Supplementary Material

Characteristic Metabolic Changes of the Crust from Dry-aged Beef Using 2D NMR

spectroscopy

Hyun Cheol Kim¹, Ki Ho Baek¹, Yoon-Joo Ko², Hyun Jung Lee¹, Dong-Gyun Yim^{1,*} and Cheorun Jo^{1,3,*}

- ¹ Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea; eoenhc@naver.com (H.C.K.); kihoback@naver.com (K.H.B.); leehj0113@snu.ac.kr (H.J.L.)
- ² National Center for Inter-University Research Facilities, Seoul National University, Seoul 08826, Korea; yjko@snu.ac.kr
- ³ Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
- * Correspondence: tousa0994@naver.com (D.-G.Y.); cheorun@snu.ac.kr (C.J.); Tel.: +82-2-880-4820 (D.-G.Y.); Tel.: +82-2-880-4804 (C.J.)

Figure S1. Partial least square-discriminant analysis (PLS-DA) cross validation from quantified metabolites of beef aged by different method and crust. Validation was evaluated (a) overall groups, (b) dry- and wet-aged beef, (c) crust and dry-aged beef, and (d) crust and wet-aged beef.

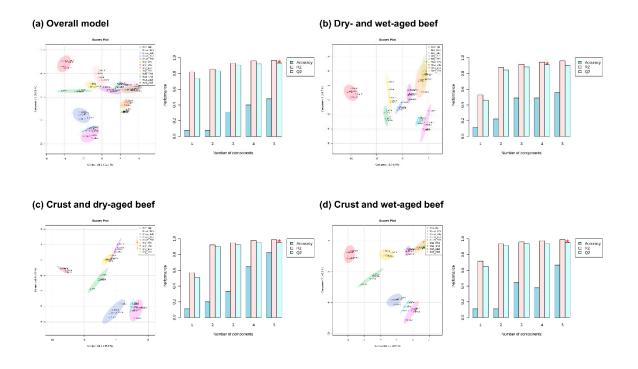


Figure S2. Representative ¹H-¹³C hetero nuclear single quantum coherence (HSQC) NMR spectrum from 28 day-aged crust of dry aging extracts acquired using a 850 MHz cryo-NMR spectrometer and metabolites list of pattern integration for 2D qNMR analysis.

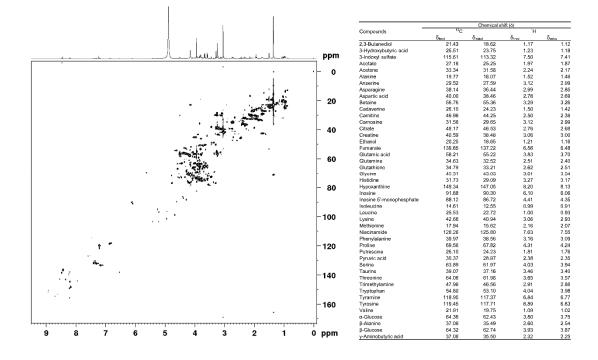
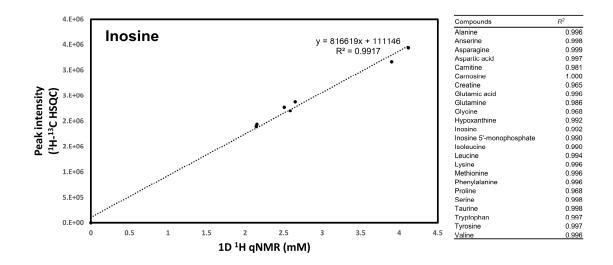



Figure S3. Standard curves of quantification from ¹H-¹³C hetero nuclear single quantum coherence (HSQC) based on the 1D ¹H quantitative NMR using a 850 MHz cryo-NMR spectrometer.

