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Abstract: Polymerized ionic liquids (PILs) show potential to be used as new water-free
polyelectrolyte-based electrorheological (ER) material. To direct ER material design at the molecular
level, unveiling structure-property relationships is essential. While a few studies compare the mobile
ions in PILs there is still a limited understanding of how the structure of tethered counterions on
backbone influences ER property. In this study, three PILs with same mobile anions but different
tethered countercations (e.g., poly(dimethyldiallylammonium) P[DADMA]+, poly(benzylethyl)
trimethylammonium P[VBTMA]+, and poly(1-ethyl-4-vinylimidazolium hexafluorophosphate)
P[C2VIm]+) are prepared and the influence of tethered countercations on the ER property of PILs is
investigated. It shows that among these PILs, P[DADMA]+ PILs have the strongest ER property and
P[C2VIm]+ PILs have the weakest one. By combining dielectric spectra analysis with DFT calculation
and activation energy measurement, it can clarify that the influence of tethered counterions on ER
property is mainly associated with ion-pair interaction energy that is affecting ionic conductivity and
interfacial polarization induced by ion motion. P[DADMA]+ has the smallest ion-pair interaction
energy with mobile ions, which can result in the highest ionic conductivity and the fastest interfacial
polarization rate for its strongest ER property.
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1. Introduction

Polymerized ionic liquids (PILs) have attracted great attention as a new type of solid polyelectrolyte
in various applications from electrolytes for energy storages to electroactive components for smart
materials because PILs possess not only mechanical stability of polymer and ionic conductivity of ionic
liquids but also designable molecular structure or morphology [1]. For example, solid gas-sensing
materials based on tetraalkylammonium-based PILs have been demonstrated to show more sensitive
CO2 sensing behavior compared to liquid gas-sensing materials based on ILs [2]. By combing
PILs with temperature-sensitive poly(N-isopropylacrylamide), soft actuators having pH and thermal
dual-responsive character and high mechanical properties have been obtained [3]. By introducing
gradient porous morphology into PIL membrane, high-speed solvent-responsive actuators have been
developed [4]. The imidazolium sulfonate PIL composite has also been prepared and fabricated into
thermally stable electroactive actuators which exhibit an effective actuation response under a low
applied electrical potential of 4 V [5].

Recent study of employing hydrophobic PIL solid particles containing polyatomic fluorinated
ion pairs as dispersed phase has attracted interest to develop new anhydrous electrorheological fluid
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(ERF) [6,7], a smart suspension whose viscosity can be controlled by electric fields owing to electric
polarization and particle-particle interaction [8]. This electric field-induced viscosity thickening of ERF
can be found many potential applications such as semi-adaptive damper, valve, isolator, haptic sensor,
and so on [9–11]. Different from conventional polyelectrolyte particles whose ER property needs to
activate by absorbing moisture, the dry PIL particles have strong ER property. This is because, compared
to the conventional polyelectrolytes, the ion-pair interaction in PIL particles is weaker due to large and
delocalized nature of polyatomic fluorinated constituent ions and, thus, the untethered ions are easy
to dissociate and move to induce interfacial polarization [12]. Furthermore, the hydrophobic nature
of fluorinated constituent ions also makes PIL-based ERF to be insensitive to moisture. As a result,
the relationship between ER property and PIL structure can be unveiled. In particular, the number, size,
and type of mobile untethered ions have been demonstrated to significantly influence the ER property
of PILs and the PILs containing mobile ions with small size and large plasticization effects have strong
ER property because of enhanced interfacial polarization [13–16]. In addition, we have also found
that the transport of mobile ions, interfacial polarization, and ER effect can be controlled by adjusting
crosslinking degree or the length of substituent alkyl chain on pedant groups [17,18]. While a few
studies compare different types of mobile untethered ions, there is still a limited understanding of how
the tethered counterions attached to backbone influences ER property.

For that purpose, we herein synthesized three PILs with the same mobile untethered
anions (hydrophobic hexafluorophosphate (PF6

−)) but different tethered countercations attached to
backbone (e.g., poly(dimethyldiallylammonium) P[DADMA]+, poly(benzylethyl) trimethylammonium
P[VBTMA]+ and poly(1-vinyl 4-ethylimidazolium) P[C2VIm]+, as displayed by Scheme 1) and
investigated how the tethered counterions influences the ER property under electric fields. The reason
for the influence was explained by combining dielectric relaxation spectroscopy with activation energy
measurement and density functional theory (DFT) calculation, which is an effective tool to understand
the structure and dynamic of materials [19].
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(C) P[C2VIm][PF6].

2. Materials and Methods

2.1. Chemicals

Diallyl dimethylammonium chloride ([DADMA]Cl, 60% wt% in water), p-vinylbenzyl
trimethylammonium chloride ([VBTMA]Cl), 97%), bromoethane (99%), 1-vinylimidazole (99%),
potassium hexafluorophosphate (KPF6, 99%). 2,2’-azobis(isobutyronitrile) (AIBN) was purchased from
Sinopharm Chemical Reagent Co. Ltd., Shanghai, China. These chemicals were used as received
except that AIBN was purified by recrystallization in methanol.

2.2. Synthesis of [C2VIm]Br

1-Ethyl-3-vinylimidazolium bromide ([C2VIm]Br) was synthesized by one-step procedure as
follows: 1-Vinylimidazole (6.245 g, 0.065 mol) and bromoethane (8.253 g, 0.075 mol) were dissolved in
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10 mL methanol. The resulting solution was stirred at 120 rpm and 35 ◦C in a three-necked flask under
N2 flow. After 24 h, the precipitate was formed, filtered, washed with diethyl ether, and dried for 12 h
at room temperature in vacuum to get [C2VIm]Br.

2.3. Synthesis of PILs

All PILs were synthesized via a two-step method including monomer polymerization and
anion exchange.

Poly(diallyl dimethylammonium hexafluorophosphate) (P[DADMA][PF6]) was synthesized as
follows: [DADMA]Cl (5 g, 60% aqueous solution) was dissolved in 10 mL DI water, AIBN (0.06 g)
was added as initiator. The resulting solution was reacted for 12 h at 55 ◦C under stirring at 150 rpm
and N2 flow. Then, acetone was added into the reacted solution and P[DADMA]Cl was precipitated.
The precipitate was further washed by acetone several times to remove residual [DADMA]Cl. After
that, the obtained P[DADMA]Cl was dissolved in water and added into KPF6 aqueous solution (10%,
20 mL) to form precipitate. The precipitate was filtered, washed by water several times, and tested by
silver nitrate aqueous solution to clarify whether chloride ions were entirely removed after washing.
Finally, the precipitate was dehydrated at 70 ◦C in vacuum to get P[DADMA][PF6].

Poly(p-vinylbenzyl trimethylammonium hexafluorophosphate) (P[VBTMA][PF6]) was
synthesized as follows: [VBTMA]Cl (3 g) and AIBN (0.06 g) were dissolved in 25 mL ethanol
and then the solution was reacted at 70 ◦C under 150 rpm and N2 flow. After reaction for 12 h,
acetone was added and P[VBTMA]Cl was precipitated. The precipitate was further washed by acetone
several times to remove residual [VBTMA]Cl. After that, the obtained P[VBTMA]Cl was dissolved
in water and mixed with KPF6 aqueous solution (10%, 20 mL) to form precipitate. The precipitate
was filtered, washed by water several times, and tested by silver nitrate aqueous solution to clarify
whether chloride ions were entirely removed after washing. Finally, the precipitate was dehydrated at
70 ◦C in vacuum to get P[VBTMA][PF6].

Poly(1-ethyl-4-vinylimidazolium hexafluorophosphate) (P[C2VIm][PF6]) was synthesized as
follows: [C2VIm]Br (3 g) and AIBN (0.06 g) were dissolved in 30 mL trichloromethane and then the
solution was reacted at 70 ◦C under 150 rpm and N2 flow. After reaction for 12 h, acetone was added
and P[C2VIm]Br was precipitated. The precipitate was further washed by acetone several times to
remove residual [C2VIm]Br. After that, the obtained P[C2VIm]Br was dissolved in water and mixed
with KPF6 aqueous solution (10%, 20 mL) to form precipitate. The precipitate was filtered, washed by
water several times, and tested by silver nitrate aqueous solution to clarify whether bromide ions were
entirely removed after washing. Finally, the precipitate was dehydrated at 70 ◦C in vacuum to get
P[C2VIm][PF6].

2.4. Preparation of ERFs

First, three PILs were milled and sieved into particles of 5–15 µm. Then, the density of particles
was measured via the method reported in our previous paper [12]. Simply, the particles were added
into the pycnometer (5.0 mL) containing silicone oil and the pycnometer was placed in an ultrasonic
cleaning bath and connected to a vacuum pump. After ultrasonication under reduced pressure for
30 s to remove air in the particles, the pycnometer was filled with additional oil and the density was
measured. Finally, the particles were further dehydrated for 2 days at 80 ◦C in vacuum and mixed with
50 cSt silicone oil to get ERFs with particle volume fraction of 20 vol%. The volume of PIL particles
was calculated by the ratio of mass to the measured density of particles.

2.5. Characterization and Measurements

The chemical group of PILs was determined by the Fourier transform infrared spectra on JASCO
(Tokyo, Japan) FT/IR-470 Plus Fourier transform infrared spectroscopy. The molecular structure of
PILs was determined by Bruker (Billerica, MA, United States) DPX-400 1H nuclear magnetic resonance
(1H NMR) spectrometer at 400 MHz with DMSO-d6 as solvent. The glass transition temperature (Tg) of
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PILs was estimated by DSC Q200 differential scanning calorimeter (DSC) within 0–300 ◦C at 10 ◦C/min
heating and cooling rate. Tg was exacted from the midpoint of the transition region in the second
scanning. The micromorphology of PILs was determined by XENOCS (Sassenage, France) Xeuss2.0
wide-angle X-ray scattering (WAXS) spectrometer at 0.6 mA and 50 kV.

The ER property of ERFs was tested on Thermal-Haake RS600 rheometer equipped with a 35 mm
parallel plate system within 20–120 ◦C. The gap between plates was 1.0 mm. The testing details were
similar to our previous report [13]. First, the ERFs were filled into the gap and pre-sheared for 60 s at
300 s−1 to remove structure history. Then, the electric field was applied and remained for 30 s to form a
balanced chain structure. Finally, the flow curves of the shear stress vs. shear rate were measured by
the controlled shear rate mode within 0.1–1000 s−1.

The dielectric spectroscopy of ERFs was measured on Agilent (Santa Clara, CA, USA) 4284A
precision LCR meter equipped with 16452A liquid fixture within angular frequency range of
1.26 × 102–6.28 × 106 rad/s and temperature range of 25–120 ◦C.

3. Results and Discussion

The chemical structure of three PILs is shown in Scheme 1. Figure 1 shows 1H NMR spectra of
three PILs. It is observed that the three PILs have completely polymerized and no sharp characteristic
peaks corresponding to IL monomers have been observed except for two sharp peaks at 2.51 ppm
and 3.34 ppm due to DMSO-d6 and H2O [18]. From the 1H NMR spectra of P[DADMA][PF6] in
Figure 1A, it can be seen that a broad peak at 1.16–1.37 ppm corresponds to the hydrogen of backbone,
a broad peak at 3.18 ppm corresponds to the hydrogen on the methyl group linked with the nitrogen
atom, and a broad peak at 3.79 ppm corresponds to the hydrogen on the carbon heterocycle. From the
1H NMR spectra of P[VBTMA][PF6] in Figure 1B, it can be seen that a broad peak at 1.36–1.64 ppm
corresponds to the hydrogen of backbone, two broad peaks at 6.50 ppm and 7.11 ppm correspond to
the hydrogen on benzene ring, a broad peak at 4.34 ppm corresponds to the hydrogen on the methylene
group attached to the benzene, and a broad peak at 2.90 ppm corresponds to the hydrogen on the
methyl group of ammonium ions. From the 1H NMR spectra of P[C2VIm][PF6] in Figure 1C, it can be
seen that a broad peak at 1.37–1.69 ppm corresponds to the hydrogen of backbone and the methyl
group at the tail end, a broad peak at 4.12 ppm corresponds to the hydrogen on the methylene attached
to the imidazole ring, and three broad peaks at 7.18 ppm, 7.79 ppm and 9.01 ppm corresponds to the
hydrogens on the imidazole ring [20].
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Figure 1. NMR spectra of PILs: (A) P[DADMA][PF6], (B) P[VBTMA][PF6], (C) P[C2VIm][PF6].

Figure 2 shows the FT-IR spectra of PILs. It is noted that three PILs possess the characteristic bands
coming from both cation and anion parts. The position of P-F stretching vibration characteristic bands
of PF6

− at 840 and 558 cm−1 is same for three PILs. But the position of characteristic bands of cation part
is different. The characteristic bands of P[DADMA]+ appear at 3048 cm−1 (C-H stretching vibration),
2953 cm−1 (CH2 bending vibration), and 1473 cm−1 (C-N stretching vibration). The characteristic
bands of P[VBTMA]+ appear at 3049 cm−1 (CH3 stretching vibration), 2927 cm−1 (CH2 stretching
vibration), 1488 cm−1 (CH2 bending vibration), and 1611 cm−1 (the vibration of benzyl groups).
The characteristic bands of P[C2VIm]+ appear at 3168 cm−1 (C-H stretching vibration), 2996 cm−1

(CH2 stretching vibration), 1452 cm−1 (CH2 bending vibration), 1625 cm−1 (C=N stretching vibration),
and 1558 cm−1 and 1160 cm−1 (imidazole ring stretching vibration). In addition, after comparing with
the FT-IR spectra of monomers (see Supplementary Materials), we have not found the absorption
bands corresponding to C=C in these PIL samples, supporting the successful polymerization of PILs
and no monomer presence in resulting PIL samples. For example, unlike P[DADMA][PF6], the FT-IR
spectra of [DADMA][PF6] show the stretching vibration band of C=C at 1640 cm−1, the stretching
vibration band of C-H connected to C=C at 3095 cm−1, and the bending vibration bands at 997 and 964
cm−1. Similarly, unlike P[VBTMA][PF6], the FT-IR spectra of [VBTMA][PF6] also show the stretching
vibration band of C=C at 1634 cm−1, the stretching vibration band of C-H connected to C=C at 3044
cm−1, and the bending vibration bands at 991 and 914 cm−1. Unlike P[C2VIm][PF6], the FT-IR spectra
of [C2VIm][PF6] has not only the characteristic bands of [C2VIm]+ but also the stretching vibration
band of C=C at 1661 cm−1, the stretching vibration band of C-H connected to C=C at 3010 cm−1,
and the bending vibration bands of C-H connected to C=C at 964 and 919 cm−1 [21].
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Different from the crystallized structure of conventional ionic solids or polymeric ionic coordination
complexes [22,23], most of PILs are amorphous solids. Thereby, WAXS spectra have been frequently
employed to analyze morphology of structure [24,25]. We also used WAXS to characterize the
micromorphology of PILs as shown in Figure 3. Three WAXS peaks labelled as qp, qi, and qb can be
observed in P[C2VIm][PF6], while one peak labelled as qp and one shoulder-like peak labelled as qi

are observed in P[DADMA][PF6] and P[VBTMA][PF6]. The WAXS peaks come from the correlation
distances and there are often three WAXS peaks in many PILs [26]. The lowest qb is assigned to the
correlation distance of main-chain to main-chain (db), which also reveals the microphase separation
caused by the polar region and non-polar region due to the unique structure of polyelectrolytes.
Obviously, there is microphase separation or ion aggregation in P[C2VIm][PF6], while the microphase
separation or ion aggregation become weak in P[VBTMA][PF6] and P[DADMA][PF6]. This may be
related to the presence of strong π-π interaction of C2VIm+ pedant groups. The middle qi is assigned to
the correlation distance between PF6

- anions and PF6
− anions (di), which can be calculated by the Bragg

function di = 2π/qi [26]. The order of the value of di is di P[DADMA][PF6] (0.661 nm) > di P[VBTMA][PF6]

(0.640 nm) > di P[C2VIm][PF6] (0.632 nm). Due to the same PF6
− as counterions, the di value should be

influenced by the size of pedant groups. Obviously, the size of DADMA+ (radius = 0.308 nm) is biggest
among three samples, which coincides with its biggest di. The size of C2VIm+ (radius = 0.304 nm)
is bigger than that of trimethylammonium (radius = 0.283 nm), but di P[C2VIm][PF6] is smaller
than di P[VBTMA][PF6]. This is because C2VIm+ tend to be planar and the presence of P[C2VIm]+

aggregation. The dp is assigned to the correlation distance of pedant group to pedant group (dp) and
can be calculated by the Bragg function dp = 2π/qp [19]. The order of the value of dp is dp P[DADMA][PF6]

(0.472 nm) ≥ dp P[VBTMA][PF6] (0.470 nm) > dp P[C2VIm][PF6] (0.426 nm). The smaller dp of P[C2VIm][PF6]
is once again because of the presence of P[C2VIm]+ aggregation.
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Figure 3. WAXS spectra of PILs: (a) P[DADMA][PF6], (b) P[VBTMA][PF6], (c) P[C2VIm][PF6]. 

Tg of three PILs are 187 °C, 240 °C, and 170 °C for P[DADMA][PF6], P[VBTMA][PF6], and 
P[C2VIm][PF6], respectively. At room temperature, they are glassy state and easily milled and sieved 
into particles. The shape of particles is irregular and the size is 5–15 μm. The densities are 1.35 g/cm3, 
1.45 g/cm3, and 1.63 g/cm3 for P[DADMA][PF6], P[VBTMA][PF6], and P[C2VIm][PF6] particles, 
respectively. The ERFs are prepared by dispersing the particles in silicone oil with the same volume 
fraction. Silicone oil is insulating and it has no ER effect. So, it has no influence on the comparison of 
ER effect of different PILs. 

Figure 4 shows the flow curves of shear stress vs. shear rate for the ERFs containing PIL particles 
in silicone oil. Without electric fields, the three ERFs are low viscous fluids with a similar viscosity of 
about 0.17 Pa·s at 1000 s−1 because the size and shape of three PIL particles are similar. With electric 
fields, the ERFs show an increase in shear stress and a yield stress like a plastic material. As the 
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Tg of three PILs are 187 ◦C, 240 ◦C, and 170 ◦C for P[DADMA][PF6], P[VBTMA][PF6],
and P[C2VIm][PF6], respectively. At room temperature, they are glassy state and easily milled
and sieved into particles. The shape of particles is irregular and the size is 5–15 µm. The densities
are 1.35 g/cm3, 1.45 g/cm3, and 1.63 g/cm3 for P[DADMA][PF6], P[VBTMA][PF6], and P[C2VIm][PF6]
particles, respectively. The ERFs are prepared by dispersing the particles in silicone oil with the
same volume fraction. Silicone oil is insulating and it has no ER effect. So, it has no influence on the
comparison of ER effect of different PILs.

Figure 4 shows the flow curves of shear stress vs. shear rate for the ERFs containing PIL particles
in silicone oil. Without electric fields, the three ERFs are low viscous fluids with a similar viscosity of
about 0.17 Pa·s at 1000 s−1 because the size and shape of three PIL particles are similar. With electric
fields, the ERFs show an increase in shear stress and a yield stress like a plastic material. As the strength
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of electric fields elevates, the shear stress and yield stress enhance. However, the intensities of yield
stress and shear stress are different among three PIL ERFs.
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Figure 4. Flow curves of PIL ERFs at different DC electric fields: (A) P[DADMA][PF6],
(B) P[VBTMA][PF6], (C) P[C2VIm][PF6]. (T = 25 ◦C, φ = 20 vol%).

Figure 5 plots the static yield stress (τs) and the electric field-induced increment of shear stress
(∆τ) at different electric fields. τs is obtained by extrapolating the pseudo plateau stress in low rate
region to zero, which can characterize the solidification level or the magnitude of ER property at yield
point. ∆τ = τE – τ0, where τE is the shear stress at electric field and τ0 is the shear stress at zero electric
field, respectively, which can characterize the magnitude of ER property in flow region [27]. Here,
we calculate ∆τ at 100 s−1 because the hydrodynamic force is high enough to compete with electric
field-induced interparticle interaction. It is seen that τs and ∆τ depends on the tethered counterions
attached to backbone and varied in the order of P[DADMA][PF6] > P[VBTMA][PF6] > P[C2VIm][PF6].
Especially, τs and ∆τ of P[C2VIm][PF6] ERFs are significantly lower than those of P[DADMA][PF6]
and P[VBTMA][PF6].

As temperature increases, three ERFs also maintain obvious ER property as shown in Figure 6,
but the magnitude of ER property is different among the three PILs. The order is still P[DADMA][PF6]
> P[VBTMA][PF6] > P[C2VIm][PF6] with the increase of temperature. τs and ∆τ of P[C2VIm][PF6]
ERFs are still significantly lower than those of P[DADMA][PF6] and P[VBTMA][PF6] at different
temperatures. Therefore, the above rheological results clearly show the tethered counterions attached
to backbone have an effect on the ER property of PILs.
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Figure 5. Static yield stress (A) and electric field-induced increment of shear stress of PIL ERFs at
100 s−1 (B) (T = 25 ◦C, φ = 20 vol%).
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Figure 6. Temperature dependence of static yield stress (A) and electric field-induced increment of
shear stress at 100 s−1 (B) at 3 kV/mm for PIL ERFs (φ = 20 vol%).

Because the ER property is associated with the interfacial polarization of ER particles in carrier
liquid [28], to understand the reason of the influence of tethered countercations on ER property,
we employed dielectric spectroscopy to analyze the polarization characteristic of PIL ERFs. Figure 7
shows the angular frequency (ω) dependence of dielectric constant (ε′) and loss (ε”) of three PIL
ERFs at different temperatures. At room temperature, three ERFs display dielectric dispersion but no
relaxation peak. At relatively high temperatures, the relaxation peak appears and the peak position
moves towards high frequency as the temperature rises. According to the analysis in our previous
report [29], this relaxation process is attributed to the interfacial polarization induced by the movement
and accumulation of dissociated PF6

− at the interface between PIL particles and silicone oil. To get
good ER property, it has required ER particles to have not only large interfacial polarizability but also
suitable polarization rate because ERFs are usually work under the simultaneous stimuli of electric
and shearing fields [28]. The polarizability can be reflected by the dielectric strength (∆ε′= ε′0 −
ε′∞, where ε′0 is the limit value of ε′ below the relaxation frequency and ε′∞ is the limit value of
ε′ above the relaxation frequency), the polarization rate can be reflected by the dielectric relaxation
time (λ = 1/ωmax, ωmax is the angular frequency at ε” peak position). The polarization in phase with
the exciting electrical field is available for ER effect. Even if the ERFs are subjected to a DC electric
field, the λ values of particle polarization has been proposed to locate in or near a suitable range
of 1.6 × 10−3

− 1.6 × 10−6 s because too fast or too low polarization rate is easy to cause interparticle
repulsion or insufficient interaction under shear field. As λ decreases within 1.6 × 10−3

− 1.6 × 10−6 s
and large ∆ε′ is achieved, a strong ER property can be obtained [28]. To obtain the values of λ and
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∆ε′, we fit the data in Figure 7 by the solutions of ε’ and ε” of the dielectric relaxation function below
(Equation (1)) [30].

ε∗(ω) = ε′ + iε′′ = ε′∞ +
∆ε′

1 + (iωλ)α
+

(
i
σ
ε0ω

)β
(1)

where, ε
′

∞ + ∆ε′
1+(iωλ)α is the interfacial or dipole polarization contribution and

(
i σ
ε0ω

)β
is the charge

diffusion contribution including the conduction of ions in carrier liquid and the polarization effect at
electrode. ε0 is permittivity of free space, σ is DC conductivity, α is the Cole–Cole parameter, and β is
a fractional exponent (0 ≤ β ≤ 1). The solutions of ε’ and ε” as follows:

ε′ = ε∞ + ∆ε
′(

1+(ωλ)α cos (πα2 )

1+2(ωλ)α cos (πα2 )+(ωλ)2α
)
+

(
σ
ε0ω

)
β cos

(
βπ

2

)
(2)

ε′′ = ∆ε′
 (ωλ)α sin

(
πα
2

)
1 + 2(ωλ)α cos

(
πα
2

)
+ (ωλ)2α

+
(
σ
ε0ω

)
βsin

(
βπ

2

)
(3)

The solid lines in Figure 8 show that Equations (2) and (3) well fit the data of ε’ and ε” The obtained
dielectric parameters at room temperature are listed in Table 1. It is seen that the values of λ of three
PILs are not located in the desired range of 1.6 × 10−3

− 1.6 × 10−6 s, but they depend on the type of
tethered ions. The order of λ is λP[DADMA][PF6] < λP[VBTMA][PF6] < λP[C2VIm][PF6], while ∆ε′P[DADMA][PF6]

> ∆ε′P[VBTMA][PF6] > ∆ε′P[C2VIm][PF6]. The orders well agree with the change order of ER property in
Figures 4–6. Therefore, the influence of tethered ions on ER property should be associated with the
differences in the interfacial polarization rate and polarizability of PILs.

It is known that the interfacial polarization depends on the conductivity of particles. As displayed
in Table 1, the change of ∆ε′ and λ corresponds to the conductivity (σp) order of PIL particles. In three
PILs, the conductivity originates from the motion of untethered PF6

−. Thus, according to σ = nqµ
(where n is the number density of mobile ions, q is the elementary charge, and µ is the ion mobility) [31],
the number and mobility of free PF6

− are the key to the conductivity.

Table 1. Dielectric characteristics of PIL ERFs (φ = 20 vol%, T = 30 ◦C).

Sample ε′0 ε′∞ ∆ε′ λ(s) σp(S/m)

P[DADMA][PF6] 6.93 3.20 3.73 0.015 8.3 × 10−9

P[VBTMA][PF6] 6.63 3.18 3.45 0.125 4.8 × 10−9

P[C2VIm][PF6] 6.53 3.15 3.38 1.657 2.6 × 10−9
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The number density ratio of total PF6− can be approximately estimated to be 
nP[DADMA][PF6]:nP[VBTMA][PF6]:nP[C2VIm][PF6] = 3.00:2.60:3.48 at same particle volume fraction by considering 
the molecular weight and particle density. It is seen that n of PF6− in P[C2VIm][PF6] is the highest 
among three PILs, but its conductivity is the lowest. This reveals that the real number of free PF6− 
contributing to conductivity is not in accordance with this because of different ion-pair complexation 
interaction energy (Ec) [24]. The value of Ec can be calculated by DFT with Gaussian program by 
considering the different electronegativity of atoms and charge distribution of anion and cation in 
the real PIL structure as shown in Figure 8 [19,32]. Restrained electrostatic potential (RESP) atomic 
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Figure 7. Dielectric relaxation spectra of ERFs of P[DADMA][PF6] (A,B), P[VBTMA][PF6] (C,D),
P[C2VIm][PF6] (E,F) at different temperatures. The lines are the fit of data by Equations (2) and (3)
(φ = 20 vol%).

The number density ratio of total PF6
− can be approximately estimated to be

nP[DADMA][PF6]:nP[VBTMA][PF6]:nP[C2VIm][PF6] = 3.00:2.60:3.48 at same particle volume fraction by
considering the molecular weight and particle density. It is seen that n of PF6

− in P[C2VIm][PF6] is
the highest among three PILs, but its conductivity is the lowest. This reveals that the real number
of free PF6

− contributing to conductivity is not in accordance with this because of different ion-pair
complexation interaction energy (Ec) [24]. The value of Ec can be calculated by DFT with Gaussian
program by considering the different electronegativity of atoms and charge distribution of anion
and cation in the real PIL structure as shown in Figure 8 [19,32]. Restrained electrostatic potential
(RESP) atomic charges are obtained with Multiwfn program [33]. The values of Ec of P[DADMA][PF6],
P[VBTMA][PF6] and P[C2VIm][PF6] are calculated to be 30.54, 36.40, and 57.32 kJ/mol by using integral
equation formalism polarizable continuum model (IEFTCM) and considering the effect of dielectric
constant of PILs. Obviously, the dissociation ability of PF6

− changes in the order of P[DADMA][PF6]
> P[VBTMA][PF6] > P[C2VIm][PF6]. The value of Ec of P[C2VIm][PF6] is much higher than that of
P[DADMA][PF6] or P[VBTMA][PF6]. This well agrees with the order of conductivity. Therefore,
the difference in conductivity and polarization should be related to the number difference of free
PF6

− in the three samples, which is further determined by ion-pair interaction energy with different
tethered ions.

The second factor is the mobility of free PF6
-. In glassy polyelectrolytes, the ion motion follows a

hopping mode and the mobility is dominated by the charged number of ions, the vibration frequency
of ions, the distance between two nearest neighbor hopping sites, and the activation energy barrier
(Ea) [34,35]. Because the same PF6

− ions act as mobile ions in these three PILs, the charged number
of ions and the vibration frequency of ions are same. The distance between two nearest neighbor
sites is approximately identical with the correlation distance of PF6

−-PF6
− (di) i.e., di P[DADMA][PF6]
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(0.661 nm) > di P[VBTMA][PF6] (0.640 nm) > di P[C2VIm][PF6] (0.632 nm) according to the WAXS result.
The longer the distance is, the higher ion mobility is achieved. The order of di values agrees with
the order of the conductivity and relaxation time as a function of tethered counterions as shown in
Table 1. The value of Ea of ion motion within the glassy PIL particles can be calculated by the Arrhenius
equation, λ−1

∝ exp(−Ea/RT), where λ−1 the reciprocal of relaxation time, R the universal gas constant
and T the temperature in Kelvin [36]. Figure 9 plots the relation of λ−1 and 1000/T. It is seen that the
values of Ea depend on the type of tethered ions and the change order is Ea P[DADMA][PF6] (75.91 kJ/mol)
< Ea P[VBTMA][PF6] (84.53 kJ/mol) < Ea P[C2VIm][PF6] (104.04 kJ/mol). The lower Ea is, the higher ion
mobility is achieved. The order of values of Ea agrees with the orders of σp and λ as a function of
tethered ions as shown in Table 1. Therefore, the difference in conductivity and polarization among
three samples should be also related to the difference in the mobility of free PF6

−. Deeply, Ea is
contributed by two parts including ion-pair interaction energy (Ec) and elastic potential energy (Eel)
of PIL matrix, i.e., Ea = Ec + Eel = Ec + γG∞4πr3

1/3, where G∞ is the high-frequency shear modulus
of PILs and γ is constant that is usually smaller than 1 [37]. Ec has been calculated by DFT. Thus,
according to the experimental values of Ea, we can calculate the values of Eel are 45.37, 48.13 and
46.72 kJ/mol for P[DADMA][PF6], P[VBTMA][PF6] and P[C2VIm][PF6]. It is noted that the values
of Eel for three samples are very close, which indicates that the difference of Ea should be related to
ion-pair interaction energy.Molecules 2020, 25, x 11 of 14 
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