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Abstract: Surface charge accumulation on epoxy insulators is one of the most serious problems
threatening the operation safety of the direct current gas-insulated transmission line (GIL), and can be
efficiently inhibited by the surface modification technology. This paper investigated the mechanisms
of fluorination modulated surface charge behaviors of epoxy resin through quantum chemical
calculation (QCC) analysis of the molecular structure. The results show that after fluorination,
the surface charge dissipation process of the epoxy sample is accelerated by the introduced shallow
trap sites, which is further clarified by the carrier mobility model. The electron distribution probability
of the highest occupied molecular orbitals (HOMO) under positive charging and the lowest unoccupied
molecular orbitals (LUMO) under negative charging shows distinctive patterns. It is illustrated
that electrons are likely to aggregate locally around benzenes for the positively charged molecular
structure, while electrons tend to distribute all along the epoxy chain under negatively charging.
The calculated results verify that fluorination can modulate surface charge behaviors of epoxy resin
through redesigning its molecular structure, trap distribution and charging patterns.

Keywords: epoxy resin; surface charge; molecular structure; trap distribution; quantum
chemical calculation

1. Introduction

With the development of high-voltage direct current (HVDC) transmission, the gas-insulated
transmission line (GIL) has been put into application all around the world [1–3]. Under the unipolar
electric field, charges tend to deposit on the insulator surface during the long-term operation of the GIL,
thus making the gas/solid interface the weak part of the whole system [4–7]. The local electric field
concentration will be enhanced and may cause partial discharge, moreover, even results in flashover
failure along the insulator surface [8,9]. As one of the main concerning topics, surface characteristics
of the insulators are in urgent need to be improved, in which the structures of the epoxy resin play
an extremely important role [10–13].

There exists a close relationship between the molecular structure and the macro properties of the
epoxy resin. As a mature process, surface fluorination technology has been proved to be efficient for the
modification of polymer materials in various researches, showing priorities of the simple operation and
the low cost [14–16]. Studies have shown that in the fluorination process, F atoms can be introduced
into the material and polymer chain breaking and crosslinking reactions may occur. The physical and
chemical characteristics of the formed fluorinated surface layer depend on the fluorination conditions
and the polymer material itself [17–19]. In addition, the regulation of the charge transport process can
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be attributed to the change of the surface state. Usually, charge migration has a great relation with the
energy level distribution determined by molecular structure and its interaction [20,21].

Over the past few years, researchers have gradually focused on the molecular simulation and
the quantum chemical calculation (QCC) of small size molecules to reveal the charge transport
characteristics which greatly facilitates the researches of developing novel DC insulation materials
and analyzing various space and surface charge behaviors [22–25]. The studies have attracted much
concern on the physiochemical characteristics of the polymer by calculation and analysis from the
molecule level [26–28]. The common theory is quantum theory, and quantum chemical calculation is
used to show the structure of the molecules and the interaction between the molecules, helping to
predict the electron behavior and figure out the material properties and their internal relationship with
the structure. With the development of the framework and numerical methods, the density functional
theory (DFT) has become a powerful research tool, for exploring the structural and the transport
properties of the polymer material considering the effects of different electric fields [29–33]. However,
the physical mechanism of fluorination modulated surface charge behaviors hasn’t been revealed from
the point of molecular orbital view.

In this paper, surface charge behaviors of original and fluorinated epoxy samples were investigated
through the surface potential decay (SPD) experiment. The trap distribution was calculated and
compared. Then the quantum calculation model was established, based on which the trap distribution
and molecular orbitals were obtained for positively and negatively charged epoxy, respectively.
The relationship between the carrier migration and trap sites was also analyzed. The mechanism was
discussed, providing a reference for the in-depth understanding of the physiochemical process during
the fluorination treatment.

2. Results

2.1. Surface Charge Behaviors

Figure 1 shows the surface charge decay process and trap distribution of epoxy before and after
fluorination. It can be seen in Figure 1a that the surface charge dissipation rate is quite slow for the
original epoxy samples, whether the polarity of the pre-corona charging voltage is positive or negative.
After being treated by the surface fluorination for 30 min, the initial density of the surface charge is
decreased significantly. In addition, the density value can be reduced to a half in approximately 200 s,
with a much faster rate than that of the original one. Additionally, compared with the positive surface
charges, the negative charges possess a higher dissipation speed, which applies to all the samples.Molecules 2020, 25, x 3 of 9 
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Figure 1. Surface potential decay process and trap distribution of epoxy resin before and after 
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According to Figure 1b, original samples mainly contain deep traps under positive voltage. As for
the trap distribution under negative voltage, there exist a few shallow traps and the density of the
deep traps is decreased. After the fluorination, shallow traps of the sample are generated at about
0.73–0.78 eV, meanwhile the deep trap level decreases to 0.82–0.85 eV. There will inevitably be traps in
the epoxy resin matrix due to the unsaturated bonds and branched chain structures, most of which
are deep ones. When treated by the F2, the substitution and addition reactions also inevitably cause
structural changes. These structural changes or disturbances caused by chain scission and substitution
and addition reactions are equivalent to physical traps, which are known to possess a much shallower
trap depth than that of chemical traps. Furthermore, the density of both the deep and shallow traps
under negative voltage is lower than that under positive voltage, which will be discussed later.

2.2. Trap Site Modulation

Figure 2 shows the energy level and trap sites distribution of epoxy resin before and after
fluorination treatment. For original epoxy, there are some apparent deep electron and hole traps,
and correspondingly, surface charge dissipation is much slow. After fluorination, some of the deep
electron trap sites disappear and some deep hole trap sites get much shallower. It should be noted
that although the detailed trap sites should be obtained by locating the energy level with related
molecular structure, such apparent trap sites can also reflect the changes before and after fluorination.
Additionally, the increase of the band gap indicates the effects of the treatment, elevating the energy
required by the electrons and raising the barrier of electron migration between different lattices.
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3. Discussion

3.1. Carrier Hopping Process

The carrier migration velocity and hopping probability are calculated using Formulas (1) and (2).

v = µE = µ0E θhop = v0 θhop (1)

θhop =
τc

τc + τt
= exp

(
−
ϕt

k T

)
(2)
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where v is migration velocity, E is electric field strength, µ is carrier mobility, θnop is ratio of free carrier
density to total carrier density are calculated, τc is hopping time, τt is trapping time, T is absolute
temperature, ϕt is barrier height, k is Boltzmann constant.

The relationship between the carrier hopping process and trap sites is shown in Figure 3.
The carrier migration is determined by the trap distribution to a certain extent. Among shallow trap
sites, the hopping probability of carriers is higher and migration time is shorter, which is due to
the low barrier height, compared with that of deep trap sites. The analysis above can explain the
intrinsic association among the trap sites, carrier hopping process and surface potential decay process.
After fluorination, the traps become shallower; thus, the free carriers increase and the carriers obtain
faster migration velocity, finally resulting in the dissipation of the surface charges.
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3.2. Polarity Effects

Figure 4 shows the energy level distribution and molecular orbitals of epoxy resin under different
charging conditions. As is shown in Figure 4a, there is a significant change in energy level of positively
or negatively charged epoxy. For the negatively charged condition, newly introduced energy levels,
like 1.43 eV, show the state of trapped electrons. Additionally, there appears a new energy level at about
−7.14 eV due to the effect of positive charges distributed in the epoxy samples. The whole distribution
of the energy level is elevated when negatively charged and decreased when positive charged compared
with the neutral situation. The distribution of energy levels determines the transition and transport
of electrons.

Figure 4b shows the molecular orbitals of LUMO level under negatively charging and HOMO
level under positively charging, which means the epoxy network is charged with different polarities.
The red and blue parts represent different spin directions. For the negatively charging, it can be seen
that electrons are distributed all along the epoxy molecular chains, which are relatively easy to migrate.
However, as for the positively charged situation, electrons are limited in the local trap sites and are
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difficult to move freely. Thus, the macro electrical properties show a significant relationship with the
structure of the molecule. The movement of the electrons are restricted based on the molecular orbitals
of HOMO level under positively charging, correspondingly, the surface charge accumulation will be
more serious under positive DC voltage.
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4. Materials and Methods

4.1. Sample Preparation

First, sheet samples with a thickness of 0.05 cm and side length of 9 cm were obtained by hot
pressing. The samples consist of epoxy matrix of CT 5531 and curing agent of HY 5533 from ARADUR®

(Shanghai, China). The fluorination process was conducted in a sealed reactor and the samples were
treated with the F2/N2 gas mixture containing 20 vol% F2 under the temperature of 25 ◦C for 30 min.
Based on our previous research, the fluorination time was chosen as 30 min to make a comparison
with the original sample [2,18]. The surface charge decay process was tested with the temperature
as a constant of 25 ◦C and the humidity kept as 28%, avoiding the error caused by the experimental
environment and increasing the testing accuracy. The experimental setup and trap distribution
calculation method were introduced in our previous paper [18].

4.2. QCC Calculation Model

The calculated structure is simplified from methyl-tetrahydrophthalic-anhydride cured bisphenol
A epoxy resin. After fluorination, ortho hydrogen atoms are replaced by fluorine atoms and the double
bond has an addition reaction, as shown in Figure 5. In this work, the kinetic energy distribution
and molecular orbitals were calculated using DFT with the B3LYP hamiltonian and the 6-31G basis
function in Gaussian 09 software (Wallingford, CT, USA). The calculation method was described in our
previous paper [22,34].
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5. Conclusions

In this paper, based on the experimental tests and the model analysis, the charging modulation
mechanisms of epoxy resin were analyzed by quantum chemical calculation from the perspective of
molecular orbital, and the relationship between the molecule structure and the electron migration is
established. The conclusions can be summarized as follows.

After the corona charging treatment, the initial charge density of the fluorinated epoxy sample was
reduced, and the rate of the surface charge dissipation was accelerated. Correspondingly, the density
and the level of traps become lower compared with those of the original sample, affecting the carrier
hopping process. The charges migration takes less time and holds a higher carrier mobility. Additionally,
the positively or negatively charged epoxy possesses different molecular orbitals. Electrons tend to be
distributed along the epoxy chain under negatively charging, which shows a greater probability of
movement and is consistent with the law of surface charge dissipation.
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