3-tert-butyldimethylsiloxy-dehydroepiandrosterone

Dehydroepiandrosterone ($2.88 \mathrm{~g}, 10.0 \mathrm{mmol}$) was placed in a 250 mL round bottomed flask and dissolved in dry DMF (50 mL). Imidazole ($0.817 \mathrm{~g}, 12.0 \mathrm{mmol}$) and $\mathrm{TBSCl}(1.583 \mathrm{~g}, 10.50 \mathrm{mmol})$ were added. The reaction mixture was stirred at room temperature under argon atmosphere for 5 h . Saturated aqeous $\mathrm{NaCl}(30 \mathrm{~mL})$ was added, and the mixture was extracted with ethyl acetate (4 x 20 mL). The combined organic extract was washed with brine (20 mL), aqueous $\mathrm{AcOH}(10 \%, 20$ $\mathrm{mL})$ and aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ before it was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo. The product was purified by flash chromatography (silica gel, 30% ethyl acetate in hexane) to give the pure product as white solid in 96% yield $3.86 \mathrm{~g} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.48-5.24(\mathrm{~m}$, $1 \mathrm{H}), 3.67-3.33(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.14-$ $2.02(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.39(\mathrm{~m}, 7 \mathrm{H}), 1.33-1.21(\mathrm{~m}, 2 \mathrm{H})$, $1.12-0.94(\mathrm{~m}, 5 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.81$, $120.38,72.44,51.83,50.36,47.55,42.80,37.33,36.74,35.84,32.03,31.55,31.49,30.84,25.92$, $21.89,20.37,19.45,18.24,13.55,-4.58$.
(8R,9S, 10R,13S,14S)-3-((tert-butyldimethylsilyl)oxy)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15-dodecahydro-1H-cyclopenta[a]phenanthren-17-yl trifluoromethanesulfonate

TBS protected dehydroepiandrosterone (3.624 $\mathrm{g}, \quad 9.0 \mathrm{mmol}$) and N-Phenylbis(trifluoromethanesulfonimide) ($3.537 \mathrm{~g}, 9.90 \mathrm{mmol}$) were dissolved in dry THF (90 mL) and cooled to $-78^{\circ} \mathrm{C}$. KHMDS, 0.6 M in toluene ($30.0 \mathrm{~mL}, 18.0 \mathrm{mmol}$), was added dropwise at $-78^{\circ} \mathrm{C}$ and the resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 4 h . Then the reaction was brought to room temperature and quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30 \mathrm{~mL})$; the combined organic extracts were washed with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The residue was purified by flash chromatography (silica gel, 10% ethyl acetate in hexane) to give the pure product as white solid in 89% yield 4.31 g. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.64-5.53(\mathrm{~m}, 1 \mathrm{H}), 5.41-5.22(\mathrm{~m}, 1 \mathrm{H}), 3.57-3.38(\mathrm{~m}, 1 \mathrm{H})$, $2.37-2.13(\mathrm{~m}, 3 \mathrm{H}), 2.08-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.37(\mathrm{~m}, 10 \mathrm{H}), 1.06-1.01(\mathrm{~m}, 5 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H})$,
$0.89(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.44,142.19,120.44,118.46(\mathrm{q}, J=$ 320.5 Hz), 114.65, 72.60, 54.53, 50.74, 44.85, 42.98, 37.39, 36.97, 32.90, 32.17, 30.76, 30.16, 28.78, 26.08, 20.33, 19.46, 18.39, 15.25, -4.42.

General procedure for the Suzuki cross-coupling and synthesis of (5a-e)

The TBS protected steroid triflate 4 ($0.25-0.4 \mathrm{mmol}, 1$ equiv.), cesium carbonate (2 equiv.) and the boronic acid (1.05 equiv.) were placed in a flame dried 50 mL round-bottomed flask under argon atmosphere and dissolved in a $1: 1$ mixture of water and THF $(10 \mathrm{~mL}) . \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%)$ was added and the reaction mixture was stirred at room temperature ($18-22 \mathrm{~h}$.). Upon completion the reaction mixture was poured into brine $(15 \mathrm{~mL})$ and extracted with ethyl acetate $(4 \times 5 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent evaporated in vacuo. The residue was purified by flash chromatography (silica gel, 30% ethyl acetate in hexane) to give the pure products.
tert-butyl(((8R,9S,10R,13S,14S)-10,13-dimethyl-17-phenyl-2,3,4,7,8,9,10,11,12,13,14,15-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)dimethylsilane

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 1 \mathrm{H}), 5.95$ $-5.88(\mathrm{~m}, 1 \mathrm{H}), 5.40-5.34(\mathrm{~m}, 1 \mathrm{H}), 3.56-3.45(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.17(\mathrm{~m}, 3 \mathrm{H}), 2.14-1.98(\mathrm{~m}, 3 \mathrm{H})$, $1.86-1.42(\mathrm{~m}, 9 \mathrm{H}), 1.13-1.00(\mathrm{~m}, 8 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 154.84,141.92,137.36,128.06,127.18,126.69,126.66,120.93,72.60,57.75,50.55,47.24,42.89$, $37.34,36.81,35.45,32.10,31.63,30.53,25.95,20.94,19.38,18.26,16.63,-4.56$. Yield $78 \%, 180$ mg.

5-((8S,9S, 13S, 14S)-3-((tert-butyldimethylsilyl)oxy)-2-ethyl-13-methyl-7,8,9,11,12,13,14,15-octahydro-6H-cyclopenta[a]phenanthren-17-yl)isoquinoline

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.62(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.46(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.02-5.99(\mathrm{~m}, 1 \mathrm{H}), 5.38-5.32(\mathrm{~m}, 1 \mathrm{H}), 3.57-3.41(\mathrm{~m}, 1 \mathrm{H}), 2.34$ $-2.16(\mathrm{~m}, 3 \mathrm{H}), 2.12-1.98(\mathrm{~m}, 3 \mathrm{H}), 1.85-1.42(\mathrm{~m}, 9 \mathrm{H}), 1.12-1.00(\mathrm{~m}, 8 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.06$ $(\mathrm{s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.81,147.86,147.75,142.10,134.07,129.57,123.23$, 120.94, 72.71, 57.78, 50.63, 47.53, 43.01, 37.47, 36.95, 35.46, 32.23, 31.99, 31.72, 30.64, 26.10, $21.03,19.53,18.41,16.73,-4.41$. Yield $83 \%, 96 \mathrm{mg}$.

3-((3S,8R,9S, 10R, 13S, 14S)-3-((tert-butyldimethylsilyl)oxy)-10,13-dimethyl-
2,3,4,7,8,9,10,11,12,13,14,15-dodecahydro-1H-cyclopenta[a]phenanthren-17-yl)-5chloropyridine

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.26(\mathrm{dd}, J=5.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{dd}, J=1.4,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.17$ $(\mathrm{dd}, J=5.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{dd}, J=3.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.59-3.42(\mathrm{~m}$, $1 \mathrm{H}), 2.34-2.14(\mathrm{~m}, 3 \mathrm{H}), 2.13-1.98(\mathrm{~m}, 3 \mathrm{H}), 1.86-1.37(\mathrm{~m}, 9 \mathrm{H}), 1.12-1.00(\mathrm{~m}, 8 \mathrm{H}), 0.89(\mathrm{~s}$, $9 \mathrm{H}), 0.06$ ($\mathrm{s}, 6 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.83,151.66,149.47,147.90,142.07,133.22$, $121.46,120.78,120.04,72.65,57.71,50.51,47.36,42.98,37.42,36.89,35.22,32.18,32.04,31.62$, 30.50, 26.07, 20.94, 19.49, 18.38, 16.74, -4.43. Yield 67%, 83 mg .

4-((8R,9S,10R, 13S, 14S)-3-((tert-butyldimethylsilyl)oxy)-10,13-dimethyl-
2,3,4,7,8,9,10,11,12,13,14,15-dodecahydro-1H-cyclopenta[a]phenanthren-17-yl)pyridine

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.43(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.12-6.05(\mathrm{~m}, 1 \mathrm{H})$, $5.33-5.24(\mathrm{~m}, 1 \mathrm{H}), 3.51-3.38(\mathrm{~m}, 1 \mathrm{H}), 2.24-1.91(\mathrm{~m}, 6 \mathrm{H}), 1.79-1.32(\mathrm{~m}, 9 \mathrm{H}), 1.06-0.92(\mathrm{~m}$, $8 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.00(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.51,149.66,144.48,141.87$, $131.35,121.10,120.71,72.50,57.58,50.42,47.13,42.85,37.28,36.75,35.17,32.06,31.81,31.52$, 30.38, 25.93, 20.84, 19.35, 18.21, 16.59, -4.56. Yield $86 \%, 100 \mathrm{mg}$.

4-((3S,8R,9S, 10R, 13S, 14S)-3-((tert-butyldimethylsilyl)oxy)-10,13-dimethyl-
2,3,4,7,8,9,10,11,12,13,14,15-dodecahydro-1H-cyclopenta[a]phenanthren-17-yl)-2-
chloropyridine

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.43(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.35(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.98(\mathrm{dd}, J=3.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{dd}, J=4.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.54-3.31(\mathrm{~m}, 1 \mathrm{H}), 2.30-$ $2.08(\mathrm{~m}, 3 \mathrm{H}), 2.07-1.91(\mathrm{~m}, 3 \mathrm{H}), 1.80-1.31(\mathrm{~m}, 9 \mathrm{H}), 1.03-0.93(\mathrm{~m}, 8 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}),-0.00(\mathrm{~s}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.47,146.54,145.62,141.91,134.15,133.25,131.56$, $130.82,120.70,72.52,57.58,50.40,47.40,42.84,37.29,36.76,35.21,32.05,31.88,31.51,30.43$, $25.94,20.83,19.36,18.24,16.58,-4.56$. Yield $53 \%, 105 \mathrm{mg}$.

4-((8R,9S,10R, 13S, 14S)-3-((tert-butyldimethylsilyl)oxy)-10,13-dimethyl-
2,3,4,7,8,9,10,11,12,13,14,15-dodecahydro-1H-cyclopenta[a]phenanthren-17-yl)-1H-pyrazole

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63(\mathrm{~s}, 2 \mathrm{H}), 5.90-5.70(\mathrm{~m}, 1 \mathrm{H}), 5.46-5.24(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.31$ $(\mathrm{m}, 1 \mathrm{H}), 2.37-2.15(\mathrm{~m}, 3 \mathrm{H}), 2.10-1.92(\mathrm{~m}, 3 \mathrm{H}), 1.87-1.45(\mathrm{~m}, 9 \mathrm{H}), 1.06(\mathrm{~s}, 5 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H})$, $0.89(\mathrm{~s}, 10 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.04,124.17,121.09,100.16,77.36$, $72.75,57.25,50.83,47.20,43.03,37.50,36.97,35.67,32.26,31.75,31.66,30.60,29.86,26.10$, $21.13,19.53,18.42,16.34,-4.41$. Yield $81 \%, 92 \mathrm{mg}$.

4-((8R,9S,10R, 13S, 14S)-3-((tert-butyldimethylsilyl)oxy)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15-dodecahydro-1H-cyclopenta[a]phenanthren-17-yl)isoquinoline

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.16(\mathrm{~s}, 1 \mathrm{H}), 8.34(\mathrm{~s}, 1 \mathrm{H}), 8.06-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.72-7.54(\mathrm{~m}, 2 \mathrm{H})$, $5.91-5.79(\mathrm{~m}, 1 \mathrm{H}), 5.43-5.33(\mathrm{~m}, 1 \mathrm{H}), 3.59-3.43(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.08(\mathrm{~m}$, $4 \mathrm{H}), 1.89-1.42(\mathrm{~m}, 10 \mathrm{H}), 1.16-0.96(\mathrm{~m}, 8 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.29,149.72,142.15,141.73,135.76,131.98,130.19,129.43,128.60$, $127.82,127.10,125.69,120.96,72.72,57.67,50.86,49.76,43.03,37.48,37.04,35.28,32.62,32.22$, $31.91,31.09,26.10,21.00,19.54,18.40,16.41,-4.40$. Yield 87%, 112 mg .

5-((3S,8R,9S,10R, 13S, 14S)-3-((tert-butyldimethylsilyl)oxy)-10,13-dimethyl-
2,3,4,7,8,9,10,11,12,13,14,15-dodecahydro-1H-cyclopenta[a]phenanthren-17-yl)isoquinoline

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.23(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.48(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.92-7.83(\mathrm{~m}$, $2 \mathrm{H}), 7.61-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.49(\mathrm{dd}, J=7.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{dd}, J=3.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.50-5.24$ (m, 1H), $3.65-3.34(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{ddd}, J=15.4,6.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.05(\mathrm{~m}, 4 \mathrm{H}), 1.87-$ $1.67(\mathrm{~m}, 5 \mathrm{H}), 1.64-1.42(\mathrm{~m}, 5 \mathrm{H}), 1.05(\mathrm{~s}, 5 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.65,151.29,142.84,142.12,135.61,135.24,131.03,129.70$, $129.13,126.67,126.50,120.98,119.42,72.71,57.72,50.86,49.68,43.02,37.48,37.02,35.31$, $32.52,32.22,31.90,31.05,26.10,20.99,19.53,18.40,16.49,-4.40$. Yield 79\%, 101 mg .

6-((3S,8R,9S,10R,13S,14S)-3-((tert-butyldimethylsilyl)oxy)-10,13-dimethyl-
2,3,4,7,8,9,10,11,12,13,14,15-dodecahydro-1H-cyclopenta[a]phenanthren-17-yl)isoquinoline

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.19(\mathrm{~s}, 1 \mathrm{H}), 8.49(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.77$ (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{dd}, J=8.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.28-5.99(\mathrm{~m}, 1 \mathrm{H})$, $5.54-5.15(\mathrm{~m}, 1 \mathrm{H}), 3.62-3.41(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.00(\mathrm{~m}, 6 \mathrm{H}), 1.89-1.46(\mathrm{~m}, 9 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H})$, $1.08(\mathrm{~s}, 5 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.13,151.83,142.95$, 142.93, 141.95, 139.43, 136.00, 130.43, 127.54, 127.18, 122.90, 120.80, 120.64, 72.56, 57.78, $50.49,47.47$, 42.87, 37.33, 36.80, 35.49, 32.08, 31.90, 31.58, 30.50, 25.94, 20.95, 19.39, 18.25, $16.72,-4.57$. Yield $60 \%, 77 \mathrm{mg}$.

7-((3S,8R,9S,10R,13S, 14S)-3-((tert-butyldimethylsilyl)oxy)-10,13-dimethyl-
2,3,4,7,8,9,10,11,12,13,14,15-dodecahydro-1H-cyclopenta[a]phenanthren-17-yl)isoquinoline

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.21(\mathrm{~s}, 1 \mathrm{H}), 8.47(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.78-7.70(\mathrm{~m}$, $2 \mathrm{H}), 7.66-7.55(\mathrm{~m}, 1 \mathrm{H}), 6.21-5.95(\mathrm{~m}, 1 \mathrm{H}), 5.55-5.20(\mathrm{~m}, 1 \mathrm{H}), 3.78-3.26(\mathrm{~m}, 1 \mathrm{H}), 2.39-$ $2.01(\mathrm{~m}, 6 \mathrm{H}), 1.87-1.49(\mathrm{~m}, 9 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 1.12-1.02(\mathrm{~m}, 5 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.98,152.48,142.50,141.96,136.35,134.75,130.28,129.29,128.78$, $126.18,124.00,120.82,120.18,72.57,57.78,50.50,47.44,42.87,37.33,36.80,35.53,32.08,31.81$, $31.59,30.51,25.94,20.96,19.39,18.26,16.70,-4.57$. Yield $63 \%, 81 \mathrm{mg}$.

4-((3S,10R,13S)-3-((tert-butyldimethylsilyl)oxy)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15-dodecahydro-1H-cyclopenta[a]phenanthren-17-yl)-1H-indole

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{dd}, J$ $=7.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.70-6.56(\mathrm{~m}, 1 \mathrm{H}), 6.13-5.92(\mathrm{~m}, 1 \mathrm{H}), 5.46-5.32(\mathrm{~m}, 1 \mathrm{H}), 3.59-3.41(\mathrm{~m}$, $1 \mathrm{H}), 2.42-2.06(\mathrm{~m}, 5 \mathrm{H}), 2.01-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.50(\mathrm{~m}, 9 \mathrm{H}), 1.14-1.03(\mathrm{~m}, 8 \mathrm{H}), 0.90(\mathrm{~s}$, $9 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.52,141.95,136.01,130.28,128.53,127.33$, 123.58, 121.46, 121.01, 118.24, 109.57, 103.11, 72.64, 57.55, 50.73, 48.46, 42.90, 37.36, 36.86, $35.52,32.11,32.08,31.74,30.72,25.96,20.98,19.41,18.27,16.83,-4.56$. Yield $85 \%, 107 \mathrm{mg}$.

5-((3S,8R,9S,10R,13S, 14S)-3-((tert-butyldimethylsilyl)oxy)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15-dodecahydro-1H-cyclopenta[a]phenanthren-17-yl)-1H-indole

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.27-$ $7.23(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 1 \mathrm{H}), 6.58-6.48(\mathrm{~m}, 1 \mathrm{H}), 5.90-5.77(\mathrm{~m}, 1 \mathrm{H}), 5.40-5.34(\mathrm{~m}, 1 \mathrm{H})$, $3.57-3.45(\mathrm{~m}, 1 \mathrm{H}), 2.37-1.96(\mathrm{~m}, 6 \mathrm{H}), 1.87-1.45(\mathrm{~m}, 9 \mathrm{H}), 1.14-1.04(\mathrm{~m}, 8 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H})$, 0.08 (s, 6H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.95,142.07,135.09,129.50,127.92,125.48$, $124.45,122.02,121.19,118.73,110.71,103.03,72.81,57.98,50.78,47.53,43.06,37.51,36.99$, $35.85,32.28,31.83,31.74,30.77,26.12,21.18,19.56,18.43,16.84,-4.40$. Yield $88 \%, 110 \mathrm{mg}$.

6-((3S, 8R, 9S, 10R, 13S, 14S)-3-((tert-butyldimethylsilyl)oxy)-10,13-dimethyl-
2,3,4,7,8,9,10,11,12,13,14,15-dodecahydro-1H-cyclopenta[a]phenanthren-17-yl)-1H-indole

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.09(\mathrm{~s}, 1 \mathrm{H}), 7.65-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.10$ $(\mathrm{m}, 2 \mathrm{H}), 6.58-6.47(\mathrm{~m}, 1 \mathrm{H}), 5.99-5.84(\mathrm{~m}, 1 \mathrm{H}), 5.43-5.29(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.41(\mathrm{~m}, 1 \mathrm{H}), 2.44$ $-1.96(\mathrm{~m}, 6 \mathrm{H}), 1.92-1.43(\mathrm{~m}, 9 \mathrm{H}), 1.12-1.02(\mathrm{~m}, 8 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.65,141.91,135.92,131.53,126.77,125.99,124.26,121.02,120.16,119.66$, $108.89,102.55,72.65,57.82,50.61,47.38,42.91,37.36,36.83,35.71,32.12,31.66,31.62,30.60$, $25.97,21.04,19.41,18.28,16.77,-4.54$. Yield $76 \%, 114 \mathrm{mg}$.

A general procedure for the deprotection

The TBS protected steroids $\mathbf{5 a - m}$ ($0.15-0.2 \mathrm{mmol}, 1$ equiv.) were placed in a dry round-bottomed flask under argon atmosphere, and dissolved in dry THF ($3-4 \mathrm{~mL}$). Tert-butylamoniumfluoride (1 M in THF, 1.1 equiv.) was added dropvise. The reaction mixture was stirred at room temperature (16-18 h.). Upon completion the reaction the mixture was poured into saturated aqueous NaHCO_{3} $(10 \mathrm{~mL})$, and extracted with ethyl acetate $(4 \times 5 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent evaporated in vacuo. The residues were purified by chromatography (silica gel, 20-50\% ethyl acetate in hexane) to give the pure products.
(8R,9S,10R,13S,14S)-10,13-dimethyl-17-phenyl-2,3,4,7,8,9,10,11,12,13,14,15-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

Colourless solid ($61 \mathrm{mg}, 87 \%$). Purified by column chromatography on silica gel using 20% ethyl acetate in heptane as eluent. $\mathrm{R}_{\mathrm{f}}=0.43$ (20% ethyl acetate in heptane, CAM-stain). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.15(\mathrm{~m}, 3 \mathrm{H}), 6.00-5.68(\mathrm{~m}, 1 \mathrm{H}), 5.50-5.22(\mathrm{~m}, 1 \mathrm{H})$, $3.64-3.36(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.14(\mathrm{~m}, 3 \mathrm{H}), 2.12-1.95(\mathrm{~m}, 3 \mathrm{H}), 1.88-1.38(\mathrm{~m}, 9 \mathrm{H}), 1.12-0.99(\mathrm{~m}$, $8 \mathrm{H}), 0.89-0.82(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.95,141.27,137.48,128.22,127.32$, $126.83,121.61,71.90,57.84,50.61,47.37,42.49,37.35,36.87,35.57,31.81,31.76,31.73,30.66$, 21.10, 19.49, 16.78.
(3S,8R,9S,10R,13S, 14S)-10,13-dimethyl-17-(pyridin-3-yl)-2,3,4,7,8,9,10,11,12,13,14,15-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

Colourless solid ($62 \mathrm{mg}, 89 \%$). Purified by column chromatography on silica gel using 50% ethyl acetate in heptane as eluent. $\mathrm{R}_{\mathrm{f}}=0.21\left(50 \%\right.$ ethyl acetate in heptane, CAM-stain). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.61(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.45(\mathrm{dd}, J=4.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{dt}, J=7.9,1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 1 \mathrm{H}), 5.99(\mathrm{dd}, J=3.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.52-5.27(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.48(\mathrm{~m}, 1 \mathrm{H})$, $2.38-2.20(\mathrm{~m}, 3 \mathrm{H}), 2.15-2.00(\mathrm{~m}, 3 \mathrm{H}), 1.90-1.41(\mathrm{~m}, 9 \mathrm{H}), 1.15-1.01(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.81,147.95,147.85,141.34,133.90,133.17,129.42,123.18,121.42,71.79$, $57.71,50.53,47.50,42.47,37.34,36.85,35.42,31.96,31.79,31.67,30.61,21.03,19.48,16.72$.
(3S,8R,9S,10R,13S,14S)-17-(5-chloropyridin-3-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

Colourless solid ($56 \mathrm{mg}, 73 \%$). Purified by column chromatography on silica gel using 50% ethyl acetate in heptane as eluent. $\mathrm{R}_{\mathrm{f}}=0.48$ (50% ethyl acetate in heptane, CAM-stain). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.49(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.05$ (dd, $J=3.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.45(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.21(\mathrm{~m}, 3 \mathrm{H}), 2.13$
$-1.99(\mathrm{~m}, 3 \mathrm{H}), 1.89-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.42(\mathrm{~m}, 8 \mathrm{H}), 1.15-1.08(\mathrm{~m}, 1 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 1.04$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.39,146.43,145.50,141.15,134.21,133.40,131.63$, $130.95,121.25,71.67,57.53,50.30,47.39,42.28,37.16,36.69,35.17,31.88,31.62,31.47,30.41$, 20.84, 19.34, 16.60.
(3S, $8 R, 9 \mathrm{~S}, 10 \mathrm{R}, 13 \mathrm{~S}, 14 \mathrm{~S})$-10,13-dimethyl-17-(pyridin-4-yl)-2,3,4,7,8,9,10,11,12,13,14,15-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

Colourless solid ($62 \mathrm{mg}, 88 \%$). Purified by column chromatography on silica gel using 50% ethyl acetate in heptane as eluent. $\mathrm{R}_{\mathrm{f}}=0.17$ (50% ethyl acetate in heptane, CAM-stain). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.50(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{dd}, J=4.6,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.18(\mathrm{dd}, J=3.3,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.42-5.36(\mathrm{~m}, 1 \mathrm{H}), 3.61-3.47(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.20(\mathrm{~m}, 3 \mathrm{H}), 2.17-2.00(\mathrm{~m}, 3 \mathrm{H}), 1.90-$ $1.40(\mathrm{~m}, 9 \mathrm{H}), 1.17-1.00(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.61,149.57,144.94,141.34$, $131.83,121.39,121.36,71.82,57.71,50.50,47.31,42.46,37.33,36.85,35.31,32.00,31.79,31.64$, 30.54, 21.01, 19.49, 16.77.
(3S,8R,9S,10R,13S,14S)-17-(2-chloropyridin-4-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

Colourless solid ($50 \mathrm{mg}, 65 \%$). Purified by column chromatography on silica gel using 50% ethyl acetate in heptane as eluent. $\mathrm{R}_{\mathrm{f}}=0.58\left(50 \%\right.$ ethyl acetate in heptane, CAM-stain). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.27(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{dd}, J=5.2,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.22(\mathrm{dd}, J=3.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{dt}, J=5.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{tt}, J=11.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-$ $2.20(\mathrm{~m}, 3 \mathrm{H}), 2.14-2.00(\mathrm{~m}, 3 \mathrm{H}), 1.90-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.39(\mathrm{~m}, 8 \mathrm{H}), 1.17-1.01(\mathrm{~m}, 7 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.65,151.47,149.31,147.79,141.16,133.17,121.33,121.20$,
$119.92,71.66,57.51,50.27,47.20,42.27,37.15,36.68,35.04,31.91,31.61,31.44,30.34,20.81$, 19.33, 16.62.
(3S,8R,9S,10R, 13S, 14S)-10,13-dimethyl-17-(1H-pyrazol-4-yl)-2,3,4,7,8,9,10,11,12,13,14,15-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

Colourless solid ($28 \mathrm{mg}, 41 \%$). Purified by column chromatography on silica gel using 50% ethyl acetate in heptane as eluent. $\mathrm{R}_{\mathrm{f}}=0.16$ (50% ethyl acetate in heptane, CAM-stain). ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{DMSO}) \delta 12.69(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 2 \mathrm{H}), 5.76(\mathrm{dd}, J=3.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.50-5.10(\mathrm{~m}, 1 \mathrm{H})$, $4.59(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.28-3.14(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.05(\mathrm{~m}, 4 \mathrm{H}), 2.05-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.29$ $(\mathrm{m}, 9 \mathrm{H}), 1.06-0.94(\mathrm{~m}, 5 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO) $\delta 145.95,141.57,121.66$, $120.26,116.06,69.98,56.61,50.08,46.33,42.25,40.15,36.83,36.27,34.72,31.41,31.03,30.90$, 29.96, 20.53, 19.06, 15.92.
(3S,8R,9S,10R, 13S, 14S)-17-(isoquinolin-4-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

Colourless solid ($64 \mathrm{mg}, 80 \%$). Purified by column chromatography on silica gel using 50% ethyl acetate in heptane as eluent. $\mathrm{R}_{\mathrm{f}}=0.27$ (50% ethyl acetate in heptane, CAM-stain). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.16(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{dd}, J=8.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{dt}, J=$ $8.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.65-7.55(\mathrm{~m}, 1 \mathrm{H}), 5.87(\mathrm{dd}, J=3.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.50-$ $5.34(\mathrm{~m}, 1 \mathrm{H}), 3.68-3.42(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.18(\mathrm{~m}, 3 \mathrm{H}), 2.19-2.09(\mathrm{~m}, 1 \mathrm{H})$, $1.90-1.71(\mathrm{~m}, 5 \mathrm{H}), 1.63-1.43(\mathrm{~m}, 5 \mathrm{H}), 1.17-1.03(\mathrm{~m}, 5 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 151.16,149.65,141.48,141.38,135.81,132.05,130.31,129.54,128.58,127.87,127.18$, $125.69,121.49,71.87,57.65,50.78,49.75,42.48,37.37,36.94,35.24,32.62,31.86,31.81,31.07$, 21.01, 19.50, 16.42.
(3S,8R,9S,10R, 13S, 14S)-17-(isoquinolin-5-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

Colourless solid ($62 \mathrm{mg}, 77 \%$). Purified by column chromatography on silica gel using 50% ethyl acetate in heptane as eluent. $\mathrm{R}_{\mathrm{f}}=0.29\left(50 \%\right.$ ethyl acetate in heptane, CAM-stain). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.21(\mathrm{~s}, 1 \mathrm{H}), 8.47(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.90-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.53(\mathrm{~m}, 1 \mathrm{H})$, $7.48(\mathrm{dd}, J=7.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{dd}, J=3.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.55-5.24(\mathrm{~m}, 1 \mathrm{H}), 3.77-3.36(\mathrm{~m}$, $1 \mathrm{H}), 2.45-2.07(\mathrm{~m}, 5 \mathrm{H}), 1.89-1.68(\mathrm{~m}, 5 \mathrm{H}), 1.62-1.43(\mathrm{~m}, 5 \mathrm{H}), 1.16-1.03(\mathrm{~m}, 5 \mathrm{H}), 0.99(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.66,151.24,142.88,141.39,135.54,135.15,130.95$, $129.61,129.11,126.63,126.44,121.40,119.35,71.72,57.64,50.74,49.62,42.46,37.34,36.90$, 35.24, 32.47, 31.82, 31.76, 30.99, 20.96, 19.47, 16.46.
(3S,8R,9S,10R,13S,14S)-17-(isoquinolin-6-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

Colourless solid ($52 \mathrm{mg}, 87 \%$). Purified by column chromatography on silica gel using 50% ethyl acetate in heptane as eluent. $\mathrm{R}_{\mathrm{f}}=0.24$ (50% ethyl acetate in heptane, CAM-stain). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.19(\mathrm{~s}, 1 \mathrm{H}), 8.49(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{dd}, J=8.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.74$ $(\mathrm{m}, 1 \mathrm{H}), 7.66(\mathrm{dd}, J=8.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.57(\mathrm{~m}, 1 \mathrm{H}), 6.16(\mathrm{dd}, J=3.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.44-$ $5.37(\mathrm{~m}, 1 \mathrm{H}), 3.62-3.48(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.24(\mathrm{~m}, 3 \mathrm{H}), 2.21(\mathrm{dt}, J=12.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-2.04$ $(\mathrm{m}, 2 \mathrm{H}), 1.92-1.45(\mathrm{~m}, 9 \mathrm{H}), 1.15(\mathrm{~s}, 5 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$) $\delta 154.26$, $152.07,143.22,141.32,139.49,136.13,130.53,127.72,127.42,127.30,123.05,121.50,120.77$,
$71.86,57.88,50.55,47.61,42.48,37.35,36.87,35.62,32.05,31.81,31.70,30.65,21.12,19.51$, 16.89 .
(3S,8R,9S,10R, 13S, 14S)-17-(isoquinolin-7-yl)-10,13-dimethyl-2,3,4,7,8,9, 10,11,12,13,14,15-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

Colourless solid ($50 \mathrm{mg}, 83 \%$). Purified by column chromatography on silica gel using 50% ethyl acetate in heptane as eluent. $\mathrm{R}_{\mathrm{f}}=0.26$ (50% ethyl acetate in heptane, CAM-stain). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO) $\delta 9.32(\mathrm{~s}, 1 \mathrm{H}), 8.44(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.93-7.82(\mathrm{~m}$, $2 \mathrm{H}), 7.81-7.72(\mathrm{~m}, 1 \mathrm{H}), 6.33-6.15(\mathrm{~m}, 1 \mathrm{H}), 5.41-5.21(\mathrm{~m}, 1 \mathrm{H}), 4.60(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.29$ $-3.22(\mathrm{~m}, 1 \mathrm{H}), 2.36-1.99(\mathrm{~m}, 6 \mathrm{H}), 1.85-1.50(\mathrm{~m}, 7 \mathrm{H}), 1.49-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.06-$ $0.95(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 153.18,152.54,142.61,141.61,135.26,134.05$, 129.80, 129.13, 128.36, 126.36, 123.32, 120.23, 119.90, 69.98, 57.21, 49.84, 46.67, 42.24, 36.83, 36.26, 34.66, 31.40, 31.27, 30.96, 29.97, 20.52, 19.06, 16.27.
(3S,8R,9S,10R,13S, 14S)-17-(1H-indol-4-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

Colourless solid ($60 \mathrm{mg}, 78 \%$). Purified by column chromatography on silica gel using 50% ethyl acetate in heptane as eluent. $\mathrm{R}_{\mathrm{f}}=0.21$ (50% ethyl acetate in heptane, CAM-stain). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO) $\delta 11.05(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dd}, J=7.4,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.49-6.43(\mathrm{~m}, 1 \mathrm{H}), 5.96(\mathrm{dd}, J=3.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=$ $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.30-3.22(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.00(\mathrm{~m}, 4 \mathrm{H}), 1.95-1.88(\mathrm{~m}, 1 \mathrm{H})$, $1.80-1.29(\mathrm{~m}, 9 \mathrm{H}), 1.02(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 153.28,141.59$,
136.06, 128.78, 127.49, 126.77, 124.76, 120.40, 120.30, 116.87, 110.07, 101.27, 69.98, 57.00, 50.07 , 47.71, 42.26, 36.86, 36.30, 35.08, 31.54, 31.42, 31.10, 30.18, 20.51, 19.09, 16.69.
(3S,8R,9S,10R,13S, 14S)-17-(1H-indol-5-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

THF

Colourless solid ($56 \mathrm{mg}, 72 \%$). Purified by column chromatography on silica gel using 50% ethyl acetate in heptane as eluent. $\mathrm{R}_{\mathrm{f}}=0.18$ (50% ethyl acetate in heptane, CAM-stain). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO) $\delta 11.00(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{dd}, J=8.4,1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.45-6.34(\mathrm{~m}, 1 \mathrm{H}), 5.81(\mathrm{dd}, J=3.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.65-4.53$ $(\mathrm{m}, 1 \mathrm{H}), 3.29-3.22(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.10(\mathrm{~m}, 4 \mathrm{H}), 2.06-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.30(\mathrm{~m}, 9 \mathrm{H}), 1.08$ $-0.95(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 155.31,141.58,134.96,127.51,125.38,123.98$, $120.37,120.27,117.46,111.05,101.28,69.98,57.30,49.95,46.64,42.25,36.84,36.26,35.17$, $31.40,31.03,31.00,30.07,20.53,19.06,16.50$.
(3S,8R,9S,10R,13S,14S)-17-(1H-indol-6-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

Colourless solid ($53 \mathrm{mg}, 69 \%$). Purified by column chromatography on silica gel using 50% ethyl acetate in heptane as eluent. $\mathrm{R}_{\mathrm{f}}=0.25$ (50% ethyl acetate in heptane, CAM-stain). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO) $\delta 10.91(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.02$ (dd, $J=8.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.45-6.17(\mathrm{~m}, 1 \mathrm{H}), 5.92-5.73(\mathrm{~m}, 1 \mathrm{H}), 5.42-5.12(\mathrm{~m}, 1 \mathrm{H}), 4.54(\mathrm{~s}$, $1 \mathrm{H}), 3.26-3.18(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.06(\mathrm{~m}, 4 \mathrm{H}), 2.03-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.26(\mathrm{~m}, 9 \mathrm{H}), 1.06-$ $0.91(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 155.05,141.59,135.93,129.50,126.49,125.45$,
$124.72,120.27,119.59,118.25,108.80,100.85,69.98,57.27,49.93,46.67,42.25,36.84,36.27$, $35.21,31.41,31.03,30.06,20.53,19.07,16.54$.

(

