Fungal Metabolite Asperaculane B Inhibits Malaria Infection and Transmission

Guodong Niu¹, Yue Hao², Xiaohong Wang³, Jin-Ming Gao⁴ and Jun Li^{5,*}

- ¹ Department of Biological Sciences, Biomolecular Sciences Institute, Florida International University, Miami, Florida, USA; gniu@fiu.edu
- ² College of Public Health, South China University, Hengyang, Hunan, China; 934709203@qq.com
- ³ Department of Biological Sciences, Biomolecular Sciences Institute, Florida International University, Miami, Florida, USA; xiawang@fiu.edu
- ⁴ Shaanxi Key Laboratory of Natural Products Chemical Biology, College of Science, Northwest A&F University, Yangling, Shaanxi, China; jinminggao@nwafu.edu.cn
- ⁵ Department of Biological Sciences, Biomolecular Sciences Institute, Florida International University, Miami, Florida, USA; lij@fiu.edu
- * Correspondence: lij@fiu.edu, Tel.: 305-348-7618;

Figure 1. Determination of purity of asperaculane B.

Samples were analyzed on thin layer column chromatography (TLC) with solvents of methanol and dichloromethane in the ratio of 1:10 (v/v). The TLC plate was visualized under UV light of 254 nm (a) and then the TLC plate was developed with a spray reagent (vanillin-ethanol- sulphuric acid, 1 g : 95 mL : 5 mL) followed by heating for 5-10 minutes at 110° C (b). Lanes: 1, 4: The isolated active compound "C1"; 2,5: the reference compound of asperaculane B; and 3,6: the crude extract.