

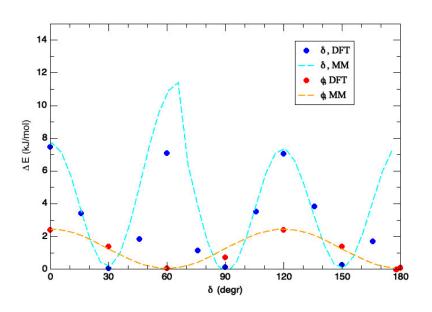
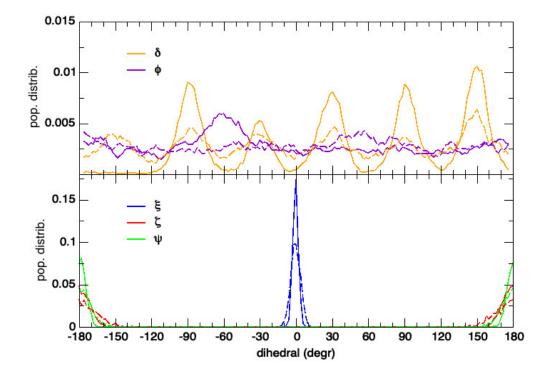
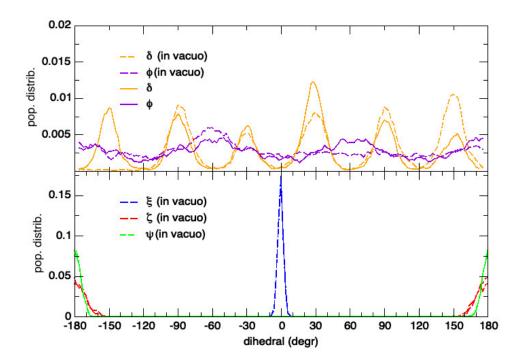


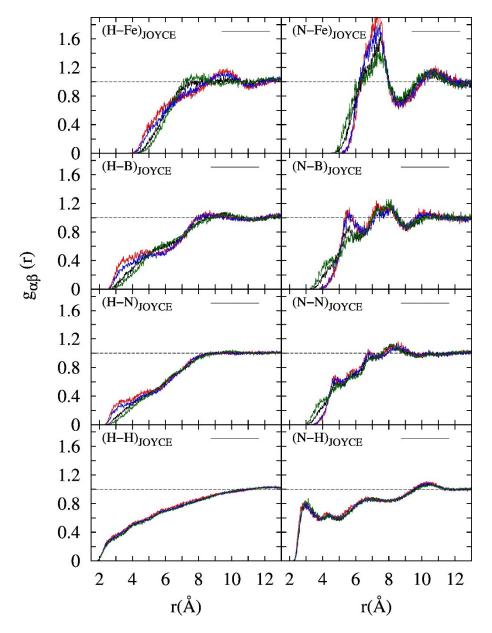
## **Supporting Information:**

## Iron's Wake: The Performance of Quantum Mechanical-Derived Versus General-Purpose Force Fields Tested on a Luminescent Iron Complex

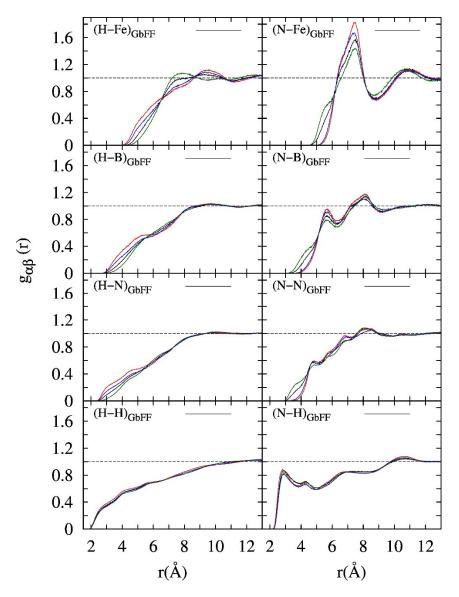
Valentin Diez-Cabanes <sup>1</sup>,\* Giacomo Prampolini <sup>2</sup>,\* Antonio Francés-Monerris <sup>1,3</sup>, Antonio Monari <sup>1,\*</sup> and Mariachiara Pastore <sup>1,\*</sup>

- <sup>1</sup> Université de Lorraine & CNRS, LPCT UMR 7019, F-54000 Nancy, France; antonio.frances@univ-lorraine.fr (A.F-M.)
- <sup>2</sup> Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy;
- <sup>3</sup> Departament de Química Física, Universitat de València, 46100, Burjassot, Spain
- \* Correspondence: valentin.diez@hotmail.com (V.D-C), antonio.monari@univ-lorraine.fr(A. M.), mariachiara.pastore@univ-lorraine.fr (M.P.); giacomo.prampolini@pi.iccom.cnr.it (G. P.)



Figure S1. Comparison between QM (solid symbols) and MM (dashed lines) relaxed energy scans for the flexible  $\delta$  (blue) and  $\varphi$  (red) dihedrals.

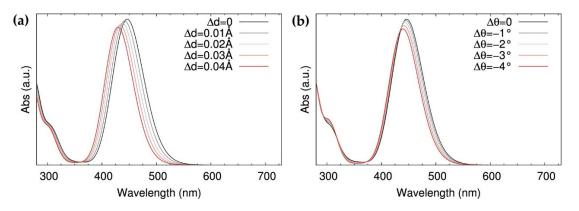



**Figure S2.** Distribution of flexible (top) and stiff (bottom) dihedral, defined in Figure 1, during an NVT-MD run performed on the isolated Fe complex at 298 K (solid lines) or at 1000 K (dashed lines).

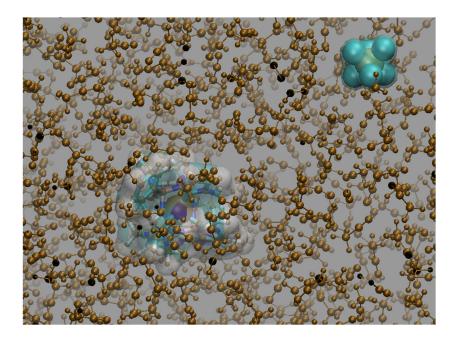


**Figure S3.** Distribution of flexible (top) and stiff (bottom) dihedral, defined in Figure 1, during the 10 ns NPT-MD production run performed on the solvated Fe complex at 298 K and 1 atm (solid lines) or in vacuum at the same temperature (dashed lines); by employing the QMD-FF parameters.

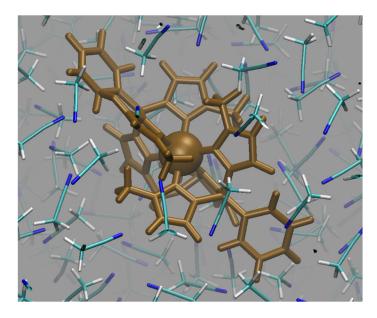



**Figure S4.** Atomic pair correlation functions  $g_{\alpha\beta}$ , computed with RESP (black), NPA (red), CM5 (blue) and ChelpG (green) atomic charges along the JOYCE MD simulation runs, between the solute ( $\beta$ ) atoms (Fe, B, N and H from -CH<sub>3</sub> group) of the complex as indicated in the ( $\alpha$ - $\beta$ ) legend, and either the N (left part) or H (right part graphs) atoms of the acetonitrile solvent ( $\alpha$ ).

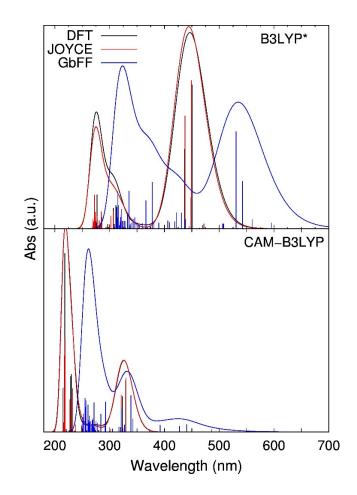



**Figure S5.** Atomic pair correlation functions  $g_{\alpha\beta}$ , computed with RESP (black), NPA (red), CM5 (blue) and ChelpG (green) atomic charges along the GbFF MD simulation runs, between the solute ( $\beta$ ) atoms (Fe, B, N and H from -CH<sub>3</sub> group) of the complex as indicated in the ( $\alpha$ - $\beta$ ) legend, and either the N (left part) or H (right part graphs) atoms of the acetonitrile solvent ( $\alpha$ ).

**Table S1.** Statistic data taken from the normal distribution of the (<sup>2</sup>LMCT) band centers ( $\lambda_{max}$ ). This distribution has been analyzed by considering all the TD-DFT individual spectra for each MD run snapshot studied in this work: average ( $\mu$ ) and standard deviations ( $\sigma$ ) values in nm.


|          | JOYCE |      | GbFF  |      |
|----------|-------|------|-------|------|
| MM layer | μ     | σ    | μ     | σ    |
| ACN      | 456.3 | 18.6 | 539.1 | 32.1 |
| ACN+ion  | 456.5 | 16.9 | 527.6 | 37.7 |




**Figure S6.** TD-DFT simulated spectra for the DFT GS complex geometries obtained upon the scan performed along the coordinates dictating the octahedral coordination: **(a)** the elongation of the Fe-C bonds (distance *d*); and **(b)** the bending of the C-Fe-C angles ( $\theta$  angle) formed by the equivalent ligands. The geometry scan has been taken for each increment of 0.01Å in the Fe-C bond distances; and a decrease of 1° in the case of the C-Fe-C angles. Note that the change from GbFF based (red) to DFT and XRD (black color) equilibrium Fe-C distances and C-Fe-C angles, is translated in a red-shift in the spectra which already increases the absorption energies underestimation observed in the GbFF minimized structure spectrum (see Figure 7).



**Figure S7.** Snapshot of a large portion of the final equilibrated configuration of the solvated Fe complex (in the bottom, licorice representation) and its PF-6 counter-ion (in top right corner with vdW spheres) in acetonitrile (balls&sticks) at 1 atm and 298 K.



**Figure S8.** Zoom on the neighboring solvent molecules (licorice, Carbon, Nitrogen and Hydrogen are in cyan, white, and blue, respectively) around the Fe complex in its final equilibrated configuration.



**Figure S9.** TD-DFT simulated spectra for the zero temperature complex structures obtained upon DFT (black), MM based JOYCE (red) and GbFF (blue) energy relaxations, as calculated by employing B3LYP\* with 15% of Hartree-Fock exchange-correlation fraction (top panel) and CAM-B3LYP (bottom panel) functionals.