

Supplementary materials

Unsymmetrically-Substituted 5,12dihydrodibenzo[*b*,*f*][1,4]diazocine-6,11-dione Scaffold—A Useful Tool for Bioactive Molecules Design — Crystallographic Data, 1H-NMR, 13C-NMR, dept135, ESI HRMS, IR spectra

MDPI

Bartosz Bieszczad ¹, Damian Garbicz ¹, Damian Trzybiński ², Marta K. Dudek ³, Krzysztof Woźniak ², Elżbieta Grzesiuk ¹ and Adam Mieczkowski ^{1,*}

- ¹ Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warszawa, Poland; b.bieszczad@ibb.waw.pl (B.B.); dgarbicz@ibb.waw.pl (D.G.); elag@ibb.waw.pl (E.G.)
- ² Biological and Chemical Research Centre, University of Warsaw, 02-089 Warszawa, Poland; dtrzybinski@cnbc.uw.edu.pl (D.T.); kwozniak@chem.uw.edu.pl (K.W.)
- ³ Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90-363 Łódź, Poland; mdudek@cbmm.lodz.pl
- * Correspondence: amiecz@ibb.waw.pl

TABLE OF CONTENTS

1. crystallographic data (Figures S1–S7, Tables S1–S31)	2–21
2. 1H-NMR spectra (Figures S8–S34)	22–49
3. 13C-NMR spectra (Figures S35–S61)	50–77
4. dept135 spectra (Figures S62–S88)	78–91
5. ESI HMRS spectra (Figures S89–S115)	92–118
6. IR spectra (Figures S116–S135)	119–138

Figure S1. Asymmetric unit of the crystal lattice of **3h** with crystallographic atom numbering. Displacement ellipsoids are drawn at the 50% probability level. The H-atoms are shown as small spheres of arbitrary radius. The N–H…O hydrogen bond is represented by a dashed line, while the π - π contact by a dotted line. The *Cg*1 and *Cg*8 denote geometric centers of gravity of the aromatic rings defined by the C1A–C5A/C16A atoms.

Figure S2. Asymmetric unit of the crystal lattice of **3i** with crystallographic atom numbering. Displacement ellipsoids are drawn at the 50% probability level. The H-atoms are shown as small spheres of arbitrary radius. The N-H…O hydrogen bond is represented by a dashed line.

Figure S3. Asymmetric unit of the crystal lattice of **9a** with crystallographic atom numbering. Displacement ellipsoids are drawn at the 50% probability level. The H-atoms are shown as small spheres of arbitrary radius. The intermolecular C–H…O hydrogen bond is represented by a dashed line. Symmetry code: (i) -x + 2, -y + 1, -z + 1.

Figure S4. Asymmetric unit of the crystal lattice of 9c with crystallographic atom numbering. Displacement ellipsoids are drawn at the 50% probability level. The H-atoms are shown as small

spheres of arbitrary radius. The intra- and intermolecular C–H···O hydrogen bonds are represented by a dashed lines, while the intramolecular C–H··· π contact by a dotted line. The C_g2 and C_g5 denote geometric centers of gravity of the aromatic rings defined by the C8–C10/C21–C23 and C37–C42, respectively.

Figure S5. Asymmetric unit of the crystal lattice of **10** with crystallographic atom numbering. Displacement ellipsoids are drawn at the 50% probability level. The H-atoms are shown as small spheres of arbitrary radius. The intramolecular N–H…O hydrogen bond is represented by a dashed line.

Table S1. Cr	vstal data and	l structure	refinement	details	for investig	rated co	mpounds
Tuble 01. CI	y Star aata arte	onucluic	remement	actuno	ioi miveoug	,uica co.	inpounds.

Identificatio	3a	3g	3h	3i	3ј	6	9a	9c	10
Empirical	C14H10N2O2	C15H10Cl2N2	C15H8Cl4N2O	C13H12N2O3S	C21H16N2O2	C10H10N2O2	C36H44N6O8S2	2 C54H47N5O5	C14H10N2O2
Formula weight	238.24	321.15	390.03	276.31	328.36	190.20	752.89	845.96	238.24
Temperature /K	100(2)	100(2)	100(2)	100(2)	100(2)	100(2)	100(2)	100(2)	100(2)
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic	triclinic	monoclinic	monoclinic	monoclinic
Space group	C2/m	P21/c	$P2_1/n$	<i>P</i> 2 ₁ /n	C2/c	P-1	$P2_1/n$	P21/c	$P2_{1}/n$
a/Å	12.7246(4)	14.2183(6)	8.6515(6)	8.7588(4)	22.8190(11)	4.7890(4)	12.0649(4)	9.6689(3)	5.9096(3)
b/Å	11.8130(3)	8.6661(3)	15.1757(9)	10.0474(5)	9.4527(4)	8.5254(7)	9.4270(3)	26.7240(7)	7.8513(3)
c/Å	7.11026(18)	12.4144(6)	24.6970(12)	13.9960(7)	17.0398(8)	11.4586(10)	16.1785(5)	17.1875(4)	23.4492(11)
αl°	90	90	90	90	90	88 417(7)	90	90	90
RIO	90 822(2)	113 854(5)	99 157(6)	89 820(4)	111 238(6)	87 337(7)	90 636(3)	102 085(3)	93 121(4)
p/	90.022(2) 00	115.654(5)	99.137(0)	09.020(4)	111.236(0)	75.7(7)	99.030(3)	102.065(5)	93.121(4)
γr^2	90	90 1000 01 (1 0)	90	90 1001 (0(10)	90	/5./62(7)	90	90	90
Volume/A ³	1068.67(5)	1399.01(12)	3201.2(3)	1231.68(10)	3425.9(3)	452.91(7)	1814.13(10)	4342.7(2)	1086.38(9)
Z	4	4	8	4	8	2	2	4	4
$ ho_{ m calc} g/cm^3$	1.481	1.525	1.619	1.490	1.273	1.395	1.378	1.294	1.457
µ/mm⁻¹	0.831	4.228	6.814	2.405	0.666	0.100	1.838	0.670	0.817
F(000)	496.0	656.0	1568.0	576.0	1376.0	200.0	796.0	1784.0	496.0
Crystal	0.16 × 0.07 >	<0.20 × 0.11 ×	<0.28 × 0.20 ×	0.15 × 0.10 ×	0.27 × 0.16 ×	<0.32 × 0.23 >	<0.45 × 0.10 ×	<0.29 × 0.23 >	<0.29 × 0.13 ×
size/mm ³	0.07	0.10	0.10	0.05	0.14	0.09	0.08	0.12	0.09
Radiation	Cu $K\alpha$ (λ = 1.54184)	=CuKα (λ = 1.54184)	=CuKα (λ = 1.54184)	-CuKα (λ = 1.54184)	=CuKα (λ = 1.54184)	= MoKα (λ = 0.71073)	=CuKα (λ = 1.54184)	=CuKα (λ = 1.54184)	=CuKα (λ = 1.54184)
2⊖ range for data collection/°	10.218 to 134.146	06.798 to 134.068	96.86 to 134.154	10.84 to 134.138	10.24 to 134.152	52.704 to	98.496 to 134.146	6.212 to 134.152	07.552 to 134.758
	$-15 \le h \le 15,$	$-16 \le h \le 12,$	$-10 \le h \le 10,$	$-10 \le h \le 7,$	$-27 \le h \le 26,$	$-5 \le h \le 5,$	$-14 \le h \le 14,$	$-9 \le h \le 11,$	$-6 \le h \le 7,$
Index ranges	$-14 \le k \le 14,$ $-8 \le l \le 8$	$-9 \le k \le 10,$ $-14 \le l \le 14$	$-18 \le k \le 18,$ $-29 \le l \le 29$	$-12 \le k \le 11,$ $-15 \le l \le 16$	$-10 \le k \le 11,$ $-13 \le l \le 20$	$-10 \le k \le 10,$ $-14 \le l \le 14$	$-11 \le k \le 10,$ $-19 \le l \le 13$	$-31 \le k \le 18,$ $-20 \le l \le 20$	$-9 \le k \le 9,$ $-28 \le l \le 28$
Reflections collected	8061	5025	49256	5415	6506	5542	6149	16851	3020
Independent reflections	1014 [<i>R</i> _{int} = 0.0283, <i>R</i> _{sigma} = 0.0126]	= 2495 [<i>R</i> int = 0.0220, = <i>R</i> _{sigma} = 0.0276]	= 5722 [<i>R</i> _{int} = 0.0622, = <i>R</i> _{sigma} = 0.0258]	= 2191 [R _{int} = 0.0319, = R _{sigma} = 0.0344]	= 3052 [<i>R</i> _{int} = 0.0201, = <i>R</i> _{sigma} = 0.0238]	= 1837 [<i>R</i> int = 0.0365, = <i>R</i> _{sigma} = 0.0464]	= 3239 [<i>R</i> int = 0.0225, = <i>R</i> sigma = 0.0288]	=7761 [<i>R</i> int = 0.0307, = <i>R</i> _{sigma} = 0.04111	= 3020 [<i>R</i> sigma = =0.0121]
Dete/methodis	0.0120]	0.0270]	0.0200]	0.0044]	0.0200]	0.0404]	0.0200]	0.0411]	
Data/restrain	1014/0/0E	2405/1/104	5777/67/472	2101/4/192	2052/1/220	1007/1/104	2220/5/244	7761/0/590	2020/2/165
s	1014/2/85	2493/1/194	5722/62/423	2191/4/182	3032/1/229	1837/1/134	3239/3/244	7761/0/380	3020/2/165
Goodness- of-fit on <i>F</i> ²	1.079	1.066	1.079	1.036	1.060	1.051	1.054	1.048	1.185
Final I indexes $[I>=2\sigma(I)]$	$R_1 = 0.0323,$ w $R_2 = 0.0794$	$R_1 = 0.0315,$ $wR_2 = 0.0812$	$R_1 = 0.1384,$ $wR_2 = 0.3022$	$R_1 = 0.0353,$ $wR_2 = 0.0864$	$R_1 = 0.0345,$ $wR_2 = 0.0852$	$R_1 = 0.0443,$ $wR_2 = 0.0959$	$R_1 = 0.0387,$ $wR_2 = 0.1025$	$R_1 = 0.0469,$ $wR_2 = 0.1087$	$R_1 = 0.0393,$ $wR_2 = 0.1192$
Final <i>F</i> indexes [al data]	$R_1 = 0.0345,$ $wR_2 = 0.0814$	$R_1 = 0.0347,$ w $R_2 = 0.0840$	$R_1 = 0.1489,$ $wR_2 = 0.3092$	$R_1 = 0.0440,$ $wR_2 = 0.0940$	$R_1 = 0.0382,$ $wR_2 = 0.0886$	$R_1 = 0.0557,$ $wR_2 = 0.1047$	$R_1 = 0.0447,$ w $R_2 = 0.1088$	$R_1 = 0.0617,$ $wR_2 = 0.1209$	$R_1 = 0.0424,$ $wR_2 = 0.1207$

Largest diff.									
peak/hole/e Å ⁻³	0.20/-0.22	0.29/-0.27	1.30/-0.87	0.25/-0.33	0.18/-0.20	0.24/-0.24	0.36/-0.38	1.17/-0.36	0.39/-0.30

Table S1. S2. Bond lengths for 3a.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
C(1)	C(2)	1.3861(17)	C(5)	C(5) ¹	1.397(2)
C(1)	C(8)	1.3893(17)	C(5)	C(6)	1.5008(17)
C(2)	C(2) ¹	1.385(3)	C(6)	N(7)	1.3440(16)
C(3)	C(3) ¹	1.392(3)	C(6)	O(9)	1.2366(15)
C(3)	C(4)	1.3829(18)	C(8)	C(8) ¹	1.394(2)
C(4)	C(5)	1.3960(17)	C(8)	N(7)	1.4244(15)
¹ +X,1-Y,+Z.					

Table S3. Values of valence angles for	3a.
--	-----

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C(2)	C(1)	C(8)	120.52(12)	N(7)	C(6)	C(5)	119.23(10)
C(2) ¹	C(2)	C(1)	119.88(7)	O(9)	C(6)	C(5)	119.37(10)
C(4)	C(3)	C(3) ¹	119.76(8)	O(9)	C(6)	N(7)	121.34(11)
C(3)	C(4)	C(5)	120.87(12)	C(1)	C(8)	C(8) ¹	119.59(7)
C(4)	C(5)	C(5) ¹	119.32(7)	C(1)	C(8)	N(7)	118.52(11)
C(4)	C(5)	C(6)	117.00(11)	C(8) ¹	C(8)	N(7)	121.61(6)
C(5) ¹	C(5)	C(6)	123.43(6)	C(6)	N(7)	C(8)	127.28(10)
¹ +X,1-Y,+Z.							

Table S4. Values of torsion angles for 3a.

Α	В	С	D	Angle/°	Α	В	С	D	Angle/°
C(1)	C(8)	N(7)	C(6)	-118.36(13)	C(4)	C(5)	C(6)	O(9)	-54.44(15)
C(2)	C(1)	C(8)	C(8) ¹	0.26(13)	C(5) ¹	C(5)	C(6)	N(7)	-63.09(12)
C(2)	C(1)	C(8)	N(7)	-173.77(10)	C(5) ¹	C(5)	C(6)	O(9)	119.70(9)
C(3) ¹	C(3)	C(4)	C(5)	-2.44(14)	C(5)	C(6)	N(7)	C(8)	-3.93(18)
C(3)	C(4)	C(5)	C(5) ¹	2.43(14)	C(8)	C(1)	C(2)	C(2) ¹	-0.27(13)
C(3)	C(4)	C(5)	C(6)	176.82(11)	C(8) ¹	C(8)	N(7)	C(6)	67.73(13)
C(4)	C(5)	C(6)	N(7)	122.77(12)	O(9)	C(6)	N(7)	C(8)	173.22(11)
				¹ +X,1-	Y,+Z.				

Table S5. Bond lengths for 3g.

Aton	n Atom I	Length/Å	Atom	Atom 1	Length/Å
C(1)	C(2)	1.385(3)	C(9)	C(10)	1.384(2)
C(1)	C(16)	1.397(2)	C(10)	C(11)	1.396(3)
C(2)	C(3)	1.389(3)	C(10)	Cl(19)1	.7290(17)
C(3)	C(4)	1.381(3)	C(11)	C(12)	1.383(3)
C(4)	C(5)	1.389(2)	C(11)	Cl(20) 1	.7271(17)
C(5)	C(16)	1.393(2)	C(12)	C(13)	1.392(2)
C(5)	N(6)	1.433(2)	C(13)	C(14)	1.497(2)
C(7)	C(8)	1.507(2)	C(14)	N(15)	1.352(2)
C(7)	N(6)	1.341(2)	C(14)	O(21)	1.225(2)

C(7)	O(18)	1.236(2) C(16) N(15)	1.423(2)
C(8)	C(9)	1.398(2) C(17) N(6)	1.474(2)
C(8)	C(13)	1.396(2)	

Table S6. Values of valence angles for 3g.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C(2)	C(1)	C(16)	120.53(16)	C(10)	C(11)	Cl(20)	121.25(13)
C(1)	C(2)	C(3)	119.95(16)	C(12)	C(11)	C(10)	119.51(16)
C(4)	C(3)	C(2)	119.81(17)	C(12)	C(11)	Cl(20)	119.21(14)
C(3)	C(4)	C(5)	120.58(17)	C(11)	C(12)	C(13)	120.64(16)
C(4)	C(5)	C(16)	119.98(15)	C(8)	C(13)	C(14)	123.26(15)
C(4)	C(5)	N(6)	118.49(15)	C(12)	C(13)	C(8)	119.91(15)
C(16)	C(5)	N(6)	121.19(15)	C(12)	C(13)	C(14)	116.55(15)
N(6)	C(7)	C(8)	119.80(14)	N(15)	C(14)	C(13)	117.99(15)
O(18)	C(7)	C(8)	119.36(14)	O(21)	C(14)	C(13)	120.17(15)
O(18)	C(7)	N(6)	120.81(15)	O(21)	C(14)	N(15)	121.82(16)
C(9)	C(8)	C(7)	117.79(15)	C(1)	C(16)	N(15)	118.79(16)
C(13)	C(8)	C(7)	122.14(15)	C(5)	C(16)	C(1)	119.07(16)
C(13)	C(8)	C(9)	119.36(15)	C(5)	C(16)	N(15)	121.92(15)
C(10)	C(9)	C(8)	120.25(16)	C(5)	N(6)	C(17)	117.49(13)
C(9)	C(10)	C(11)	120.28(16)	C(7)	N(6)	C(5)	124.98(14)
C(9)	C(10)	Cl(19)	119.23(14)	C(7)	N(6)	C(17)	117.53(14)
C(11)	C(10)	Cl(19)	120.48(13)	C(14)	N(15)	C(16)	127.36(14)

Table S7. Values of tors	sion angles for 3g .
--------------------------	-----------------------------

A E	3	С	D	Angle/°	Α	В	С	D	Angle/°
C(1) C(2	2)	C(3)	C(4)	-1.2(3)	C(9)	C(10)	C(11)	Cl(20)	177.50(14)
C(1) C(1	16)) N(15)	C(14)	-113.36(19)	C(10)	C(11)	C(12)	C(13)	-1.4(3)
C(2) C(1	l)	C(16)	C(5)	2.6(2)	C(11)	C(12)	C(13)	C(8)	1.6(3)
C(2) C(1	l)	C(16)	N(15)	-172.11(16)	C(11)	C(12)	C(13)	C(14)	175.73(15)
C(2) C(3	3)	C(4)	C(5)	2.2(3)	C(12)	C(13)	C(14)	N(15)	127.23(17)
C(3) C(4	1)	C(5)	C(16)	-0.7(3)	C(12)	C(13)	C(14)	O(21)	-51.4(2)
C(3) C(4	ł)	C(5)	N(6)	172.76(15)	C(13)	C(8)	C(9)	C(10)	-1.9(2)
C(4) C(5	5)	C(16)	C(1)	-1.7(2)	C(13)	C(14)	N(15)	C(16)	-8.0(3)
C(4) C(5	5)	C(16)	N(15)	172.85(15)	C(16)	C(1)	C(2)	C(3)	-1.1(3)
C(4) C(5	5)	N(6)	C(7)	123.20(18)	C(16)	C(5)	N(6)	C(7)	-63.4(2)
C(4) C(5	5)	N(6)	C(17)	-57.4(2)	C(16)	C(5)	N(6)	C(17)	116.00(18)
C(5) C(1	16)) N(15)	C(14)	72.1(2)	Cl(19)	C(10)	C(11)	C(12)	-179.31(13)
C(7) C(8	3)	C(9)	C(10)	-172.37(15)	Cl(19)	C(10)	C(11)	Cl(20)	-1.4(2)
C(7) C(8	3)	C(13)	C(12)	170.10(15)	Cl(20)	C(11)	C(12)	C(13)	-179.40(13)
C(7) C(8	3)	C(13)	C(14)	-3.6(2)	N(6)	C(5)	C(16)	C(1)	-174.94(15)
C(8) C(2	7)	N(6)	C(5)	-3.2(2)	N(6)	C(5)	C(16)	N(15)	-0.4(2)
C(8) C(2	7)	N(6)	C(17)	177.40(15)	N(6)	C(7)	C(8)	C(9)	-118.57(18)
C(8) C(9))	C(10)	C(11)	2.1(3)	N(6)	C(7)	C(8)	C(13)	71.2(2)
C(8) C(9))	C(10)	Cl(19)	-179.03(13)	O(18)	C(7)	C(8)	C(9)	59.7(2)
C(8) C(1	13)) C(14)	N(15)	-58.9(2)	O(18)	C(7)	C(8)	C(13)	-110.51(18)
C(8) C(1	13)) C(14)	O(21)	122.51(18)	O(18)	C(7)	N(6)	C(5)	178.58(15)
C(9) C(8	3)	C(13)	C(12)	0.0(2)	O(18)	C(7)	N(6)	C(17)	-0.8(2)

 C(9) C(8)
 C(13) C(14)
 -173.67(15)
 O(21)
 C(14) N(15) C(16)
 170.64(17)

 C(9) C(10) C(11) C(12)
 -0.4(3)
 -0.4(3)
 -0.4(3)
 -0.4(3)

Atom	Atom	Length/Å	Atom	Atom	Length/Å
C(1A)	C(2A)	1.380(13)	C(1B)	C(2B)	1.303(19)
C(1A)	C(16A)	1.392(13)	C(1B)	C(16B)	1.397(16)
C(2A)	C(3A)	1.384(15)	C(2B)	C(3B)	1.344(19)
C(3A)	C(4A)	1.384(16)	C(3B)	C(4B)	1.435(16)
C(4A)	C(5A)	1.394(15)	C(4B)	C(5B)	1.394(17)
C(5A)	C(16A)	1.392(13)	C(5B)	C(16B)	1.386(18)
C(5A)	N(6A)	1.423(13)	C(5B)	N(6B)	1.440(13)
C(7A)	C(8A)	1.508(15)	C(7B)	C(8B)	1.508(14)
C(7A)	N(6A)	1.349(14)	C(7B)	N(6B)	1.338(13)
C(7A)	O(18A)	1.232(13)	C(7B)	O(18B)	1.217(12)
C(8A)	C(9A)	1.386(13)	C(8B)	C(9B)	1.406(14)
C(8A)	C(13A)	1.393(14)	C(8B)	C(13B)	1.380(15)
C(9A)	C(10A)	1.396(15)	C(9B)	C(10B)	1.383(14)
C(9A)	Cl(3)	1.724(11)	C(9B)	Cl(19)	1.718(10)
C(10A)	C(11A)	1.395(15)	C(10B)	C(11B)	1.385(14)
C(10A)	Cl(4)	1.711(9)	C(10B)	Cl(20)	1.716(10)
C(11A)	C(12A)	1.369(13)	C(11B)	C(12B)	1.366(15)
C(11A)	Cl(2)	1.727(10)	C(11B)	Cl(21)	1.730(10)
C(12A)	C(13A)	1.415(15)	C(12B)	C(13B)	1.401(14)
C(12A)	Cl(1)	1.722(11)	C(12B)	Cl(22)	1.735(12)
C(13A)	C(14A)	1.503(12)	C(13B)	C(14B)	1.511(16)
C(14A)	N(15A)	1.339(12)	C(14B)	N(15B)	1.336(15)
C(14A)	O(23A)	1.235(12)	C(14B)	O(23B)	1.236(16)
C(16A)	N(15A)	1.441(11)	C(16B)	N(15B)	1.400(18)
C(17A)	N(6A)	1.480(13)	C(17B)	N(6B)	1.444(17)

Table S8. Bond lengths for 3h.

Table S9. Values of valence angles for 3h.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C(2A)	C(1A)	C(16A)	118.5(9)	C(2B)	C(1B)	C(16B)	119.1(15)
C(1A)	C(2A)	C(3A)	121.0(10)	C(1B)	C(2B)	C(3B)	122.9(14)
C(4A)	C(3A)	C(2A)	120.1(10)	C(2B)	C(3B)	C(4B)	120.3(13)
C(3A)	C(4A)	C(5A)	120.3(10)	C(5B)	C(4B)	C(3B)	117.6(13)
C(4A)	C(5A)	N(6A)	120.6(10)	C(4B)	C(5B)	N(6B)	121.7(13)
C(16A)	C(5A)	C(4A)	118.6(10)	C(16B)	C(5B)	C(4B)	118.2(11)
C(16A)	C(5A)	N(6A)	120.8(9)	C(16B)	C(5B)	N(6B)	120.0(12)
N(6A)	C(7A)	C(8A)	116.4(9)	N(6B)	C(7B)	C(8B)	115.1(8)
O(18A)	C(7A)	C(8A)	120.1(10)	O(18B)	C(7B)	C(8B)	119.4(9)
O(18A)	C(7A)	N(6A)	123.5(11)	O(18B)	C(7B)	N(6B)	125.5(10)
C(9A)	C(8A)	C(7A)	118.3(10)	C(9B)	C(8B)	C(7B)	121.4(10)
C(9A)	C(8A)	C(13A)	119.9(10)	C(13B)	C(8B)	C(7B)	120.1(10)
C(13A)	C(8A)	C(7A)	121.7(9)	C(13B)	C(8B)	C(9B)	118.4(9)
C(8A)	C(9A)	C(10A)	118.9(10)	C(8B)	C(9B)	Cl(19)	118.4(8)
C(8A)	C(9A)	Cl(3)	121.0(9)	C(10B)	C(9B)	C(8B)	120.7(9)

C(10A)	C(9A)	Cl(3)	120.1(7)	C(10B)	C(9B)	Cl(19)	120.9(8)
C(9A)	C(10A)	Cl(4)	118.5(8)	C(9B)	C(10B)	C(11B)	119.9(9)
C(11A)	C(10A)	C(9A)	121.1(8)	C(9B)	C(10B)	Cl(20)	120.3(8)
C(11A)	C(10A)	Cl(4)	120.4(8)	C(11B)	C(10B)	Cl(20)	119.8(7)
C(10A)	C(11A)	Cl(2)	119.8(7)	C(10B)	C(11B)	Cl(21)	119.9(8)
C(12A)	C(11A)	C(10A)	120.7(10)	C(12B)	C(11B)	C(10B)	120.2(9)
C(12A)	C(11A)	Cl(2)	119.6(9)	C(12B)	C(11B)	Cl(21)	119.9(9)
C(11A)	C(12A)	C(13A)	118.4(9)	C(11B)	C(12B)	C(13B)	120.2(11)
C(11A)	C(12A)	Cl(1)	121.3(9)	C(11B)	C(12B)	Cl(22)	118.8(8)
C(13A)	C(12A)	Cl(1)	120.3(7)	C(13B)	C(12B)	Cl(22)	120.9(9)
C(8A)	C(13A)	C(12A)	121.1(8)	C(8B)	C(13B)	C(12B)	120.6(10)
C(8A)	C(13A)	C(14A)	118.9(10)	C(8B)	C(13B)	C(14B)	120.4(10)
C(12A)	C(13A)	C(14A)	120.1(9)	C(12B)	C(13B)	C(14B)	118.9(11)
N(15A)	C(14A)	C(13A)	116.6(8)	N(15B)	C(14B)	C(13B)	115.8(13)
O(23A)	C(14A)	C(13A)	119.6(9)	O(23B)	C(14B)	C(13B)	119.9(10)
O(23A)	C(14A)	N(15A)	123.8(9)	O(23B)	C(14B)	N(15B)	124.3(12)
C(1A)	C(16A)	C(5A)	121.6(9)	C(1B)	C(16B)	N(15B)	115.3(13)
C(1A)	C(16A)	N(15A)	118.4(8)	C(5B)	C(16B)	C(1B)	121.8(14)
C(5A)	C(16A)	N(15A)	120.1(9)	C(5B)	C(16B)	N(15B)	122.9(11)
C(5A)	N(6A)	C(17A)	117.8(9)	C(5B)	N(6B)	C(17B)	115.3(9)
C(7A)	N(6A)	C(5A)	123.1(9)	C(7B)	N(6B)	C(5B)	123.5(9)
C(7A)	N(6A)	C(17A)	119.2(10)	C(7B)	N(6B)	C(17B)	118.7(10)
C(14A)	N(15A)	C(16A)	124.1(7)	C(14B)	N(15B)	C(16B)	126.0(12)

Table S10.	Values	of	torsion	angles	for 3h .
------------	--------	----	---------	--------	-----------------

Α	В	С	D	Angle/°	Α	В	С	D	Angle/°
C(1A).	C(2A)	C(3A)	C(4A)	-1.4(14)	C(1B)	C(2B)	C(3B)	C(4B)	0(2)
C(1A)	C(16A)) N(15A)	C(14A) -	-108.4(11)	C(1B)	C(16B)	N(15B)	C(14B)	109.0(15)
C(2A)	C(1A)	C(16A)	C(5A)	1.2(12)	C(2B)	C(1B)	C(16B)	C(5B)	-1.3(19)
C(2A)	C(1A)	C(16A)	N(15A)	-179.3(7)	C(2B)	C(1B)	C(16B)	N(15B)	179.0(12)
C(2A)	C(3A)	C(4A)	C(5A)	-0.1(14)	C(2B)	C(3B)	C(4B)	C(5B)	-1.3(17)
C(3A)	C(4A)	C(5A)	C(16A)	2.1(14)	C(3B)	C(4B)	C(5B)	C(16B)	1.6(16)
C(3A)	C(4A)	C(5A)	N(6A)	-178.3(8)	C(3B)	C(4B)	C(5B)	N(6B)	-174.9(9)
C(4A)	C(5A)	C(16A)	C(1A)	-2.6(13)	C(4B)	C(5B)	C(16B)	C(1B)	-0.3(17)
C(4A)	C(5A)	C(16A)	N(15A)	177.8(8)	C(4B)	C(5B)	C(16B)	N(15B)	179.3(10)
C(4A)	C(5A)	N(6A)	C(7A)	113.2(12)	C(4B)	C(5B)	N(6B)	C(7B)	-123.1(13)
C(4A)	C(5A)	N(6A)	C(17A)	-67.0(13)	C(4B)	C(5B)	N(6B)	C(17B)	75.5(17)
C(5A)	C(16A)) N(15A)	C(14A)	71.2(12)	C(5B)	C(16B)	N(15B)	C(14B)	-70.6(19)
C(7A)	C(8A)	C(9A)	C(10A)	-177.8(9)	C(7B)	C(8B)	C(9B)	C(10B)	173.2(8)
C(7A)	C(8A)	C(9A)	Cl(3)	5.1(13)	C(7B)	C(8B)	C(9B)	Cl(19)	-7.2(12)
C(7A)	C(8A)	C(13A)	C(12A)	177.7(9)	C(7B)	C(8B)	C(13B)	C(12B)	-175.4(9)
C(7A)	C(8A)	C(13A)	C(14A)	-3.2(14)	C(7B)	C(8B)	C(13B)	C(14B)	1.6(13)
C(8A)	C(7A)	N(6A)	C(5A)	-0.9(15)	C(8B)	C(7B)	N(6B)	C(5B)	15.2(18)
C(8A)	C(7A)	N(6A)	C(17A)	179.3(10)	C(8B)	C(7B)	N(6B)	C(17B)	176.1(13)
C(8A)	C(9A)	C(10A)	C(11A)	1.4(15)	C(8B)	C(9B)	C(10B)	C(11B)	2.0(13)
C(8A)	C(9A)	C(10A)	Cl(4)	-178.4(8)	C(8B)	C(9B)	C(10B)	Cl(20)	-179.2(7)
C(8A)	C(13A)) C(14A)	N(15A)	-68.7(12)	C(8B)	C(13B)	C(14B)	N(15B)	64.5(14)
C(8A)	C(13A)) C(14A)	O(23A)	110.2(12)	C(8B)	C(13B)	C(14B)	O(23B)	-114.7(14)

C(9A)	C(8A)	C(13A)	C(12A)	2.5(14)	C(9B)	C(8B)	C(13B)	C(12B)	-0.2(13)
C(9A)	C(8A)	C(13A)	C(14A)	-178.4(9)	C(9B)	C(8B)	C(13B)	C(14B)	176.8(9)
C(9A)	C(10A)	C(11A)	C(12A)	-0.4(15)	C(9B)	C(10B)	C(11B)	C(12B)	0.2(13)
C(9A)	C(10A)	C(11A)	Cl(2)	-179.5(8)	C(9B)	C(10B)	C(11B)	Cl(21)	177.5(7)
C(10A)	C(11A)	C(12A)	C(13A)	0.4(14)	C(10B)	C(11B)	C(12B)	C(13B)	-2.4(14)
C(10A)	C(11A)	C(12A)	Cl(1)	-178.3(7)	C(10B)	C(11B)	C(12B)	Cl(22)	173.9(7)
C(11A)	C(12A)	C(13A)	C(8A)	-1.4(13)	C(11B)	C(12B)	C(13B)	C(8B)	2.4(14)
C(11A)	C(12A)	C(13A)	C(14A)	179.5(8)	C(11B)	C(12B)	C(13B)	C(14B)	-174.7(9)
C(12A)	C(13A)	C(14A)	N(15A)	110.4(11)	C(12B)	C(13B)	C(14B)	N(15B)	-118.5(13)
C(12A)	C(13A)	C(14A)	O(23A)	-70.7(14)	C(12B)	C(13B)	C(14B)	O(23B)	62.3(14)
C(13A)	C(8A)	C(9A)	C(10A)	-2.4(14)	C(13B)	C(8B)	C(9B)	C(10B)	-1.9(13)
C(13A)	C(8A)	C(9A)	Cl(3)	-179.5(7)	C(13B)	C(8B)	C(9B)	Cl(19)	177.7(7)
C(13A)	C(14A)	N(15A)	C(16A)	1.2(15)	C(13B)	C(14B)	N(15B)	C(16B)	6(2)
C(16A)	C(1A)	C(2A)	C(3A)	0.9(12)	C(16B)	C(1B)	C(2B)	C(3B)	2(2)
C(16A)	C(5A)	N(6A)	C(7A)	-67.2(13)	C(16B)	C(5B)	N(6B)	C(7B)	60.5(17)
C(16A)	C(5A)	N(6A)	C(17A)	112.6(11)	C(16B)	C(5B)	N(6B)	C(17B)	-100.9(15)
Cl(1)	C(12A)	C(13A)	C(8A)	177.3(7)	Cl(19)	C(9B)	C(10B)	C(11B)	-177.7(7)
Cl(1)	C(12A)	C(13A)	C(14A)	-1.8(12)	Cl(19)	C(9B)	C(10B)	Cl(20)	1.1(11)
Cl(2)	C(11A)	C(12A)	C(13A)	179.5(7)	Cl(20)	C(10B)	C(11B)	C(12B)	-178.6(7)
Cl(2)	C(11A)	C(12A)	Cl(1)	0.8(11)	Cl(20)	C(10B)	C(11B)	Cl(21)	-1.3(10)
Cl(3)	C(9A)	C(10A)	C(11A)	178.6(8)	Cl(21)	C(11B)	C(12B)	C(13B)	-179.7(7)
Cl(3)	C(9A)	C(10A)	Cl(4)	-1.2(12)	Cl(21)	C(11B)	C(12B)	Cl(22)	-3.4(11)
Cl(4)	C(10A)	C(11A)	C(12A)	179.4(7)	Cl(22)	C(12B)	C(13B)	C(8B)	-173.8(7)
Cl(4)	C(10A)	C(11A)	Cl(2)	0.2(12)	Cl(22)	C(12B)	C(13B)	C(14B)	9.1(13)
N(6A)	C(5A)	C(16A)	C(1A)	177.7(8)	N(6B)	C(5B)	C(16B)	C(1B)	176.2(10)
N(6A)	C(5A)	C(16A)	N(15A)	-1.8(12)	N(6B)	C(5B)	C(16B)	N(15B)	-4.2(16)
N(6A)	C(7A)	C(8A)	C(9A)	-111.2(11)	N(6B)	C(7B)	C(8B)	C(9B)	104.1(12)
N(6A)	C(7A)	C(8A)	C(13A)	73.5(13)	N(6B)	C(7B)	C(8B)	C(13B)	-80.9(13)
O(18A)	C(7A)	C(8A)	C(9A)	70.3(15)	O(18B)	C(7B)	C(8B)	C(9B)	-75.0(15)
O(18A)	C(7A)	C(8A)	C(13A)	-105.0(13)	O(18B)	C(7B)	C(8B)	C(13B)	100.0(12)
O(18A)	C(7A)	N(6A)	C(5A)	177.5(11)	O(18B)	C(7B)	N(6B)	C(5B)	-165.7(13)
O(18A)	C(7A)	N(6A)	C(17A)	-2.3(18)	O(18B)	C(7B)	N(6B)	C(17B)	-5(2)
O(23A)	C(14A)	N(15A)	C(16A)	-177.7(10)	O(23B)	C(14B)	N(15B)	C(16B)	-174.5(13)

Atom	Atom L	ength/Å	Atom	Atom	Length/Å
C(1)	C(2)	1.389(3)	C(8)	C(9)	1.364(3)
C(1)	C(15)	1.395(3)	C(8)	C(12)	1.432(3)
C(2)	C(3)	1.390(3)	C(9)	S(10)	1.711(2)
C(3)	C(4)	1.385(3)	C(11)	C(12)	1.367(3)
C(4)	C(5)	1.388(3)	C(11)	S(10)	1.711(2)
C(5)	C(15)	1.396(3)	C(12)	C(13)	1.500(3)
C(5)	N(6)	1.438(2)	C(13)	N(14)	1.350(2)
C(7)	C(8)	1.490(3)	C(13)	O(18)	1.228(2)
C(7)	N(6)	1.354(2)	C(15)	N(14)	1.421(2)
C(7)	O(17)	1.228(2)	C(16)	N(6)	1.464(2)

Table S11. Bond lengths for 3i.

Table S12. Values of valence angles for 3i.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C(2)	C(1)	C(15)	119.96(18)	C(8)	C(12)	C(13)	126.51(17)
C(1)	C(2)	C(3)	120.46(18)	C(11)	C(12)	C(8)	111.81(17)
C(4)	C(3)	C(2)	119.45(18)	C(11)	C(12)	C(13)	121.42(17)
C(3)	C(4)	C(5)	120.66(18)	N(14)	C(13)	C(12)	118.11(16)
C(4)	C(5)	C(15)	119.86(17)	O(18)	C(13)	C(12)	119.87(17)
C(4)	C(5)	N(6)	118.53(17)	O(18)	C(13)	N(14)	121.91(18)
C(15)	C(5)	N(6)	121.30(16)	C(1)	C(15)	C(5)	119.53(17)
N(6)	C(7)	C(8)	115.64(16)	C(1)	C(15)	N(14)	119.28(17)
O(17)	C(7)	C(8)	121.82(17)	C(5)	C(15)	N(14)	121.14(17)
O(17)	C(7)	N(6)	122.47(18)	C(5)	N(6)	C(16)	115.53(15)
C(9)	C(8)	C(7)	123.54(17)	C(7)	N(6)	C(5)	122.86(16)
C(9)	C(8)	C(12)	112.48(17)	C(7)	N(6)	C(16)	118.69(16)
C(12)	C(8)	C(7)	123.77(17)	C(13)	N(14)	C(15)	125.11(16)
C(8)	C(9)	S(10)	111.71(15)	C(9)	S(10)	C(11)	92.01(10)
C(12)	C(11)	S(10)	111.95(15)				

Table S13. Values of torsion angles for 3i.

Α	В	С	D	Angle/°	Α	В	С	D	Angle/°
C(1)	C(2)	C(3)	C(4)	1.8(3)	C(9)	C(8)	C(12)	C(13)	-173.69(17)
C(1)	C(15)	N(14)	C(13)	-124.8(2)	C(11)	C(12)	C(13)	N(14)	116.5(2)
C(2)	C(1)	C(15)	C(5)	-1.2(3)	C(11)	C(12)	C(13)	O(18)	-59.9(3)
C(2)	C(1)	C(15)	N(14)	-178.64(17)	C(12)	C(8)	C(9)	S(10)	-1.6(2)
C(2)	C(3)	C(4)	C(5)	0.1(3)	C(12)	C(11)	S(10)	C(9)	-1.52(15)
C(3)	C(4)	C(5)	C(15)	-2.5(3)	C(12)	C(13)	N(14)	C(15)	4.8(3)
C(3)	C(4)	C(5)	N(6)	171.29(17)	C(15)	C(1)	C(2)	C(3)	-1.2(3)
C(4)	C(5)	C(15)	C(1)	3.0(3)	C(15)	C(5)	N(6)	C(7)	-89.2(2)
C(4)	C(5)	C(15)	N(14)	-179.60(17)	C(15)	C(5)	N(6)	C(16)	110.39(19)
C(4)	C(5)	N(6)	C(7)	97.1(2)	N(6)	C(5)	C(15)	C(1)	-170.55(17)
C(4)	C(5)	N(6)	C(16)	-63.3(2)	N(6)	C(5)	C(15)	N(14)	6.8(3)
C(5)	C(15)	N(14)	C(13)	57.8(3)	N(6)	C(7)	C(8)	C(9)	-135.68(19)
C(7)	C(8)	C(9)	S(10)	-176.62(14)	N(6)	C(7)	C(8)	C(12)	49.9(2)
C(7)	C(8)	C(12)	C(11)	175.47(17)	O(17)	C(7)	C(8)	C(9)	47.2(3)
C(7)	C(8)	C(12)	C(13)	1.3(3)	O(17)	C(7)	C(8)	C(12)	-127.2(2)
C(8)	C(7)	N(6)	C(5)	24.5(2)	O(17)	C(7)	N(6)	C(5)	-158.49(18)
C(8)	C(7)	N(6)	C(16)	-175.74(16)	O(17)	C(7)	N(6)	C(16)	1.3(3)
C(8)	C(9)	S(10)	C(11)	1.79(15)	O(18)	C(13)	N(14)	C(15)	-178.96(17)
C(8)	C(12)	C(13)	N(14)	-69.9(2)	S(10)	C(11)	C(12)	C(8)	0.9(2)
C(8)	C(12)	C(13)	O(18)	113.8(2)	S(10)	C(11)	C(12)	C(13)	175.38(14)
C(9)	C(8)	C(12)	C(11)	0.5(2)					

Table S14. Bond lengths for 3j.

Atom	Atom	Length/Å	Atom Atom	Length/Å
C(1)	C(2)	1.3857(18)	C(10) C(11)	1.387(2)
C(1)	C(16)	1.3909(17)	C(11) C(12)	1.3849(19)
C(2)	C(3)	1.3902(18)	C(12) C(13)	1.3950(18)
C(3)	C(4)	1.3841(17)	C(13) C(14)	1.5035(16)
C(4)	C(5)	1.3929(17)	C(14) N(15)	1.3396(16)

C(16)) C(5)	1.3947(16)	C(14)	O(25)	1.2394(15)
C(16)) N(15)	1.4238(15)	C(17)	C(18)	1.5149(17)
C(5)	N(6)	1.4374(14)	C(17)	N(6)	1.4707(15)
C(7)	C(8)	1.4980(17)	C(18)	C(19)	1.3961(18)
C(7)	N(6)	1.3572(15)	C(18)	C(23)	1.3892(17)
C(7)	O(24)	1.2306(14)	C(19)	C(20)	1.384(2)
C(8)	C(9)	1.3972(17)	C(20)	C(21)	1.385(2)
C(8)	C(13)	1.3967(17)	C(21)	C(22)	1.3833(19)
C(9)	C(10)	1.380(2)	C(22)	C(23)	1.3894(18)

Table S15. Values of valence angles for 3j.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C(2)	C(1)	C(16)	120.10(11)	C(8)	C(13)	C(14)	123.15(11)
C(1)	C(2)	C(3)	120.27(11)	C(12)	C(13)	C(8)	119.67(11)
C(4)	C(3)	C(2)	119.69(11)	C(12)	C(13)	C(14)	116.80(11)
C(3)	C(4)	C(5)	120.50(11)	N(15)	C(14)	C(13)	119.21(10)
C(1)	C(16)	C(5)	119.83(11)	O(25)	C(14)	C(13)	118.79(11)
C(1)	C(16)	N(15)	119.65(10)	O(25)	C(14)	N(15)	121.95(11)
C(5)	C(16)	N(15)	120.47(10)	N(6)	C(17)	C(18)	114.64(10)
C(4)	C(5)	C(16)	119.58(11)	C(19)	C(18)	C(17)	117.91(11)
C(4)	C(5)	N(6)	119.23(10)	C(23)	C(18)	C(17)	123.63(11)
C(16)	C(5)	N(6)	121.10(10)	C(23)	C(18)	C(19)	118.42(11)
N(6)	C(7)	C(8)	118.61(10)	C(20)	C(19)	C(18)	120.66(13)
O(24)	C(7)	C(8)	119.47(11)	C(19)	C(20)	C(21)	120.34(13)
O(24)	C(7)	N(6)	121.89(11)	C(22)	C(21)	C(20)	119.65(12)
C(9)	C(8)	C(7)	118.11(11)	C(21)	C(22)	C(23)	120.01(12)
C(13)	C(8)	C(7)	122.01(10)	C(18)	C(23)	C(22)	120.91(12)
C(13)	C(8)	C(9)	119.13(11)	C(5)	N(6)	C(17)	118.11(9)
C(10)	C(9)	C(8)	120.74(12)	C(7)	N(6)	C(5)	122.43(10)
C(9)	C(10)	C(11)	120.10(12)	C(7)	N(6)	C(17)	118.12(10)
C(12)	C(11)	C(10)	119.80(12)	C(14)	N(15)	C(16)	125.33(10)
C(11)	C(12)	C(13)	120.51(12)				

Table S16. Values of torsion angles for 3j.

Α	В	С	D	Angle/°	Α	В	С	D	Angle/°
C(1)	C(2)	C(3)	C(4)	-0.71(18)	C(11)	C(12)	C(13)	C(8)	-1.79(19)
C(1)	C(16)	C(5)	C(4)	-1.60(17)	C(11)	C(12)	C(13)	C(14)	-174.92(12)
C(1)	C(16)	C(5)	N(6)	174.97(10)	C(12)	C(13)	C(14)	N(15)	-117.66(13)
C(1)	C(16)	N(15)	C(14)	121.27(13)	C(12)	C(13)	C(14)	O(25)	60.06(15)
C(2)	C(1)	C(16)	C(5)	0.98(17)	C(13)	C(8)	C(9)	C(10)	1.75(18)
C(2)	C(1)	C(16)	N(15)	178.25(10)	C(13)	C(14)	N(15)	C(16)	-6.60(17)
C(2)	C(3)	C(4)	C(5)	0.07(17)	C(17)	C(18)	C(19)	C(20)	-177.13(12)
C(3)	C(4)	C(5)	C(16)	1.09(17)	C(17)	C(18)	C(23)	C(22)	176.71(11)
C(3)	C(4)	C(5)	N(6)	-175.55(10)	C(18)	C(17)	N(6)	C(5)	104.13(12)
C(4)	C(5)	N(6)	C(7)	-103.40(13)	C(18)	C(17)	N(6)	C(7)	-88.74(13)
C(4)	C(5)	N(6)	C(17)	63.15(14)	C(18)	C(19)	C(20)	C(21)	0.3(2)
C(16)	C(1)	C(2)	C(3)	0.18(18)	C(19)	C(18)	C(23)	C(22)	-0.88(18)
C(16)	C(5)	N(6)	C(7)	80.02(14)	C(19)	C(20)	C(21)	C(22)	-0.9(2)

C(16)	C(5)	N(6)	C(17)	-113.44(12)	C(20)	C(21)	C(22)	C(23)	0.6(2)
C(5)	C(16)	N(15)	C(14)	-61.47(16)	C(21)	C(22)	C(23)	C(18)	0.26(19)
C(7)	C(8)	C(9)	C(10)	172.03(12)	C(23)	C(18)	C(19)	C(20)	0.60(19)
C(7)	C(8)	C(13)	C(12)	-169.67(11)	N(6)	C(7)	C(8)	C(9)	131.22(12)
C(7)	C(8)	C(13)	C(14)	3.01(17)	N(6)	C(7)	C(8)	C(13)	-58.80(15)
C(8)	C(7)	N(6)	C(5)	-16.05(16)	N(6)	C(17)	C(18)	C(19)	-169.64(11)
C(8)	C(7)	N(6)	C(17)	177.41(10)	N(6)	C(17)	C(18)	C(23)	12.76(16)
C(8)	C(9)	C(10)	C(11)	-2.2(2)	N(15)	C(16)	C(5)	C(4)	-178.86(10)
C(8)	C(13)	C(14)	N(15)	69.47(15)	N(15)	C(16)	C(5)	N(6)	-2.28(16)
C(8)	C(13)	C(14)	O(25)	-112.81(13)	O(24)	C(7)	C(8)	C(9)	-50.62(16)
C(9)	C(8)	C(13)	C(12)	0.22(17)	O(24)	C(7)	C(8)	C(13)	119.36(13)
C(9)	C(8)	C(13)	C(14)	172.89(11)	O(24)	C(7)	N(6)	C(5)	165.84(11)
C(9)	C(10)	C(11)	C(12)	0.6(2)	O(24)	C(7)	N(6)	C(17)	-0.70(16)
C(10)	C(11)	C(12)	C(13)	1.4(2)	O(25)	C(14)	N(15)	C(16)	175.75(11)

Atom	Atom L	ength/Å	Atom	Atom	Length/Å
C(1)	C(2)	1.381(2)	C(7)	N(6)	1.349(2)
C(1)	C(12)	1.391(2)	C(7)	O(13)	1.2389(19)
C(2)	C(3)	1.391(3)	C(8)	C(9)	1.531(2)
C(3)	C(4)	1.381(2)	C(9)	C(10)	1.508(2)
C(4)	C(5)	1.395(2)	C(10)	N(11)	1.343(2)
C(5)	C(12)	1.402(2)	C(10)	O(14)	1.2370(19)
C(5)	N(6)	1.432(2)	C(12)	N(11)	1.424(2)
C(7)	C(8)	1.517(2)			

Table S18. Values of valence angles for 6	5 .
---	------------

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C(2)	C(1)	C(12)	120.60(17)	C(7)	C(8)	C(9)	120.12(14)
C(1)	C(2)	C(3)	119.71(17)	C(10)	C(9)	C(8)	111.20(13)
C(4)	C(3)	C(2)	120.21(17)	N(11)	C(10)	C(9)	116.60(15)
C(3)	C(4)	C(5)	120.60(16)	O(14)	C(10)	C(9)	121.33(15)
C(4)	C(5)	C(12)	119.07(15)	O(14)	C(10)	N(11)	122.07(15)
C(4)	C(5)	N(6)	118.27(15)	C(1)	C(12)	C(5)	119.78(15)
C(12)	C(5)	N(6)	122.47(15)	C(1)	C(12)	N(11)	119.63(15)
N(6)	C(7)	C(8)	123.36(14)	C(5)	C(12)	N(11)	120.58(15)
O(13)	C(7)	C(8)	117.01(14)	C(7)	N(6)	C(5)	131.48(14)
O(13)	C(7)	N(6)	119.62(15)	C(10)	N(11)	C(12)	123.78(14)

Table S19. Values of torsion angles for 6.

Α	В	С	D	Angle/°	Α	В	С	D	Angle/°
C(1) C(2)	C(3)	C(4)	0.1(3)	C(8)	C(7)	N(6)	C(5)	-6.4(3)
C(1) C(12)) N(11)	C(10)	114.74(18)	C(8)	C(9)	C(10)	N(11)	94.12(17)
C(2) C(1)	C(12)	C(5)	-1.3(2)	C(8)	C(9)	C(10)	O(14)	-84.92(19)
C(2) C(1)	C(12)	N(11)	179.52(15)	C(9)	C(10)	N(11)	C(12)	-0.4(2)
C(2	c) C(3)	C(4)	C(5)	0.0(3)	C(12)	C(1)	C(2)	C(3)	0.6(3)
C(3) C(4)	C(5)	C(12)	-0.7(2)	C(12)	C(5)	N(6)	C(7)	68.6(2)
C(3) C(4)	C(5)	N(6)	-175.77(15)	N(6)	C(5)	C(12)	C(1)	176.20(15)

C(4) C(5)	C(12)	C(1)	1.3(2)	N(6)	C(5)	C(12)	N(11)	-4.6(2)
C(4) C(5)	C(12)	N(11))-179.49(14)	N(6)	C(7)	C(8)	C(9)	-28.2(2)
C(4) C(5)	N(6)	C(7)	-116.46(19)	O(13)) C(7)	C(8)	C(9)	153.35(15)
C(5) C(12)) N(11)	C(10)	-64.4(2)	O(13)) C(7)	N(6)	C(5)	171.99(16)
C(7) C(8)	C(9)	C(10)	-47.3(2)	O(14)) C(10) N(11)	C(12)	178.65(14)

Table S20. Bond lengths for 9a.

Atom	Atom	Length/Å	Atom Atom	Length/Å
C(1)	C(2)	1.387(3)	C(11) C(10) ¹	1.504(2)
C(1)	C(13)	1.391(3)	C(11) N(12)	1.338(2)
C(2)	C(3)	1.387(3)	C(11) O(15)	1.234(2)
C(3)	C(4)	1.383(3)	C(13) N(12)	1.426(2)
C(4)	C(5)	1.395(2)	C(21) C(22)	1.522(3)
C(5)	C(13)	1.395(2)	C(21) N(20)	1.330(2)
C(5)	N(6)	1.428(2)	C(21) O(26)	1.233(2)
C(7)	C(8)	1.504(2)	C(22) C(23)	1.510(3)
C(7)	N(6)	1.347(2)	C(23) C(24)	1.529(3)
C(7)	O(14)	1.227(2)	C(24) N(20)	1.452(3)
C(8)	C(9)	1.391(2)	C(25) N(20)	1.440(3)
C(8)	C(10) ¹	1.398(2)	C(18) S(16)	1.779(2)
C(9)	C(10)	1.395(2)	C(19) S(16)	1.784(2)
C(10)	C(8) ¹	1.398(2)	O(17) S(16)	1.5095(14)
C(10)	C(11) ¹	1.504(2)		
		¹ 2-X,1	-Y,1-Z.	

Table S21.	Values	of valence	angles	for 9a.
------------	--------	------------	--------	---------

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C(2)	C(1)	C(13)	119.96(17)	O(15)	C(11)	N(12)	122.63(16)
C(3)	C(2)	C(1)	120.03(17)	C(1)	C(13)	C(5)	120.27(16)
C(4)	C(3)	C(2)	120.11(17)	C(1)	C(13)	N(12)	118.66(15)
C(3)	C(4)	C(5)	120.49(16)	C(5)	C(13)	N(12)	120.84(16)
C(4)	C(5)	N(6)	119.25(15)	C(7)	N(6)	C(5)	127.23(14)
C(13)	C(5)	C(4)	119.13(16)	C(11)	N(12)	C(13)	126.15(14)
C(13)	C(5)	N(6)	121.35(15)	N(20)	C(21)	C(22)	108.19(17)
N(6)	C(7)	C(8)	117.45(15)	O(26)	C(21)	C(22)	126.07(17)
O(14)	C(7)	C(8)	120.25(15)	O(26)	C(21)	N(20)	125.65(19)
O(14)	C(7)	N(6)	122.29(16)	C(23)	C(22)	C(21)	105.09(17)
C(9)	C(8)	C(7)	118.29(15)	C(22)	C(23)	C(24)	105.54(17)
C(9)	C(8)	C(10) ¹	119.92(16)	N(20)	C(24)	C(23)	103.62(16)
C(10) ¹	C(8)	C(7)	121.68(15)	C(21)	N(20)	C(24)	114.75(17)
C(8)	C(9)	C(10)	120.08(16)	C(21)	N(20)	C(25)	121.48(18)
C(8) ¹	C(10)	C(11) ¹	121.41(15)	C(25)	N(20)	C(24)	121.75(17)
C(9)	C(10)	C(8) ¹	120.00(16)	C(18)	S(16)	C(19)	98.47(11)
C(9)	C(10)	C(11) ¹	118.30(15)	O(17)	S(16)	C(18)	105.69(10)
N(12)	C(11)	C(10) ¹	117.84(14)	O(17)	S(16)	C(19)	106.30(8)
O(15)	C(11)	C(10) ¹	119.52(15)				

¹2-X,1-Y,1-Z.

Table S22. Values of torsion angles for 9a.

Α	В	С	D	Angle/°	Α	В	С	D	Angle/°
C(1)	C(2)	C(3)	C(4)	-0.6(3)	N(6)	C(5)	C(13)	C(1)	173.80(15)
C(1)	C(13)	N(12)	C(11)	124.12(19)	N(6)	C(5)	C(13)	N(12)	-0.6(2)
C(2)	C(1)	C(13)	C(5)	-0.8(3)	N(6)	C(7)	C(8)	C(9)	122.49(17)
C(2)	C(1)	C(13)	N(12)	173.68(15)	N(6)	C(7)	C(8)	C(10) ¹	-61.3(2)
C(2)	C(3)	C(4)	C(5)	-0.5(3)	O(14)	C(7)	C(8)	C(9)	-56.6(2)
C(3)	C(4)	C(5)	C(13)	0.9(2)	O(14)	C(7)	C(8)	C(10) ¹	119.65(19)
C(3)	C(4)	C(5)	N(6)	-173.25(16)	O(14)	C(7)	N(6)	C(5)	172.28(16)
C(4)	C(5)	C(13)	C(1)	-0.2(2)	O(15)	C(11)	N(12)	C(13)	173.54(16)
C(4)	C(5)	C(13)	N(12)	-174.61(15)	C(21)	C(22)	C(23)	C(24)	-14.0(2)
C(4)	C(5)	N(6)	C(7)	-113.96(19)	C(22)	C(21)	N(20)	C(24)	5.2(2)
C(5)	C(13)	N(12)	C(11)	-61.4(2)	C(22)	C(21)	N(20)	C(25)	169.27(19)
C(7)	C(8)	C(9)	C(10)	177.09(15)	C(22)	C(23)	C(24)	N(20)	16.6(2)
C(8)	C(7)	N(6)	C(5)	-6.8(3)	C(23)	C(24)	N(20)	C(21)	-14.0(2)
C(8)	C(9)	C(10)	C(8) ¹	-0.8(3)	C(23)	C(24)	N(20)	C(25)	-178.03(18)
C(8)	C(9)	C(10)	C(11) ¹	173.15(15)	N(20)	C(21)	C(22)	C(23)	6.1(2)
C(10)	¹ C(8)	C(9)	C(10)	0.8(3)	O(26)	C(21)	C(22)	C(23)	-170.7(2)
C(10)	¹ C(11)	N(12)	C(13)	-7.3(3)	O(26)	C(21)	N(20)	C(24)	-178.1(2)
C(13)	C(1)	C(2)	C(3)	1.2(3)	O(26)	C(21)	N(20)	C(25)	-14.0(3)
C(13)	C(5)	N(6)	C(7)	72.0(2)					

¹2-X,1-Y,1-Z.

Table S23. Bond lengths for 9c.

Atom	Atom L	ength/Å	Atom	Atom	Length/Å
C(1)	C(2)	1.385(3)	C(28)	C(29)	1.384(3)
C(1)	C(26)	1.389(3)	C(28)	C(33)	1.388(3)
C(2)	C(3)	1.386(3)	C(29)	C(30)	1.393(3)
C(3)	C(4)	1.387(3)	C(30)	C(31)	1.370(3)
C(4)	C(5)	1.388(3)	C(31)	C(32)	1.381(3)
C(5)	C(26)	1.401(3)	C(32)	C(33)	1.385(3)
C(5)	N(6)	1.440(2)	C(36)	C(37)	1.509(3)
C(7)	C(8)	1.498(3)	C(36)	N(12)	1.479(2)
C(7)	N(6)	1.357(2)	C(37)	C(38)	1.388(3)
C(7)	O(34)	1.227(2)	C(37)	C(42)	1.389(3)
C(8)	C(9)	1.390(3)	C(38)	C(39)	1.385(3)
C(8)	C(23)	1.399(2)	C(39)	C(40)	1.386(3)
C(9)	C(10)	1.389(3)	C(40)	C(41)	1.382(3)
C(10)	C(11)	1.506(3)	C(41)	C(42)	1.392(3)
C(10)	C(21)	1.402(3)	C(43)	C(44)	1.508(3)
C(11)	N(12)	1.357(2)	C(43)	N(19)	1.468(2)
C(11)	O(35)	1.228(2)	C(44)	C(45)	1.389(3)
C(13)	C(14)	1.391(3)	C(44)	C(49)	1.388(3)
C(13)	C(18)	1.394(3)	C(45)	C(46)	1.388(3)
C(13)	N(12)	1.437(2)	C(46)	C(47)	1.382(4)
C(14)	C(15)	1.381(3)	C(47)	C(48)	1.380(4)
C(15)	C(16)	1.386(3)	C(48)	C(49)	1.388(3)
C(16)	C(17)	1.388(3)	C(52)	C(53)	1.515(3)
C(17)	C(18)	1.389(3)	C(52)	N(25)	1.480(2)

C(18) N(19)	1.433(2) C(53) C(54)	1.389(3)
C(20) C(21)	1.502(3) C(53) C(58)	1.396(3)
C(20) N(19)	1.356(2) C(54) C(55)	1.384(3)
C(20) O(50)	1.226(2) C(55) C(56)	1.382(3)
C(21) C(22)	1.391(3) C(56) C(57)	1.385(3)
C(22) C(23)	1.387(3) C(57) C(58)	1.385(3)
C(23) C(24)	1.508(2) C(60) C(61)	1.528(4)
C(24) N(25)	1.355(2) C(60) N(59)	1.322(3)
C(24) O(51)	1.228(2) C(60) O(64)	1.214(3)
C(26) N(25)	1.433(2) C(62) N(59)	1.469(3)
C(27) C(28)	1.507(3) C(63) N(59)	1.475(3)
C(27) N(6)	1.475(2)	

Table S24. Values of valence angles for 9c.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C(2)	C(1)	C(26)	120.50(17)	C(28)	C(29)	C(30)	120.2(2)
C(1)	C(2)	C(3)	120.02(18)	C(31)	C(30)	C(29)	120.4(2)
C(2)	C(3)	C(4)	119.94(18)	C(30)	C(31)	C(32)	119.7(2)
C(3)	C(4)	C(5)	120.40(18)	C(31)	C(32)	C(33)	120.2(2)
C(4)	C(5)	C(26)	119.66(17)	C(32)	C(33)	C(28)	120.4(2)
C(4)	C(5)	N(6)	118.87(16)	N(12)	C(36)	C(37)	112.46(15)
C(26)	C(5)	N(6)	121.45(16)	C(38)	C(37)	C(36)	119.89(18)
N(6)	C(7)	C(8)	115.01(16)	C(38)	C(37)	C(42)	118.80(19)
O(34)	C(7)	C(8)	121.10(17)	C(42)	C(37)	C(36)	121.31(18)
O(34)	C(7)	N(6)	123.88(18)	C(39)	C(38)	C(37)	120.93(19)
C(9)	C(8)	C(7)	119.04(16)	C(38)	C(39)	C(40)	120.0(2)
C(9)	C(8)	C(23)	119.59(17)	C(41)	C(40)	C(39)	119.6(2)
C(23)	C(8)	C(7)	121.35(17)	C(40)	C(41)	C(42)	120.37(19)
C(10)	C(9)	C(8)	120.42(17)	C(37)	C(42)	C(41)	120.31(19)
C(9)	C(10)	C(11)	117.07(16)	N(19)	C(43)	C(44)	116.01(16)
C(9)	C(10)	C(21)	119.56(17)	C(45)	C(44)	C(43)	121.24(18)
C(21)	C(10)	C(11)	123.35(17)	C(49)	C(44)	C(43)	119.60(19)
N(12)	C(11)	C(10)	116.77(15)	C(49)	C(44)	C(45)	119.0(2)
O(35)	C(11)	C(10)	120.50(17)	C(46)	C(45)	C(44)	120.0(2)
O(35)	C(11)	N(12)	122.65(17)	C(47)	C(46)	C(45)	120.6(2)
C(14)	C(13)	C(18)	119.90(17)	C(48)	C(47)	C(46)	119.7(2)
C(14)	C(13)	N(12)	119.55(16)	C(47)	C(48)	C(49)	119.9(2)
C(18)	C(13)	N(12)	120.54(16)	C(44)	C(49)	C(48)	120.8(2)
C(15)	C(14)	C(13)	120.27(18)	N(25)	C(52)	C(53)	113.87(15)
C(14)	C(15)	C(16)	119.83(18)	C(54)	C(53)	C(52)	121.42(17)
C(15)	C(16)	C(17)	120.39(18)	C(54)	C(53)	C(58)	118.39(18)
C(16)	C(17)	C(18)	119.93(18)	C(58)	C(53)	C(52)	120.17(17)
C(13)	C(18)	N(19)	120.26(16)	C(55)	C(54)	C(53)	120.89(19)
C(17)	C(18)	C(13)	119.67(17)	C(56)	C(55)	C(54)	120.34(19)
C(17)	C(18)	N(19)	120.07(16)	C(55)	C(56)	C(57)	119.46(19)
N(19)	C(20)	C(21)	116.06(16)	C(58)	C(57)	C(56)	120.3(2)
O(50)	C(20)	C(21)	120.52(17)	C(57)	C(58)	C(53)	120.65(18)
O(50)	C(20)	N(19)	123.42(18)	C(5)	N(6)	C(27)	118.34(15)

C(10)	C(21)	C(20)	121.03(16)	C(7)	N(6)	C(5)	121.40(16)
C(22)	C(21)	C(10)	119.94(17)	C(7)	N(6)	C(27)	120.09(16)
C(22)	C(21)	C(20)	118.81(16)	C(11)	N(12)	C(13)	122.37(15)
C(23)	C(22)	C(21)	120.00(16)	C(11)	N(12)	C(36)	119.03(15)
C(8)	C(23)	C(24)	121.53(17)	C(13)	N(12)	C(36)	118.18(15)
C(22)	C(23)	C(8)	120.15(17)	C(18)	N(19)	C(43)	118.85(15)
C(22)	C(23)	C(24)	118.29(16)	C(20)	N(19)	C(18)	121.01(16)
N(25)	C(24)	C(23)	115.42(15)	C(20)	N(19)	C(43)	119.57(16)
O(51)	C(24)	C(23)	120.82(16)	C(24)	N(25)	C(26)	121.41(15)
O(51)	C(24)	N(25)	123.68(17)	C(24)	N(25)	C(52)	119.06(15)
C(1)	C(26)	C(5)	119.47(17)	C(26)	N(25)	C(52)	119.50(15)
C(1)	C(26)	N(25)	119.85(16)	N(59)	C(60)	C(61)	114.8(2)
C(5)	C(26)	N(25)	120.65(16)	O(64)	C(60)	C(61)	122.3(2)
N(6)	C(27)	C(28)	111.92(15)	O(64)	C(60)	N(59)	122.9(2)
C(29)	C(28)	C(27)	120.88(18)	C(60)	N(59)	C(62)	125.1(2)
C(29)	C(28)	C(33)	118.97(19)	C(60)	N(59)	C(63)	118.2(2)
C(33)	C(28)	C(27)	120.14(17)	C(62)	N(59)	C(63)	116.65(19)

Table S25. Values of torsion angles for 9c.

Α	В	С	D	Angle/°	Α	В	С	D	Angle/°
C(1)	C(2)	C(3)	C(4)	-0.4(3)	C(28)	C(29)	C(30)	C(31)	-0.7(4)
C(1)	C(26)	N(25)	C(24)	110.8(2)	C(29)	C(28)	C(33)	C(32)	1.4(3)
C(1)	C(26)	N(25)	C(52)	-67.1(2)	C(29)	C(30)	C(31)	C(32)	1.2(4)
C(2)	C(1)	C(26)	C(5)	0.8(3)	C(30)	C(31)	C(32)	C(33)	-0.4(3)
C(2)	C(1)	C(26)	N(25)	-177.31(17)	C(31)	C(32)	C(33)	C(28)	-0.9(3)
C(2)	C(3)	C(4)	C(5)	1.2(3)	C(33)	C(28)	C(29)	C(30)	-0.5(3)
C(3)	C(4)	C(5)	C(26)	-1.0(3)	C(36)	C(37)	C(38)	C(39)	-178.84(18)
C(3)	C(4)	C(5)	N(6)	177.25(17)	C(36)	C(37)	C(42)	C(41)	179.86(17)
C(4)	C(5)	C(26)	C(1)	0.0(3)	C(37)	C(36)	N(12)	C(11)	89.8(2)
C(4)	C(5)	C(26)	N(25)	178.07(17)	C(37)	C(36)	N(12)	C(13)	-97.5(2)
C(4)	C(5)	N(6)	C(7)	-103.5(2)	C(37)	C(38)	C(39)	C(40)	-1.0(3)
C(4)	C(5)	N(6)	C(27)	71.8(2)	C(38)	C(37)	C(42)	C(41)	-0.1(3)
C(5)	C(26)	N(25)	C(24)	-67.3(2)	C(38)	C(39)	C(40)	C(41)	-0.1(3)
C(5)	C(26)	N(25)	C(52)	114.79(19)	C(39)	C(40)	C(41)	C(42)	1.1(3)
C(7)	C(8)	C(9)	C(10)	-177.29(16)	C(40)	C(41)	C(42)	C(37)	-1.0(3)
C(7)	C(8)	C(23)	C(22)	-177.45(16)	C(42)	C(37)	C(38)	C(39)	1.1(3)
C(7)	C(8)	C(23)	C(24)	0.7(3)	C(43)	C(44)	C(45)	C(46)	-173.56(19)
C(8)	C(7)	N(6)	C(5)	-4.9(2)	C(43)	C(44)	C(49)	C(48)	172.9(2)
C(8)	C(7)	N(6)	C(27)	179.79(15)	C(44)	C(43)	N(19)	C(18)	-73.7(2)
C(8)	C(9)	C(10)	C(11)	175.86(16)	C(44)	C(43)	N(19)	C(20)	114.83(19)
C(8)	C(9)	C(10)	C(21)	-5.7(3)	C(44)	C(45)	C(46)	C(47)	0.3(3)
C(8)	C(23)	C(24)	N(25)	73.8(2)	C(45)	C(44)	C(49)	C(48)	-1.9(3)
C(8)	C(23)	C(24)	O(51)	-109.2(2)	C(45)	C(46)	C(47)	C(48)	-1.2(3)
C(9)	C(8)	C(23)	C(22)	0.9(3)	C(46)	C(47)	C(48)	C(49)	0.5(4)
C(9)	C(8)	C(23)	C(24)	178.99(16)	C(47)	C(48)	C(49)	C(44)	1.1(4)
C(9)	C(10)	C(11)	N(12)	-118.55(19)	C(49)	C(44)	C(45)	C(46)	1.2(3)
C(9)	C(10)	C(11)	O(35)	58.4(2)	C(52)	C(53)	C(54)	C(55)	-179.32(18)
C(9)	C(10)	C(21)	C(20)	-172.64(16)	C(52)	C(53)	C(58)	C(57)	179.94(19)

C(9) C(10) C(21) C(22)	1.9(3)	C(53)	C(52)	N(25)	C(24)	-86.4(2)
C(10) C(11) N(12) C(13)	4.9(2)	C(53)	C(52)	N(25)	C(26)	91.5(2)
C(10) C(11) N(12) C(36)	177.41(16)	C(53)	C(54)	C(55)	C(56)	-0.1(3)
C(10) C(21) C(22) C(23)	3.3(3)	C(54)	C(53)	C(58)	C(57)	1.3(3)
C(11) C(10) C(21) C(20)	5.7(3)	C(54)	C(55)	C(56)	C(57)	0.3(3)
C(11) C(10) C(21) C(22)	-179.80(16)	C(55)	C(56)	C(57)	C(58)	0.3(3)
C(13) C(14) C(15) C(16)	0.0(3)	C(56)	C(57)	C(58)	C(53)	-1.1(3)
C(13) C(18) N(19) C(20)	74.8(2)	C(58)	C(53)	C(54)	C(55)	-0.7(3)
C(13) C(18) N(19) C(43)	-96.5(2)	N(6)	C(5)	C(26)	C(1)	-178.19(17)
C(14) C(13) C(18) C(17)	-1.0(3)	N(6)	C(5)	C(26)	N(25)	-0.1(3)
C(14) C(13) C(18) N(19)	-179.85(17)	N(6)	C(7)	C(8)	C(9)	113.83(19)
C(14) C(13) N(12) C(11)	106.2(2)	N(6)	C(7)	C(8)	C(23)	-67.8(2)
C(14) C(13) N(12) C(36)	-66.4(2)	N(6)	C(27)	C(28)	C(29)	-125.5(2)
C(14) C(15) C(16) C(17)	-0.7(3)	N(6)	C(27)	C(28)	C(33)	54.9(2)
C(15) C(16) C(17) C(18)	0.6(3)	N(12)	C(13)	C(14)	C(15)	-177.68(18)
C(16) C(17) C(18) C(13)	0.3(3)	N(12)	C(13)	C(18)	C(17)	177.53(17)
C(16) C(17) C(18) N(19)	179.10(18)	N(12)	C(13)	C(18)	N(19)	-1.3(3)
C(17) C(18) N(19) C(20)	-104.0(2)	N(12)	C(36)	C(37)	C(38)	-74.4(2)
C(17) C(18) N(19) C(43)	84.7(2)	N(12)	C(36)	C(37)	C(42)	105.6(2)
C(18) C(13) C(14) C(15)	0.9(3)	N(19)	C(20)	C(21)	C(10)	-70.6(2)
C(18) C(13) N(12) C(11)	-72.4(2)	N(19)	C(20)	C(21)	C(22)	114.77(19)
C(18) C(13) N(12) C(36)	115.1(2)	N(19)	C(43)	C(44)	C(45)	-47.4(3)
C(20) C(21) C(22) C(23)	177.94(16)	N(19)	C(43)	C(44)	C(49)	137.83(19)
C(21) C(10) C(11) N(12)	63.1(2)	N(25)	C(52)	C(53)	C(54)	-109.5(2)
C(21) C(10) C(11) O(35)	-120.0(2)	N(25)	C(52)	C(53)	C(58)	72.0(2)
C(21) C(20) N(19) C(18)	-4.7(2)	O(34)	C(7)	C(8)	C(9)	-65.1(2)
C(21)C(20)N(19)C(43)	166.57(16)	O(34)	C(7)	C(8)	C(23)	113.2(2)
C(21) C(22) C(23) C(8)	-4.7(3)	O(34)	C(7)	N(6)	C(5)	174.00(17)
C(21) C(22) C(23) C(24)	177.15(16)	O(34)	C(7)	N(6)	C(27)	-1.3(3)
C(22) C(23) C(24) N(25)	-108.08(19)	O(35)	C(11)	N(12)	C(13)	-171.92(17)
C(22) C(23) C(24) O(51)	68.9(2)	O(35)	C(11)	N(12)	C(36)	0.5(3)
C(23) C(8) C(9) C(10)	4.3(3)	O(50)	C(20)	C(21)	C(10)	108.5(2)
C(23) C(24) N(25) C(26)	-4.1(2)	O(50)	C(20)	C(21)	C(22)	-66.0(2)
C(23) C(24) N(25) C(52)	173.81(15)	O(50)	C(20)	N(19)	C(18)	176.17(17)
C(26) C(1) C(2) C(3)	-0.6(3)	O(50)	C(20)	N(19)	C(43)	-12.6(3)
C(26) C(5) N(6) C(7)	74.6(2)	O(51)	C(24)	N(25)	C(26)	178.98(17)
C(26) C(5) N(6) C(27)	-110.0(2)	O(51)	C(24)	N(25)	C(52)	-3.1(3)
C(27) C(28) C(29) C(30)	179.9(2)	C(61)	C(60)	N(59)	C(62)	-1.4(3)
C(27) C(28) C(33) C(32)	-179.04(18)	C(61)	C(60)	N(59)	C(63)	-179.1(2)
C(28) C(27) N(6) C(5)	81.2(2)	O(64)	C(60)	N(59)	C(62)	179.6(2)
C(28) C(27) N(6) C(7)	-103.39(19)	O(64)	C(60)	N(59)	C(63)	2.0(4)

Table S26. Bond lengths for 10.

Atom	Atom I	.ength/Å	Atom	Atom	Length/Å
C(2)	C(3)	1.495(3)	C(9)	N(1)	1.415(3)
C(2)	N(1)	1.404(3)	C(9)	O(18)	1.208(3)
C(2)	O(17)	1.212(3)	C(10)	C(11)	1.399(3)
C(3)	C(4)	1.384(3)	C(10)	C(15)	1.403(3)

C(8)	C(9)	1.487(3) C(15) N(16)	1.365(3)
C(7)	C(8)	1.387(3) C(14) C(15)	1.412(3)
C(6)	C(7)	1.396(3) C(13) C(14)	1.384(4)
C(5)	C(6)	1.390(4) C(12) C(13)	1.391(4)
C(4)	C(5)	1.399(3) C(11) C(12)	1.387(3)
C(3)	C(8)	1.390(3) C(10) N(1)	1.438(3)

Table S27. Values of valence angles for 10.

Atom Ato	om Aton	n Angle/°	Atom	Atom	Atom	Angle/°
N(1) C(2) C(3)	106.19(18)	O(18)	C(9)	N(1)	125.54(19)
O(17) C(2) C(3)	129.0(2)	C(11)	C(10)	C(15)	121.2(2)
O(17) C(2) N(1)	124.83(19)	C(11)	C(10)	N(1)	118.5(2)
C(4) C(3) C(2)	130.6(2)	C(15)	C(10)	N(1)	120.2(2)
C(4) C(3) C(8)	121.5(2)	C(12)	C(11)	C(10)	120.8(2)
C(8) C(3) C(2)	107.84(18)	C(11)	C(12)	C(13)	118.6(2)
C(3) C(4) C(5)	116.9(2)	C(14)	C(13)	C(12)	121.0(2)
C(6) C(5) C(4)	121.4(2)	C(13)	C(14)	C(15)	121.4(2)
C(5) C(6) C(7)	121.6(2)	C(10)	C(15)	C(14)	116.9(2)
C(8) C(7) C(6)	116.5(2)	N(16)	C(15)	C(10)	122.3(2)
C(3) C(8) C(9)	108.84(18)	N(16)	C(15)	C(14)	120.5(2)
C(7) C(8) C(3)	122.1(2)	C(2)	N(1)	C(9)	111.42(17)
C(7) C(8) C(9)	129.1(2)	C(2)	N(1)	C(10)	125.43(18)
N(1) C(9) C(8)	105.66(18)	C(9)	N(1)	C(10)	123.09(18)
O(18) C(9) C(8)	128.8(2)				

Table S28	. Values	of torsion	angles for 1	0.
-----------	----------	------------	--------------	----

Α	В	С	D	Angle/°	Α	В	С	D	Angle/°
C(2)	C(3)	C(4)	C(5)	177.3(2)	C(11)	C(10)	C(15)	N(16)	-176.1(2)
C(2)	C(3)	C(8)	C(7)	-177.88(19)	C(11)	C(10)	N(1)	C(2)	-119.2(2)
C(2)	C(3)	C(8)	C(9)	1.9(2)	C(11)	C(10)	N(1)	C(9)	57.7(3)
C(3)	C(2)	N(1)	C(9)	1.5(2)	C(11)	C(12)	C(13)	C(14)	0.2(4)
C(3)	C(2)	N(1)	C(10)	178.72(19)	C(12)	C(13)	C(14)	C(15)	0.1(4)
C(3)	C(4)	C(5)	C(6)	0.1(3)	C(13)	C(14)	C(15)	C(10)	0.3(3)
C(3)	C(8)	C(9)	N(1)	-1.0(2)	C(13)	C(14)	C(15)	N(16)	175.5(2)
C(3)	C(8)	C(9)	O(18)	178.7(2)	C(15)	C(10)	C(11)	C(12)	1.2(3)
C(4)	C(3)	C(8)	C(7)	0.0(3)	C(15)	C(10)	N(1)	C(2)	63.4(3)
C(4)	C(3)	C(8)	C(9)	179.8(2)	C(15)	C(10)	N(1)	C(9)	-119.8(2)
C(4)	C(5)	C(6)	C(7)	-0.1(3)	N(1)	C(2)	C(3)	C(4)	-179.8(2)
C(5)	C(6)	C(7)	C(8)	0.1(3)	N(1)	C(2)	C(3)	C(8)	-2.2(2)
C(6)	C(7)	C(8)	C(3)	0.0(3)	N(1)	C(10)	C(11)	C(12)	-176.2(2)
C(6)	C(7)	C(8)	C(9)	-179.8(2)	N(1)	C(10)	C(15)	C(14)	176.5(2)
C(7)	C(8)	C(9)	N(1)	178.8(2)	N(1)	C(10)	C(15)	N(16)	1.3(3)
C(7)	C(8)	C(9)	O(18)	-1.5(4)	O(17)	C(2)	C(3)	C(4)	0.1(4)
C(8)	C(3)	C(4)	C(5)	-0.1(3)	O(17)	C(2)	C(3)	C(8)	177.8(2)
C(8)	C(9)	N(1)	C(2)	-0.4(2)	O(17)	C(2)	N(1)	C(9)	-178.4(2)
C(8)	C(9)	N(1)	C(10)	-177.64(18)	O(17)	C(2)	N(1)	C(10)	-1.2(3)
C(10)) C(11) C(12)) C(13)	-0.8(3)	O(18)	C(9)	N(1)	C(2)	179.9(2)
C(11)) C(10) C(15)) C(14)	-0.9(3)	O(18)	C(9)	N(1)	C(10)	2.6(3)

Figure S6. Supramolecular architecture of molecules in the crystal of **9a**, viewed along *b*-direction. The N–H…O and C–H…O hydrogen bonds are represented by a dashed lines. The H-atoms not involved in the intermolecular interactions have been omitted for clarity. The layers built from the solvent molecules are highlighted in blue. Symmetry codes: (ii) x + 1/2, -y + 3/2, z = -1/2; (iii) -x + 3/2, y + 1/2. -z + 1/2; (iv) -x + 2, -y + 2, -z + 1; (v) -x + 3/2, y - 1/2, -z + 1/2; (vi) x - 1, y, z; (vii) -x + 1, -y + 1, -z + 1.

Table S29. Hydrogen-bond geometry in the crystal of 9a.

D-H···A	d(D-H) [Å]	d(H…A) [Å]	d(D…A) [Å]	<d-h…a [="" th="" °]<=""></d-h…a>
N6-H6-O26 ⁱⁱ	0.863(14)	1.943(13)	2.8048(19)	176(2)
N12-H12-017 ⁱⁱⁱ	0.871(17)	1.916(10)	2.7660(19)	165(2)
C1– $H1$ ···O15 ^{iv}	0.93	2.34	3.253(2)	169
C3-H3···O17	0.93	2.46	3.287(2)	148
С9-Н9-017	0.93	2.48	3.313(2)	149
C19-H19B…O14vi	0.96	2.34	3.268(2)	163

Symmetry codes: (ii) x + 1/2, -y + 3/2, z - 1/2; (iii) -x + 3/2, y + 1/2. -z + 1/2; (iv) -x + 2, -y + 2, -z + 1; (v) -x + 3/2, y - 1/2, -z + 1/2; (vi) x - 1, y, z; (vii) -x + 1, -y + 1, -z + 1. (*) intramolecular interaction.

Figure S7. Supramolecular architecture of molecules in the crystal of **9c**, viewed along *a*-direction. The hydrogen bonds have are represented by a dashed lines, while the C–H··· π contacts by a dotted lines. The H-atoms not involved in the intermolecular interactions have been omitted for clarity. The solvent molecules are highlighted in blue. Symmetry codes: (i) x + 1, y, z; (ii) x, -y + 1/2, z - 1/2.

D-H···A	d(D–H) [Å]	d(H…A) [Å]	d(D…A) [Å]	<d-h…a [="" th="" °]<=""></d-h…a>
C2-H2···O35 ⁱ	0.93	2.55	3.337(2)	142
C4-H4O50 ⁱⁱ	0.93	2.56	3.414(2)	153
C15-H15…O51 ⁱⁱ	0.93	2.56	3.457(2)	163
C22-H22…O64	0.93	2.45	3.229(2)	141
C38-H38-O35*	0.93	2.51	3.206(3)	132
C45-H45…O64	0.93	2.41	3.284(3)	157
C58-H58-051*	0.93	2.49	3.193(2)	133
C62-H62CO50 ⁱ	0.96	2.53	3.185(3)	126

Table S30. Hydrogen-bond geometry in the crystal of 9c.

Symmetry codes: (i) x + 1, y, z; (ii) x, -y + 1/2, z - 1/2; (*) intramolecular interaction.

Table S31. The geometry of the C–H··· π contacts in the crystal of **9c**.

D-H	CgI	d(H… CgI) [Å]	d(D…CgI) [Å]	<d-h…cgi [="" th="" °]<=""></d-h…cgi>
C43-H43B	Cg5*	2.86	3.663(2)	141
C55-H55	Cg2 ⁱ	2.81	3.598(2)	143

The *Cg*2 and *Cg*5 denote geometric centers of gravity of the aromatic rings defined by the C8–C10/C21–C23 and C37–C42, respectively (see Fig. S4). Symmetry codes: (i) x + 1, y, z; (*) intramolecular interaction.

Figure S8. 1H-NMR spectrum for 5,12-dihydrodibenzo[*b*,*f*][1,4]diazocine–6,11-dione (3a).

Figure S9. 1H-NMR spectrum for 2-nitro–5,12-dihydrodibenzo[*b*,*f*][1,4]diazocine–6,11-dione (3b).

Figure S10. 1H-NMR spectrum for 2-benzoyl-5,12-dihydrodibenzo[*b*,*f*][1,4]diazocine-6,11-dione (3c).

Figure S11. 1H-NMR spectrum for 8-nitro-5,12-dihydrodibenzo[*b*,*f*][1,4]diazocine-6,11-dione (3d).

Figure S12. 1H-NMR spectrum for 5-methyl–5,12-dihydrodibenzo[*b*,*f*][1,4]diazocine–6,11-dione (**3e**).

Figure S13. 1H-NMR spectrum for 2,3-dichloro–5-methyl–5,12-dihydrodibenzo[*b*,*f*][1,4]diazocine–6,11-dione (3f).

Figure S14. 1H-NMR spectrum for 8,9-dichloro–5-methyl–5,12-dihydrodibenzo[b,f][1,4]diazocine–6,11-dione (3g).

Figure S15. 1H-NMR spectrum for 7,8,9,10-tetrachloro–5-methyl–5,12-dihydrodibenzo[*b*,*f*][1,4]diazocine–6,11-dione (3h).

Figure S16. 1H-NMR spectrum for 5-methyl-5,10-dihydrobenzo[b]thieno[3,4-f][1,4]diazocine-4,11-dione (3i).

Figure S17. 1H-NMR spectrum for 5-benzyl–5,12-dihydrodibenzo[*b*,*f*][1,4]diazocine–6,11-dione (3j).

Figure S18. 1H-NMR spectrum for diethyl 6,11-dioxo-5,6,11,12-tetrahydrodibenzo[b,f][1,4]diazocine-8,9-dicarboxylate (3k).

Figure S19. 1H-NMR spectrum for 5,12-dimethyl-5,12-dihydrodibenzo[*b*,*f*][1,4]diazocine-6,11-dione (31).

Figure S20. 1H-NMR spectrum for 5-benzyl-12-(2-(dimethylamino)ethyl)-5,12-dihydrodibenzo[*b*,*f*][1,4]diazocine-6,11-dione (3m).

Figure S21. 1H-NMR spectrum for ethyl 2-(8,9-dichloro-12-methyl-6,11-dioxo-11,12-dihydrodibenzo[b,f][1,4]diazocin-5(6H)-yl)acetate (3n).

Figure S22. 1H-NMR spectrum for 5-acetyl–12-benzyl–5,12-dihydrodibenzo[*b*,*f*][1,4]diazocine–6,11-dione (30).

Figure S23. 1H-NMR spectrum for 1,3,4,6-tetrahydrobenzo[*b*][1,4]diazocine–2,5-dione (6).

Figure S25a. 1H-NMR spectrum for 9b (registered in 295 K).

Figure S25b. 1H-NMR spectra for 9b registered in the temperature range of 275–325 K. The magnified region shows different temperature drift of the two conformers.

Figure S26. 1H-NMR spectrum for 9c.

Figure S27. 1H-NMR spectrum for 2-(2-aminophenyl)isoindoline–1,3-dione (10).

Figure S28. 1H-NMR spectrum for 4,5-dichloro-N¹-methylbenzene–1,2-diamine (4e).

Figure S29. 1H-NMR spectrum for *N*¹-benzylbenzene–1,2-diamine (4f).

Figure S30. 1H-NMR spectrum for dimethyl 4-nitrophthalate (5b).

Figure S31. 1H-NMR spectrum for dimethyl 4,5-dichlorophthalate (5c).

Figure S32. 1H-NMR spectrum for dimethyl 3,4,5,6-tetrachlorophthalate (5d).

Figure S33. 1H-NMR spectrum for dimethyl thiophene–3,4-dicarboxylate (5e).

Figure S34. 1H-NMR spectrum for tetraethyl benzene–1,2,4,5-tetracarboxylate (8).

Figure S35. 13C-NMR spectrum for 5,12-dihydrodibenzo[*b*,*f*][1,4]diazocine–6,11-dione (3a).

Figure S36. 13C-NMR spectrum for 2-nitro–5,12-dihydrodibenzo[*b*,*f*][1,4]diazocine–6,11-dione (3b).

Figure S37. 13C-NMR spectrum for 2-benzoyl-5,12-dihydrodibenzo[b,f][1,4]diazocine-6,11-dione (3c).

Figure S38. 13C-NMR spectrum for 8-nitro-5,12-dihydrodibenzo[b,f][1,4]diazocine-6,11-dione (3d).

Figure S39. 13C-NMR spectrum for 5-methyl-5,12-dihydrodibenzo[*b*,*f*][1,4]diazocine-6,11-dione (3e).

Figure S40. 13C-NMR spectrum for 2,3-dichloro–5-methyl–5,12-dihydrodibenzo[*b*,*f*][1,4]diazocine–6,11-dione (3f).

Figure S41. 13C-NMR spectrum for 8,9-dichloro–5-methyl–5,12-dihydrodibenzo[*b*,*f*][1,4]diazocine–6,11-dione (3g).

Figure S42. 13C-NMR spectrum for 7,8,9,10-tetrachloro–5-methyl–5,12-dihydrodibenzo[*b*,*f*][1,4]diazocine–6,11-dione (3h).

Figure S43. 13C-NMR spectrum for 5-methyl-5,10-dihydrobenzo[b]thieno[3,4-f][1,4]diazocine-4,11-dione (3i).

Figure S44. 13C-NMR spectrum for 5-benzyl–5,12-dihydrodibenzo[*b*,*f*][1,4]diazocine–6,11-dione (3j).

Figure S45. 13C-NMR spectrum for diethyl 6,11-dioxo-5,6,11,12-tetrahydrodibenzo[*b*,*f*][1,4]diazocine-8,9-dicarboxylate (3k).

Figure S46. 13C-NMR spectrum for 5,12-dimethyl–5,12-dihydrodibenzo[*b*,*f*][1,4]diazocine–6,11-dione (31).

Figure S47. 13C-NMR spectrum for 5-benzyl-12-(2-(dimethylamino)ethyl)-5,12-dihydrodibenzo[*b*,*f*][1,4]diazocine-6,11-dione (3m).

Figure S48. 13C-NMR spectrum for ethyl 2-(8,9-dichloro-12-methyl-6,11-dioxo-11,12-dihydrodibenzo[b,f][1,4]diazocin-5(6H)-yl)acetate (3n).

Figure S49. 13C-NMR spectrum for 5-acetyl–12-benzyl–5,12-dihydrodibenzo[*b*,*f*][1,4]diazocine–6,11-dione (30).

Figure S50. 13C-NMR spectrum for 1,3,4,6-tetrahydrobenzo[*b*][1,4]diazocine–2,5-dione (6).

Figure S51. 13C-NMR spectrum for 9a.

Figure S52. 13C-NMR spectrum for 9b.

Figure S53. 13C-NMR spectrum for 9c.

Figure 54. 13C-NMR spectrum for 2-(2-aminophenyl)isoindoline–1,3-dione (10).

Figure S55. 13C-NMR spectrum for 4,5-dichloro-*N*¹-methylbenzene–1,2-diamine (4e).

Figure S56. 13C-NMR spectrum for *N*¹-benzylbenzene–1,2-diamine (4f).

Figure S57. 13C-NMR spectrum for dimethyl 4-nitrophthalate (5b).

Figure S58. 13C-NMR spectrum for dimethyl 4,5-dichlorophthalate (5c).

Figure S59. 13C-NMR spectrum for dimethyl 3,4,5,6-tetrachlorophthalate (5d).

Figure S60. 13C-NMR spectrum for dimethyl thiophene–3,4-dicarboxylate (5e).

Figure S61. 13C-NMR spectrum for tetraethyl benzene–1,2,4,5-tetracarboxylate (8).

Molecules 2019, 24, x FOR PEER REVIEW

Figure S62. dept135 spectrum for 5,12-dihydrodibenzo[*b*,*f*][1,4]diazocine–6,11-dione (3a).

Figure S65. dept135 spectrum for 8-nitro–5,12-dihydrodibenzo[*b*,*f*][1,4]diazocine–6,11-dione (3d).

Molecules **2019**, 24, x FOR PEER REVIEW

Figure S66. dept135 spectrum for 5-methyl-5,12-dihydrodibenzo[*b*,*f*][1,4]diazocine-6,11-dione (3e).

Figure S67. dept135 spectrum for 2,3-dichloro–5-methyl–5,12-dihydrodibenzo[*b*,*f*][1,4]diazocine–6,11-dione (**3f**).

Figure S68. dept135 spectrum for 8,9-dichloro–5-methyl–5,12-dihydrodibenzo[*b*,*f*][1,4]diazocine–6,11-dione (**3g**).

FigureS69.dept135spectrumfor7,8,9,10-tetrachloro–5-methyl–5,12-dihydrodibenzo[b,f][1,4]diazocine–6,11-dione (3h).

Figure S70. dept135 spectrum for 5-methyl=5,10-dihydrobenzo[*b*]thieno[3,4-*f*][1,4]diazocine=4,11-dione (**3i**).

Figure S71. dept135 spectrum for 5-benzyl-5,12-dihydrodibenzo[b,f][1,4]diazocine-6,11-dione (3j).

Figure S72. dept135 spectrum for diethyl 6,11-dioxo–5,6,11,12-tetrahydrodibenzo[*b*,*f*][1,4]diazocine–8,9-dicarboxylate (**3k**).

Figure S73. dept135 spectrum for 5,12-dimethyl–5,12-dihydrodibenzo[*b*,*f*][1,4]diazocine–6,11-dione (**31**).

FigureS74.dept135spectrumfor5-benzyl-12-(2-(dimethylamino)ethyl)-5,12-dihydrodibenzo[b,f][1,4]diazocine-6,11-dione (3m).

dihydrodibenzo[*b*,*f*][1,4]diazocin–5(6*H*)-yl)acetate (**3n**).

Figure S76. dept135 spectrum for 5-acetyl=12-benzyl=5,12-dihydrodibenzo[*b*,*f*][1,4]diazocine=6,11-dione (**30**).

Figure S77. dept135 spectrum for 1,3,4,6-tetrahydrobenzo[*b*][1,4]diazocine–2,5-dione (6).

Figure S79. dept135 spectrum for 9b.

Figure S81. dept135 spectrum for 2-(2-aminophenyl)isoindoline-1,3-dione (10).

Figure S82. dept135 spectrum for 4,5-dichloro-*N*¹-methylbenzene–1,2-diamine (4e).

Figure S83. dept135 spectrum for N¹-benzylbenzene–1,2-diamine (4f).

Molecules **2019**, 24, x FOR PEER REVIEW

Figure S84. dept135 spectrum for dimethyl 4-nitrophthalate (5b).

Figure S85. dept135 spectrum for dimethyl 4,5-dichlorophthalate (5c).

80 70 f1 (ppm) ò

Figure S88. dept135 spectrum for tetraethyl benzene–1,2,4,5-tetracarboxylate (8).

Figure S89. HRMS spectrum for 5,12-dihydrodibenzo[*b*,*f*][1,4]diazocine–6,11-dione (**3a**).

Figure S90. HRMS spectrum for 2-nitro-5,12-dihydrodibenzo[*b*,*f*][1,4]diazocine-6,11-dione (3b).

Figure S91. HRMS spectrum for 2-benzoyl–5,12-dihydrodibenzo[*b*,*f*][1,4]diazocine–6,11-dione (**3c**).

Figure S92. HRMS spectrum for 8-nitro–5,12-dihydrodibenzo[*b*,*f*][1,4]diazocine–6,11-dione (3d).

Figure S93. H-NMR spectrum for 5-methyl–5,12-dihydrodibenzo[*b*,*f*][1,4]diazocine–6,11-dione (**3e**).

Figure S94. HRMS spectrum for 2,3-dichloro–5-methyl–5,12-dihydrodibenzo[*b*,*f*][1,4]diazocine–6,11-dione (3f).

Figure S95. HRMS spectrum for 8,9-dichloro–5-methyl–5,12-dihydrodibenzo[*b*,*f*][1,4]diazocine–6,11-dione (3g).

Figure S96. HRMS spectrum for 7,8,9,10-tetrachloro–5-methyl–5,12-dihydrodibenzo[*b*,*f*][1,4]diazocine–6,11-dione (3h).

Figure S97. HRMS spectrum for 5-methyl-5,10-dihydrobenzo[*b*]thieno[3,4-*f*][1,4]diazocine-4,11-dione (3i).

Figure S98. HRMS spectrum for 5-benzyl-5,12-dihydrodibenzo[*b*,*f*][1,4]diazocine-6,11-dione (3j).

Figure S99. HRMS spectrum for diethyl 6,11-dioxo-5,6,11,12-tetrahydrodibenzo[*b*,*f*][1,4]diazocine-8,9-dicarboxylate (3k).

Figure S100. HRMS spectrum for 5,12-dimethyl–5,12-dihydrodibenzo[*b*,*f*][1,4]diazocine–6,11-dione (**31**).

Figure S101. HRMS spectrum for 5-benzyl–12-(2-(dimethylamino)ethyl)–5,12-dihydrodibenzo[*b*,*f*][1,4]diazocine–6,11-dione (3m).

Figure S102. HRMS spectrum for ethyl 2-(8,9-dichloro–12-methyl–6,11-dioxo–11,12-dihydrodibenzo[*b*,*f*][1,4]diazocin–5(6*H*)-yl)acetate (3**n**).

Figure S103. HRMS spectrum for 5-acetyl-12-benzyl-5,12-dihydrodibenzo[*b*,*f*][1,4]diazocine-6,11-dione (30).

Figure S104. HRMS spectrum for 1,3,4,6-tetrahydrobenzo[*b*][1,4]diazocine–2,5-dione (6).

Figure S105. HRMS spectrum for 9a.

Figure S106. HRMS spectrum for 9b.

Figure S107. HRMS spectrum for 9c.

Figure S108. HRMS spectrum for 2-(2-aminophenyl)isoindoline–1,3-dione (10).

Figure S109. HRMS spectrum for 4,5-dichloro-*N*¹-methylbenzene–1,2-diamine (4e).

Figure S110. HRMS spectrum for *N*¹-benzylbenzene–1,2-diamine (4f).

Figure S111. HRMS spectrum for dimethyl 4-nitrophthalate (5b).

Figure S112. HRMS spectrum for dimethyl 4,5-dichlorophthalate (5c).

Figure S113. HRMS spectrum for dimethyl 3,4,5,6-tetrachlorophthalate (5d).

Figure S114. HRMS spectrum for dimethyl thiophene–3,4-dicarboxylate (5e).

Figure S115. HRMS spectrum for tetraethyl benzene–1,2,4,5-tetracarboxylate (8).

Figure S116. IR spectrum for 5,12-dihydrodibenzo[*b*,*f*][1,4]diazocine–6,11-dione (**3a**).

Figure S117. IR spectrum for 2-nitro–5,12-dihydrodibenzo[*b*,*f*][1,4]diazocine–6,11-dione (**3b**).

Figure S118. IR spectrum for 2-benzoyl–5,12-dihydrodibenzo[*b*,*f*][1,4]diazocine–6,11-dione (**3c**).

Figure S119. IR spectrum for 8-nitro–5,12-dihydrodibenzo[*b*,*f*][1,4]diazocine–6,11-dione (**3d**).

Figure S120. IR spectrum for 5-methyl–5,12-dihydrodibenzo[*b*,*f*][1,4]diazocine–6,11-dione (**3e**).

Figure S121. IR spectrum for 2,3-dichloro–5-methyl–5,12-dihydrodibenzo[*b*,*f*][1,4]diazocine–6,11-dione (3f).

Figure S122. IR spectrum for 8,9-dichloro–5-methyl–5,12-dihydrodibenzo[*b*,*f*][1,4]diazocine–6,11-dione (3g).

Figure S123. IR spectrum for 7,8,9,10-tetrachloro–5-methyl–5,12-dihydrodibenzo[*b*,*f*][1,4]diazocine–6,11-dione (**3h**).

Figure S124. IR spectrum for 5-methyl-5,10-dihydrobenzo[*b*]thieno[3,4-*f*][1,4]diazocine-4,11-dione (3i).

Figure S125. IR spectrum for 5-benzyl–5,12-dihydrodibenzo[*b*,*f*][1,4]diazocine–6,11-dione (**3j**).

Figure S126. IR spectrum for diethyl 6,11-dioxo–5,6,11,12-tetrahydrodibenzo[*b*,*f*][1,4]diazocine–8,9-dicarboxylate (3k).

Figure S127. IR spectrum for 5,12-dimethyl–5,12-dihydrodibenzo[*b*,*f*][1,4]diazocine–6,11-dione (**3l**).

Figure S128. IR spectrum for 5-benzyl–12-(2-(dimethylamino)ethyl)–5,12-dihydrodibenzo[*b*,*f*][1,4]diazocine–6,11-dione (3m).

Figure S129. IR spectrum for ethyl 2-(8,9-dichloro–12-methyl–6,11-dioxo–11,12-dihydrodibenzo[*b*,*f*][1,4]diazocin–5(6*H*)-yl)acetate (**3n**).

Figure S130. IR spectrum for 5-acetyl–12-benzyl–5,12-dihydrodibenzo[*b*,*f*][1,4]diazocine–6,11-dione (**30**).

Figure S131. IR spectrum for 1,3,4,6-tetrahydrobenzo[*b*][1,4]diazocine–2,5-dione (6).

Figure S132. IR spectrum for 9a.

Figure S133. IR spectrum for 9b.

136 of 137

Figure S134. IR spectrum for 9c.

Figure S135. IR spectrum for 2-(2-aminophenyl)isoindoline–1,3-dione (10).