 15.61 | 235sh-289 | 4-hydroxy-<br>filifolinoic acid             | $C_{17}H_{21}O_{5}$      | 305.13945 | 305.13931 | -0.46 | 161.02388 (C <sub>9</sub> H <sub>5</sub> O <sub>3</sub> <sup>-</sup> )  | Me, Aq |
| 31 | 16.25 | 224-287   | Naringenin*                                 | $C_{15}H_{11}O_5^-$      | 271.06120 | 271.06110 | -0.54 | 119.04929 (C <sub>8</sub> H <sub>7</sub> O <sup>-</sup> )               | Me, Aq |
| 32 | 17.23 | 266-300sh | 2,4,5-trihydroxy-3-<br>geranyl-benzoic acid | $C_{17}H_{21}O_5^{-1}$   | 305.13945 | 305.13937 | -0.26 | 122.03641 (C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> <sup>-</sup> )  | Me, Aq |
| 33 | 18.02 | 285       | Sakuranetin*                                | $C_{16}H_{13}O_5^-$      | 285.07685 | 285.07684 | 0.04  |                                                                         | Me, Aq |
| 34 | 18.32 | 222-268   | opened filifolinoic<br>acid                 | $C_{17}H_{23}O_{5}^{-1}$ | 307.15510 | 307.15491 | -0.62 | 161.02370 (C <sub>9</sub> H <sub>5</sub> O <sub>3</sub> <sup>-</sup> )  | Me, Aq |
| 35 | 18.50 | 223-329   | Kaempferol 3',7-<br>dimethyl ether          | $C_{17}H_{13}O_{6}^{-1}$ | 313.07176 | 313.07172 | -0.45 | 161.02367 (C <sub>9</sub> H <sub>5</sub> O <sub>3</sub> <sup>-</sup> )  | Me, Aq |
| 36 | 18.67 | 223-321   | 2,5-dihydroxy-<br>filifolinoic acid         | $C_{17}H_{21}O_{6}^{-1}$ | 321.13436 | 321.13440 | 0.12  | 161.02374 (C <sub>9</sub> H <sub>5</sub> O <sub>3</sub> <sup>-</sup> )  | Me, Aq |
| 37 | 19.42 | 266-354   | Rhamnocitrin*                               | $C_{16}H_{11}O_6^-$      | 299.05611 | 299.05600 | -0.37 | 255.02960 (C <sub>14</sub> H <sub>7</sub> O <sub>5</sub> <sup>-</sup> ) | Me, Aq |
| 38 | 19.78 | 266-300sh | 2,4-dihydroxy-3-<br>geranyl-benzoic acid    | $C_{17}H_{21}O_4^-$      | 289.14453 | 289.14447 | -0.21 | 119.04422 (C <sub>8</sub> H <sub>7</sub> O <sup>-</sup> )               | Ме     |

| 39 | 19.48 | 255-355   | Quercetin 3', 4-<br>dimethyl ether                            | $C_{17}H_{13}O_7^-$      | 329.06665 | 329.06668 | 0.09  | 161.02367 (C <sub>9</sub> H <sub>5</sub> O <sub>3</sub> <sup>-</sup> )      | Me, Aq |
|----|-------|-----------|---------------------------------------------------------------|--------------------------|-----------|-----------|-------|-----------------------------------------------------------------------------|--------|
| 40 | 19.91 | 281       | Pinocembrin*                                                  | $C_{15}H_{11}O_4^-$      | 255.06628 | 255.06621 | -0.47 | 135.04431 (C <sub>8</sub> H <sub>7</sub> O <sub>2</sub> <sup>-</sup> )      | Me, Aq |
| 41 | 19.97 | 255-355   | 3',7-<br>dihydroxymyricetin                                   | $C_{17}H_{13}O_8^-$      | 345.06159 | 345.06158 | -0.03 |                                                                             | Me, Aq |
| 42 | 20.00 | 235sh-289 | 6'-oxo-5-<br>hydroxyfilifolinoic<br>acid                      | $C_{17}H_{19}O_5^{-1}$   | 303.12424 | 303.12375 | -1.62 | 119.04964 (C <sub>8</sub> H <sub>7</sub> O <sup>-</sup> )                   | Me, Aq |
| 43 | 20.31 | 280-320sh | 2,4,5-trihydroxy-3-<br>geranyl-benzoic acid                   | $C_{17}H_{23}O_5^{-1}$   | 305.13945 | 305.13934 | -0.36 | 123.04421 (C7H7O2 <sup>-</sup> )                                            | Me, Aq |
| 44 | 20.72 | 255-355   | Quercetin 3,7-<br>dimethyl ether or 7-<br>methoxy-isorhametin | $C_{17}H_{13}O_7^-$      | 329.06665 | 329.06653 | -0.36 | 299.01929 (C <sub>15</sub> H <sub>7</sub> O <sub>7</sub> <sup>-</sup> )     | Me, Aq |
| 45 | 21.00 | 235sh-289 | 5-methoxyoxy-<br>filifolinoic acid                            | $C_{18}H_{23}O_{5}^{-1}$ | 319.15510 | 319.15497 | -0.41 | 241.12289<br>(C <sub>16</sub> H1 <sub>7</sub> O <sub>2</sub> <sup>-</sup> ) | Me, Aq |
| 46 | 21.52 | 266-320sh | 4,5-dihydroxy-3-<br>geranyl-benzoic acid                      | $C_{17}H_{21}O_4^-$      | 289.14453 | 289.14444 | -0.32 | 119.04422 (C <sub>8</sub> H <sub>7</sub> O <sup>-</sup> )                   | Me, Aq |
| 47 | 21.65 | 235sh-289 | 2,5-dimethoxy- 6'-<br>oxo-filifolinoic acid                   | $C_{19}H_{23}O_{6}^{-1}$ | 347.15001 | 347.14999 | -0.06 | 177.01895 (C <sub>9</sub> H <sub>5</sub> O <sub>4</sub> <sup>-</sup> )      | Me, Aq |
| 48 | 22.12 | 268-330   | Apigenin 7-methyl<br>ether                                    | $C_{16}H_{11}O_5^{-1}$   | 283.06120 | 283.06110 | -0.35 | 135.04440 (C <sub>8</sub> H <sub>7</sub> O <sub>2</sub> <sup>-</sup> )      | Me, Aq |
| 49 | 22.35 | 254-267   | 3',7-<br>dimethoxyluteonin                                    | $C_{17}H_{13}O_{6}^{-1}$ | 313.07176 | 313.07169 | -0.22 | 283.02451 (C <sub>15</sub> H <sub>7</sub> O <sub>6</sub> <sup>-</sup> )     | Me, Aq |
| 50 | 23.54 | 235sh-289 | 2,6-dimethoxy- 6'-<br>oxo-filifolinoic acid                   | $C_{19}H_{23}O_{6}^{-}$  | 347.15001 | 347.14999 | -0.06 | 177.01892 (C <sub>9</sub> H <sub>5</sub> O <sub>4</sub> <sup>-</sup> )      | Me     |
| 51 | 24.12 | 235sh-289 | 6'-oxo-filifolinoic<br>acid                                   | $C_{17}H_{19}O_4^-$      | 287.12888 | 287.12885 | -0.14 | 122.03628 (C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> <sup>-</sup> )      | Me     |
| 52 | 25.32 | 235sh-289 | Filifolinoic acid                                             | $C_{17}H_{21}O_4^-$      | 289.14453 | 289.14450 | -0.10 |                                                                             | Me     |

| 53 | 26.13 | 266-300sh | 2-hydroxy-3-geranyl- | $C_{17}H_{21}O_3^-$ | 273.14957 | 273.14962 | 0.18 | Me |
|----|-------|-----------|----------------------|---------------------|-----------|-----------|------|----|
|    |       |           | benzoic acid         |                     |           |           |      |    |

\*Identified by spiking experiments with authentic standards. Me: methanol, Aq: aqueous.

**Fig S1a-j**. Full MS spectra and structures of peaks 12 (a), 30 (b), 31 (c), 34 (d), 35 (e), 38 (f), 41 (g), 44 (h), 46 (i) and 51 (j).



















![](_page_14_Figure_0.jpeg)

![](_page_15_Figure_0.jpeg)

### Fig. S2.<sup>1</sup>H NMR (300 Mhz) spectra for compound **1** peak 41 (pinostrobin) in CDCl<sub>3</sub> (J in Hz in parentheses).

![](_page_16_Figure_0.jpeg)

Fig. S3. Ampliation <sup>1</sup>H NMR spectra for compound 1, peak 41 (pinostrobin) in CDCl<sub>3</sub> (J in Hz in parentheses).

![](_page_17_Figure_0.jpeg)

Fig. S4.<sup>13</sup>C NMR (100.25 Mhz) spectra for compound 1, peak 41 (pinostrobin) in CDCl<sub>3</sub> (J in Hz in parentheses).

![](_page_18_Figure_0.jpeg)

## Fig. S5.<sup>1</sup>H NMR (300 MHz) spectra for compound 2, peak 40 (pinocembrin) in CDCl<sub>3</sub> (J in Hz in parentheses).

![](_page_19_Figure_0.jpeg)

## Fig. S6. DEPT 45 NMR (100.25 Mhz) spectra for compound 2, peak 40 (pinocembrin) in CDCl<sub>3</sub> (J in Hz in parentheses).

![](_page_20_Figure_0.jpeg)

## Fig. S7. DEPT 135 NMR (100.25 Mhz) spectra for compound 2, peak 40 (pinocembrin) in CDCl<sub>3</sub>.

![](_page_21_Figure_0.jpeg)

## Fig. S8. <sup>1</sup> H NMR data (300 MHz) for compound 3, peak 32 (sakuranetin)

![](_page_22_Figure_0.jpeg)

Fig. S9. <sup>13</sup> CNMR data (100 MHz) for compound 3, peak 32 (sakuranetin)

![](_page_23_Figure_0.jpeg)

## Fig. S10. DEPT 135 <sup>13</sup>C NMR data (100.25 MHz) for compound 3, peak 32 (sakuranetin)

![](_page_24_Figure_0.jpeg)

Fig. S11. COSY <sup>1</sup>HNMR data (300 MHz) for compound 3, peak 32 (sakuranetin)

![](_page_25_Figure_0.jpeg)

Fig. S12. HMQC  $^{13}$ C NMR data (100.25 MHz) for compound 3, peak 32

![](_page_26_Figure_0.jpeg)

Fig. S13. HMBC <sup>13</sup>C NMR data (100.25 MHz) for compound 3, peak 32

![](_page_27_Figure_0.jpeg)

Fig. S14.<sup>1</sup>H NMR (300 Mhz) spectra for compound 4, peak 37 (7-methoxykaepmferol) in CDCl<sub>3</sub> (J in Hz in parentheses).

![](_page_28_Figure_0.jpeg)

Fig. S15. Ampliation <sup>1</sup>H NMR spectra for compound 4, peak 37 (7-methoxykaepmferol) in CDCl<sub>3</sub> (J in Hz in parentheses).

![](_page_29_Figure_0.jpeg)

## Fig. S16.<sup>13</sup>C NMR (100.25 Mhz) spectra for compound 4, peak 37 (7- methoxykaepmferol) in CDCl<sub>3</sub> (J in Hz in parentheses).

![](_page_30_Figure_0.jpeg)

Fig. S17.<sup>1</sup>H NMR (300 Mhz) spectra for compound 5, peak 52 (4,5-dihydroxy-3-geranyl-benzoic acid) in CDCl<sub>3</sub> (J in Hz in parentheses).

![](_page_31_Figure_0.jpeg)

Fig. S18. <sup>13</sup>C NMR data (100.25 MHz) for compound 5, peak 52. (4,5-dihydroxy-3-geranyl-benzoic acid)

![](_page_32_Figure_0.jpeg)

Fig. S19. DEPT 135 <sup>13</sup>C NMR data (100.25 MHz) for compound 5, peak 52. (4,5-dihydroxy-3-geranyl-benzoic acid)

Fig. S20. COSY <sup>1</sup>HNMR data (300 MHz) for compound 5, peak 52 (4,5-dihydroxy-3-geranyl-benzoic acid)

![](_page_33_Figure_1.jpeg)

![](_page_34_Figure_0.jpeg)

Fig. S21. HSQC <sup>13</sup>C NMR data (100.25 MHz) for compound 5, peak 52. (4,5-dihydroxy-3-geranyl-benzoic acid)

![](_page_35_Figure_0.jpeg)

Fig. S22. HMBC <sup>13</sup>C NMR data (100.25 MHz) for compound 5, peak 52. (4,5-dihydroxy-3-geranyl-benzoic acid)

![](_page_36_Figure_0.jpeg)

![](_page_36_Figure_1.jpeg)

### Methods

#### 1. Phenolic content (TPC) estimation.

The TPC method was based on the Folin–Ciocalteu method. A total of 20  $\mu$ L of the diluted extract (500  $\mu$ g/mL) were mixed with 100  $\mu$ L of 10% (vol/vol) of Folin–Ciocalteu reagent and shaken. After 5 mins, 75  $\mu$ L of NaCO<sub>3</sub> (700 mM) was added, and absorbance measured at 765 nm using a microplate reader after 1 hour at room temperature. Gallic acid dilutions (0-1000  $\mu$ g/mL) were used as standards for calibration. Data from these multiple experiments were presented as milligram of gallic acid equivalent per gram of dry extract.

### 2. Total flavonoid content (TFC) estimation.

Briefly, a mixture of 50  $\mu$ L extracts, 25  $\mu$ L of aluminum chloride (10%), 80  $\mu$ L of methanol, and 25  $\mu$ L of 1 M potassium acetate were placed in a micro-plate, and absorbance read at 510 nm after incubation for 30 min. Analyses were carried out in quadruplicate and the results were expressed as mg quercetin equivalent per gram of dry extract.

### 3. DPPH Radical Scavenging Activity Assay

Briefly, a 0.2 mM solution of 1,1-diphenyl-2-picrylhydrazyl (DPPH) in methanol was prepared, and 70  $\mu$ L of this solution was added to 20  $\mu$ L of extract (0-1000  $\mu$ g/mL). Trolox in concentrations of 0-1000  $\mu$ g/mL was used as a standard reference antioxidant. Discoloration of the reaction mixture was measured at 517 nm after incubation for 30 min. The results were expressed as IC<sub>50</sub> (concentration of extract or standard in  $\mu$ g/mL required to inhibit 50% of DPPH radical present in solution). Analyses were carried out in quadruplicate.

#### 4. Determination of ABTS radical-scavenging activity

Briefly, a mixture of 2.5 mM K<sub>2</sub>S<sub>2</sub>O<sub>8</sub>, methanol and ABTS in phosphate buffer saline at pH 7.4 was corrected for absorbance at 734 nm, and kept in the dark at 22°C. A mixture of 180  $\mu$ L of ABTS in PBS and 20  $\mu$ L of PBS was used as the blank solution. The radical scavenging properties were measured using Trolox as a standard, calculated as concentration required to scavenge 50% of ABTS radicals, and expressed as IC<sub>50</sub> ( $\mu$ g/mL). Experiments were performed in multiples of two

#### 5. Ferric reducing antioxidant power (FRAP) assay.

The FRAP reagent composed of 300 mM buffer acetate at pH 3.6, 2,4,6-tris-(2-pyridyl)-s-triazine 10 mM (TPTZ) in hydrochloric acid 40 mM and FeCl<sub>3</sub>.6H<sub>2</sub>O aqueous solution 20 mM in the ratio of 10:1:1 (v/v). 70  $\mu$ L FRAP solution was mixed with 10  $\mu$ L extract solution at 500  $\mu$ g/mL, absorbance was read at 593 nm, and compared with 0 - 500  $\mu$ g/m trolox solution (standard). Results were presented as mg of trolox/g of dry extract. Experiments were performed in multiples of two.