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Abstract: A large amount of agro-industrial waste is produced worldwide in various agricultural 
sectors and by different food industries. The disposal and burning of this waste have created major 
global environmental problems. Agro-industrial waste mainly consists of cellulose, hemicellulose 
and lignin, all of which are collectively defined as lignocellulosic materials. This waste can serve as 
a suitable substrate in the solid-state fermentation process involving mushrooms. Mushrooms 
degrade lignocellulosic substrates through lignocellulosic enzyme production and utilize the 
degraded products to produce their fruiting bodies. Therefore, mushroom cultivation can be 
considered a prominent biotechnological process for the reduction and valorization of 
agro-industrial waste. Such waste is generated as a result of the eco-friendly conversion of 
low-value by-products into new resources that can be used to produce value-added products. 
Here, we have produced a brief review of the current findings through an overview of recently 
published literature. This overview has focused on the use of agro-industrial waste as a growth 
substrate for mushroom cultivation and lignocellulolytic enzyme production. 

Keywords: lignocellulosic materials; lignocellulolytic enzymes; mushroom cultivation; solid state 
fermentation 

 

1. Introduction 

The rapidly growing global population and expansion in the agriculture sector and food 
industries have resulted in the generation of a large amount of agro-industrial waste annually. 
Agro-industrial waste is defined as the waste that is generated during the industrial processing of 
agricultural or animal products or the waste obtained from agricultural activities [1,2]. The waste 
can further be divided into two types, agricultural residues and industrial residues, respectively [2–
5]. Agricultural residues consist of field residues and process residues. Field residues are generated 
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during the crop harvesting process and are made up of leaves, roots, stalks, straw, seed pods and 
stems. Process residues are generated during the further processing of the crops and are made up of 
husks, peels, pulp and shells. Asia is the largest producer of agricultural residues at 47%, followed 
by the United States (29%), Europe (16%), Africa (6%) and Oceania (2%) [6]. Industrial residues are 
residues that are produced by the food, fruit and vegetable processing industries and include bran, 
peels, pomace and bagasse. Generally, most agro-industrial waste is disposed of in landfills or 
burned, leading to various environmental problems and pose potential harm to the health of 
humans and wildlife [5,7,8]. However, agro-industrial waste can potentially be converted into 
different high-value products, including biofuels, value-added fine chemicals and cheap energy 
sources for microbial fermentation and enzyme production [7–9]. These waste products can 
represent a source of energy, as well as sources of carbon. Additionally, this form of waste is a source 
of the nutrients that are required for mushroom growth and lignocellulolytic enzyme production via 
solid state fermentation [9–11]. Therefore, in this study, we have summarized the current findings on 
the use of agro-industrial waste as growth substrates for mushroom cultivation and lignocellulolytic 
enzyme production. 

2. The Composition of Agro-Industrial Wastes 

Agro-industrial waste is a major lignocellulosic component. This form of waste includes 
cellulose, hemicelluloses and lignin, which are normally referred to as “lignocellulosic materials”. 
Generally, cellulose is the most abundant component, followed by hemicellulose and lignin (Figure 
1). 

 
Figure 1. Main composition of agro-industrial wastes. 

Cellulose is a homopolymer consisting of a linear chain of several hundred to many thousands 
of β-anhydroglucose units (β-1,4 linked D-glucose units). Each of the β-anhydroglucose units 
consists of three hydroxyl groups (OH), one primary (C6 position) and two secondary (C2 and C3 
positions) hydroxyl groups, each of which exhibits different polarities and is capable of being 
involved in the intra- and intermolecular hydrogen bonds [12,13]. The intra- and inter-chain 
hydrogen bonding network makes cellulose a relatively stable polymer and gives the cellulose fibrils 
high axial stiffness [14]. 

Hemicellulose is a heteropolymer consisting of a polysaccharide backbone. Its structure greatly 
varies depending on the sugar units, chain length and the branching of the chain molecules. Typical 
binding sugars in hemicelluloses are pentoses (xylose and arabinose), hexoses (mannose, glucose, 
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and galactose), hexuronic acids (4-O-methyl-D-glucuronic acid, galacturonic acid, and glucuronic 
acid), small amounts of rhamnose and fucose, and an acetyl group [12]. These binding sugars can 
assemble into a range of various hemicellulose polysaccharides, such as galactan mannans, xylans, 
xyloglucan and β-1,3/1,4-glucans [12,15]. 

Lignin is a rigid aromatic, amorphous and hydrophobic polymer that has been recognized as a 
highly branched polymer with a variety of functional groups, such as aliphatic, phenolic hydroxyls, 
carboxylic, carbonyl, and methoxyl groups. These functional groups give lignin a unique and very 
complex structure [16–18]. The nature of the lignin polymerization reactions results in the formation 
of a three dimensional, highly-branched, interlocking network of essentially infinite molecular 
weight. Lignin composition and content are influenced by plant species and the environment [17,18]. 

The composition of cellulose, hemicellulose and lignin in agro-industrial waste depends upon 
the species, tissue and maturity of the plant [2,4,5,12]. The values of the main components in some 
agro-industrial waste are shown in Table 1. 

Table 1. Main composition and carbon/nitrogen (C/N) ratio of some agro-industrial wastes. 

Agro-Industrial Wastes 
Composition (% Dry Weight Basis) 

C/N Ratio Reference 
Cellulose Hemicellulose Lignin 

Apple pomace 43 24 20 48/1 [19] 
Banana straw 53 29 15 40/1 [20] 
Banana leaves 55 20 25 38/1 [21] 
Barley straw 23–33 21–22 14–19 82–120/1 [22,23] 
Canola straw 22 17 18 33–45/1 [23] 
Coconut husk 24–43 3–12 25–45 75–186/1 [24,25] 
Coffee husk 43 7 9 40/1 [26] 
Corn bran 34 39 49 ND [25] 
Corn cob 35–45 35–44 11–15 50–123/1 [27,28] 

Corn stalk 34–61 19–24 7–9 57–80/1 [25,29] 
Corn straw 30 25 8 50/1 [25] 
Cotton stalk 58 14 22 70–78/1 [22] 

Grasses 25–41 25–50 7–30 16–42/1 [30] 
Hardwoods 40–55 24–40 18–25 150–450/1 [30] 

Oat bran 49 25 18 12/1 [25] 
Oat straw 25–40 21–27 17–18 48–83/1 [22,23] 
Rice bran 35 25 17 12–48/1 [25] 
Rice husk 35 25 20 30–80/1 [31] 
Rice straw 32–39 23–24 18–36 35–72/1 [29,32] 
Rye straw 38 31 19 82/1 [22] 

Beech sawdust 41 33 22 100–331/1 [33] 
Birch sawdust 40 36 20 700/1 [33] 
Oak sawdust 25–38 18–29 18–25 162–200/1 [31,33] 
Pine sawdust 42 25 28 724–1070/1 [33] 

Poplar sawdust 44 32 21 46–71/1 [33] 
Rubber tree sawdust 38 25 15 177/1 [34] 

Spruce sawdust 42 26 28 763–1000/1 [33] 
Softwood 45–50 25–35 25–35 310–520/1 [30] 

Sorghum stalk 17 25 11 45/1 [25] 
Sorghum straw 36 26 8 20–46/1 [35,36] 
Pineapple leaf 36 23 27 49/1 [37] 
Pineapple peel 22 75 3 77/1 [38] 

Potato peel 35 5 4 25/1 [39] 
Orange peel 9–14 6–11 1–2 102/1 [40,41] 
Lemon peel 12 5 2 ND [41] 

Tomato pomace 9 5 5 ND [42] 
Banana peel 12 10 3 18–29/1 [22] 
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Table 1. Cont. 

Agro-Industrial Wastes 
Composition (% Dry Weight Basis) 

C/N Ratio Reference 
Cellulose Hemicellulose Lignin 

Soya stalk 35 25 20 20–40/1 [43] 
Sugarcane bagasse 30–45 26–36 11–23 50/1 [22,29,44] 
Sugarcane straw 36–41 21–31 16–26 70–120/1 [45,46] 
Sunflower stalk 42 30 13 97/1 [43] 

Oil palm empty fruit bunch 45–51 28–29 12–15 77/1 [47,48] 
Water hyacinth 21 34 7 11/1 [10] 

Wheat bran 30 50 15 19/1 [25] 
Wheat straw 27–38 21–29 18–21 50–80/1 [22,25,49] 
Walnut shell 36 28 43 175/1 [50] 
Almond shell 38 29 30 61/1 [51] 
Chestnut shell 21 16 36 8/1 [51] 
Pistachio shell 43 25 16 43/1 [51] 
Hazelnut shell 55 34 35 50–58/1 [52] 
Olive oil cake 31 21 26 14–17/1 [53] 
Oil palm cake 64 15 5 ND [54] 

Sunflower oil cake 25 12 8 ND [54] 
Cotton seed hull 31 20 18 59–67/1 [55] 

“ND” = not determined. 

3. Mushroom Cultivation on Agro-Industrial Wastes 

Mushroom cultivation is widespread throughout the world and its global production has 
significantly increased since 2010 (Figure 2). The Food and Agriculture Organization Statistical 
Database (FAOSTAT) reported that China is the largest mushroom producer, followed by the 
United States of America and the Netherlands, with global production in 2018 reaching almost 8.99 
million tons. The trend to increase mushroom production is expected to continue in the future.  

 
Figure 2. Data of global mushroom production during 2004–2018 from FAOSTAT [56]. 

Edible mushrooms are also considered a healthy food because they are rich in proteins, 
carbohydrates, fiber, vitamins and minerals while being low in fat [57,58]. Normally, the range of 
protein, carbohydrate and fat contents in mushrooms is 15–35%, 35–70% and less than 5%, 
respectively [58]. Notably, several species of edible mushrooms are important because of their 
medicinal properties. Some edible mushrooms appear to be active against human pathogens, cancer, 
diabetes, hypertension, hypercholesterolemia conditions and tumors [57–59]. Today, more than 50 
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species of edible mushrooms have been commercially cultivated throughout the world. Most 
commercial edible mushrooms belong to the genera Agaricus, Agrocybe, Auricularia, Flammulina, 
Ganoderma, Hericium, Lentinula, Lentinus, Pleurotus, Tremella, and Volvariella (Figure 3). The top four 
globally cultivated edible mushrooms include the genera Lentinula (shiitake and relatives), Pleurotus 
(oyster mushroom), Auricularia (wood ear mushroom) and Agaricus (button mushroom and 
relatives) [54,60]. In 2017, world mushroom production was divided among several genera: Lentinula 
(22%), Pleurotus (19%), Auricularia (18%), Agaricus (15%), Flammulina (11%), Volvariella (5%) and 
others (10%) [60]. Most of the cultivated edible mushrooms are saprophytic fungi (decomposers) and 
able to degrade lignocellulosic materials by producing extensive enzymes (especially 
lignocellulolytic enzymes). They are then able to use these materials as nutrients for their growth. 
Thus, mushroom cultivation is often associated with the recycling of vast amounts of agro-industrial 
waste [2–4,54]. 

 
Figure 3. Examples of some commercially important cultivated mushrooms. 

Agro-industrial wastes (both agricultural residue and industrial residue) have been used as 
substrates in mushroom cultivation. Most agro-industrial waste is defined as low nitrogen content 
materials. The carbon/nitrogen (C/N) ratio in agro-industrial waste is varied among different types 
(Table 1), and it is an important factor in mushroom cultivation. This ratio has a critical influence on 
mycelium growth, mushroom weight, yields and protein content in the fruiting body of mushrooms 
[11,61,62]. Therefore, low-level nitrogen substrates for mushroom cultivation are necessary in that 
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they add organic (cereal bran, cereal shell, soybean meal and manure) or inorganic (ammonium 
chloride and urea) nitrogen supplements [63,64]. Several previous studies have found that the 
protein content in the fruiting body of mushrooms depends upon both the chemical composition 
and the C/N ratio of substrates, as well as the species of mushroom being cultivated [1,64–66]. 
Different mushroom species require different C/N ratios in the cultivation substrate in order to 
obtain the highest production yield, as is shown in Table 2. Moreover, the addition of various 
supplements, e.g., epsom salts (MgSO4∙7H2O), gypsum (CaSO4∙2H2O) and limestone (calcium 
carbonate, CaCO3), in the substrates also support the mycelia growth and fruiting body production 
of mushrooms [11,61,67]. 

Table 2. The carbon/nitrogen ratio in substrate to obtain the highest yield of some mushroom 
species. 

Mushroom Species 
C/N Ratio (%) 

Reference 
Minimum Optimum Maximum 

Agaricus bisporus 16/1 19/1 22/1 [68] 
Agaricus bitorquis 16/1 19/1 22/1 [69] 

Agaricus brasiliensis 10/1 26–28/1 50/1 [70] 
Agaricus brunescens 16/1 19/1 21/1 [71] 

Agaricus subrufescens 16/1 27/1 33/1 [72] 
Lentinula edodes 25/1 30–35/1 55/1 [73] 

Lentinus sajor-caju 40/1 45–55/1 90/1 [74] 
Pleurotus cornucopiae 40/1 45–55/1 97/1 [75] 

Pleurotus eryngii 40/1 45–55/1 70/1 [75] 
Pleurotus flabellatus 40/1 45–60/1 100/1 [76] 

Pleurotus florida 40/1 45–60/1 150/1 [77,78] 
Pleurotus ostreatus 40/1 45–60/1 90/1 [78] 

Flammulina velutipes ND 30/1 ND [79] 
Ganoderma lucidum ND 70–80/1 ND [80] 
Volvariella volvacea ND 40–60/1 ND [81] 

“ND” = not determined. 

Biological efficiency (BE), which is used to evaluate the efficiency of substrate conversion in 
mushroom cultivation, is calculated as the percentage ratio of the fresh weight of harvested 
mushrooms over the dry weight of the cultivation substrate [67]. A high BE value ensures a high 
possibility of utilizing substrates for mushroom cultivation [67,82]. In considering the profitability of 
mushroom cultivation, the BE value must be over 50%. Utilization of agro-industrial waste for the 
cultivation of mushrooms has resulted in the production of edible proteins for human consumption 
[2,7,11]. Cultivation methods for edible mushrooms vary considerably around the world and a 
variation in the chemical composition of a particular cultivated mushroom has been observed in 
various studies. This may be related to the specific mushroom species, the growing substrate and the 
relevant environmental conditions [1,2,11]. Many studies have been conducted to test the ability of 
mushrooms to grow on different agro-industrial forms of waste, such as wheat straw, barley straw, 
oat straw, rice straw, corn straw, corn cob, banana leaves, sawdust, sugarcane bagasse, soya stalk 
and sunflower stalk. A combination of agro-industrial waste can be used in mushroom cultivation. 
The main results regarding the cultivation of edible mushrooms on different agro-industrial waste, 
and their proximate composition values, are shown in Table 3 and Table 4.
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Table 3. Biological efficiency and chemical composition of some mushrooms grown on the non-combination of agro-industrial wastes. 

Agro-Industrial Wastes Mushroom Species Biological Efficacy (%) 
Chemical Composition (% Dry Weight) 

Reference 
Crude Protein Carbohydrate Fat Fiber Ash 

Wheat straw Agaricus bisporus 47.2–51.1 21.0–27.0 38.0–48.0 3.0–4.0 17.0–23.3 8.0–11.0 [83,84] 
 Agaricus subrufescens 53.7 28.4 63.2 1.6 6.2 6.8 [85] 
 Agrocybe cylindracea 61.4 1.5 89.6 0.3 40.4 8.6 [86] 
 Hericium erinaceus 39.4–43.5 26.8 58.9 3.7 ND 10.5 [87] 
 Lentinula edodes 66.0–93.1 15.2–15.4 63.7–65.7 1.1–1.5 ND 3.8–4.4 [88] 
 Lentinus sajor-caju 74.9 22.9 56.0 2.6 7.1 6.6 [89] 
 Pleurotus citrinopileatus 98.3–105.6 25.3 64.0 2.7 ND 8.1 [90] 
 Pleurotus columbinus 69.2 2.9 25.9 0.42 5.4 8.5 [91] 
 Pleurotus eous 75.1 19.5 50.2 2.6 7.8 6.0 [92] 
 Pleurotus eryngii 48.2 21.5 56.0 2.4 13.5 7.6 [93] 
 Pleurotus florida 66.4 27.9 51.2 2.4 12.2 8.7 [94] 
 Pleurotus ostreatus 22.6–52.6 11.6–14.6 47.5–74.4 1.8–2.5 19.1–27.1 8.6–12.0 [86,95] 
 Pleurotus sapidus 62.2 14.9 48.5 2.0 7.3 6.2 [96] 

Barley straw Lentinula edodes 64.1–88.6 15.1–16.8 75.1–77.7 1.9–2.2 ND 5.2–5.8 [88] 
 Pleurotus ostreatus 21.3 12.8 54.7 29.9 0.9 1.2 [95] 

Oat straw Agaricus bisporus 47.2–52.9 26.8–36.2 ND 2.3–3.1 6.6–10.3 9.8–11.3 [97] 
 Ganoderma lucidum 2.3 9.9 ND ND ND 1.0 [98] 

Rice straw Lentinula edodes 48.7 16.2 78.0 6.0 1.5 3.4 [99] 
 Lentinus sajor-caju 78.3 23.4 55.0 2.4 7.9 6.8 [89] 
 Hericium erinaceus 33.9 24.1 60.5 4.2 ND 11.3 [87] 
 Pleurotus citrinopileatus 76.5–89.2 22.8 64.9 3.2 ND 91 [90] 
 Pleurotus columbinus 71.4 4.8 27.3 0.3 5.0 7.7 [91] 
 Pleurotus eous 79.8 29.3 48.0 2.4 8.0 6.2 [92] 
 Pleurotus eryngii 45.9 21.8 53.0 1.9 13.8 8.7 [93] 
 Pleurotus pulmonarius 23.5 21.1 ND 5.2 7.0 6.9 [100] 
 Pleurotus ostreatus 25.6–84.6 12.5–23.4 55.3–57.4 2.8–16.2 7.7–0.7 6.3–13.6 [95,101] 
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Table 3. Cont. 

Agro-Industrial Wastes Mushroom Species Biological Efficacy (%) 
Chemical Composition (% dry Weight) 

Reference 
Crude Protein Carbohydrate Fat Fiber Ash 

Rice straw Pleurotus sapidus 64.7 23.4 45.6 1.6 8.0 6.4 [96] 
 Pleurotus djamor 82.7 24.8 37.7 3.1 22.0 8.3 [102] 
 Volvariella volvacea 10.2–15.0 36.9–38.1 42.8–42.3 0.8–1.0 4.4–6.0 9.0–10.3 [103–105] 
 Corprinus comatus 18.0 10.9 76.6 1.9 ND 20.5 [106] 

Corn straw Pleurotus florida 31.6 26.3 31.3 0.5 19.6 5.2 [107] 
 Volvariella volvacea ND 23.0 13.9 1.4 36.6 11.9 [108] 

Corn cob Agrocybe cylindracea 33.5 14.8 72.4 2.9 17.0 10.1 [86] 
 Pleurotus columbinus 79.1 1.9 28.5 0.2 4.12 9.3 [91] 
 Pleurotus cystidiosus 50.1 24.5 40.6 3.0 24.3 7.57 [109] 
 Pleurotus eryngii 51.8 23.8 54.8 1.9 9.7 7.0 [93] 
 Pleurotus florida 55.0 29.1 38.2 0.9 22.8 3.5 [107] 
 Pleurotus ostreatus 31.7–66.1 15.4–29.7 30.8–73.4 2.7–3.4 13.8–29.8 7.1—8.0 [86,109] 

Banana leaves Pleurotus ostreatus ND 15.0 24.9 2.2 5.1 11.2 [62,110] 
 Pleurotus pulmonarius 17.9 16.9–23.5 26.2 1.9–5.5 5.8–7.2 6.4–10.3 [62,100] 
 Volvariella volvacea 15.2 23.9 ND ND 8.1 6.1 [111] 

Soya stalk Lentinus sajor-caju 83.0 25.8 52.2 2.8 6.7 7.3 [89] 
 Pleurotus eous 82.3 30.5 50.5 2.6 9.0 6.5 [92] 
 Pleurotus ostreatus 85.2 24.7 53.2 2.8 7.2 6.7 [101] 
 Pleurotus columbinus 90.6 7.4 33.3 0.4 5.1 9.2 [91] 
 Pleurotus florida 87.6 23.5 57.8 2.5 8.0 8.0 [112] 
 Pleurotus sapidus 72.7 26.8 24.9 2.1 7.5 7.0 [96] 

Sunflower stalk Lentinus sajor-caju 63.1 21.0 50.7 2.8 7.7 6.9 [89] 
 Pleurotus eous 61.5 27.4 52.0 2.2 7.9 5.2 [92] 
 Pleurotus sapidus 45.9 20.1 48.5 2.4 7.3 6.2 [96] 

Oil palm empty fruit bunch Schizopyllum commune 3.7 6.1 37.4 4.5 0.01 1.94 [113] 
 Volvariella volvacea 3.6–6.5 33.5–41.0 27.9–45.7 3.7–5.1 7.7–16.0 9.4–9.9 [114] 
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Table 3. Cont. 

Agro-Industrial Wastes Mushroom Species Biological Efficacy (%) 
Chemical Composition (% Dry Weight) 

Reference 
Crude Protein Carbohydrate Fat Fiber Ash 

Cotton stalk Pleurotus florida 25.1 29.8 37.3 2.2 19.4 8.7 [115] 
 Pleurotus pulmonarius 42.3 29.3 44.5 3.1 11.3 9.2 [115] 
 Pleurotus ostreatus 44.3 30.1 40.2 2.1 17.2 8.4 [115] 

Rice husk Pleurotus ostreatus 9.5 5.9 48.5 30.9 0.3 14.3 [95] 
Sugarcane bagasse Lentinula edodes 130.0–133.0 13.1–13.8 73.0–78.9 0.9–1.0 ND 6.2–7.1 [116] 

 Pleurotus cystidiosus 49.5 22.1 45.2 2.3 22.8 7.5 [109] 
 Pleurotus djmor 101.7 25.1 45.2 2.1 9.1 4.1 [117] 
 Pleurotus eryngii 41.3 20.5 49.0 3.1 8.0 7.8 [93] 
 Pleurotus florida 75.6 8.7 ND 4.0 2.5 0.3 [118] 
 Pleurotus ostreatus 65.7 27.1 34.9 2.0 29.3 6.7 [109] 

Sugarcane straw Lentinula edodes 83.0–98.0 14.4 72.5–78.2 0.7–0.9 NR 6.4–6.5 [116] 
Cottonseed hull Pleurotus florida 13.6 20.0 61.2 11.9 11.9 5.5 [119] 

 Pleurotus ostreatus 8.9 17.5 65.9 1.2 10.2 5.2 [119] 
Cassava peel Pleurotus ostreatus 24.0–26.1 10.5–10.7 73.0–74.6 2.1–2.2 8.5–8.9 7.5–7.7 [120] 

 Volvariella volvacea 0.6-2.3 11.5–14.3 51.4–53.4 2.4–2.6 0.4–0.5 5.0–6.2 [121] 
Hardwood sawdust Hericium erinaceus 47.5–50.3 24.8 60.9 3.6 ND 10.6 [87] 

Acacia sawdust Pleurotus cystidiosus 36.3 15.7 55.9 2.1 20.1 6.3 [109] 
 Pleurotus ostreatus 46.4 19.5 51.3 1.3 22.0 5.9 [109] 

Beech sawdust Agrocybe cylindracea 38.3 18.4 70.3 3.4 15.0 8.2 [86] 
 Ganoderma lucidum 61.2 16.8 77.9 2.2 47.9 3.1 [122] 
 Pleurotus ostreatus 46.8 16.1 73.6 3.5 15.8 6.2 [86] 

Sawdust Auricularia polytricha 13.9–44.6 10.2 78.4 0.9 ND 4.2 [123] 
 Pleurotus columbinus 89.1 1.7 25.0 0.2 4.6 9.1 [91] 
 Pleurotus citrinopileatus 38.4–51.6 24.1 65.6 2.6 ND 7.8 [90] 
 Pleurotus eryngii 35.5 19.5 52.5 2.4 7.8 7.5 [93] 

“ND” = not determined. 
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Table 4. Biological efficiency and chemical composition of some mushrooms grown on the combination of agro-industrial wastes. 

Agro-Industrial Wastes Mushroom Species Biological Efficacy (%) 
Chemical Composition (% Dry Weight) 

Reference 
Crude Protein Carbohydrate Fat Fiber Ash 

Soya stalk (50%) + rice straw (50%) Pleurotus florida 85.2 22.7 54.9 2.6 7.6 6.5 [111] 
 Pleurotus ostreatus 81.7 23.0 50.5 2.7 7.7 6.4 [124] 

Soya stalk (50%) + wheat straw (50%)  Pleurotus florida 78.2 22.4 57.1 2.3 7.5 6.4 [111] 
 Pleurotus ostreatus 77.7 21.1 52.0 2.6 7.4 6.2 [124] 

Wheat straw (50%) + Rice straw (50%) Hericium erinaceus 32.5–37.2 25.6 60.6 3.9 ND 9.7 [87] 
 Pleurotus florida 72.3 20.2 53.9 2.3 7.4 6.5 [111] 
 Pleurotus ostreatus 71.8 20.3 56.0 2.6 7.5 5.9 [124] 

Oat straw (80%) + wheat bran (20%) Ganoderma lucidum 2.0–2.5 10.6–12.5 ND ND 47.8–57.7 1.3–1.5 [98] 
Cotton stalk (50%) + Cottonseed hull (50%) Pleurotus florida 17.3 24.5 52.0 3.2 13.2 7.1 [119] 

 Pleurotus ostreatus 20.2 22.8 58.0 2.9 10.8 5.5 [119] 
Acacia sawdust (50%) + corn cob (50%) Pleurotus cystidiosus 43.6 21.4 44.8 2.8 23.6 7.3 [109] 

 Pleurotus ostreatus 58.8 18.7 46.9 3.3 24.5 6.7 [109] 
Acacia sawdust (50%) + sugarcane bagasse (50%) Pleurotus cystidiosus 41.1 25.6 37.5 1.8 28.5 6.8 [109] 

 Pleurotus ostreatus 58.9 24.2 37.8 2.5 28.8 6.7 [109] 
Sugarcane bagasse (50%) + grasses (50%) Agaricus brasiliensis 44.3 28.3 ND 1.6 5.8 6.7 [125] 

Rubber tree sawdust (50%) + rice straw (50%) Flammulina velutipes 123.9 17.0–27.0 58.0–87.0 1.8–7.3 ND 7.3–10.4 [126] 
Beech sawdust (50%) + olive pruning residues (50%) Ganoderma lucidum 20.5 15.3 79.3 2.0 43.8 3.4 [122] 
Wheat straw (50%) + olive pruning residues (50%) Pleurotus ostreatus 56.8 19.9 71.7 1.9 16.5 6.5 [122] 

Sawdust (90%) + rice bran (10%)  Pleurotus eous 48.4–68.1 27.8 28.6 5.6 17.3 4.9 [127] 
Sugarcane bagasse (50%) + rice straw (50%) Lentinus sajor-caju 83.9 30.9 33.8 ND 24.5 6.9 [128] 

Cassava peel (50%) + corn cobs (50%) Pleurotus ostreatus 31.1–33.7 10.6–10.8 73.6–74.8 2.1–2.2 8.6–8.9 7.3–7.8 [120] 
Hard wood sawdust (50%) + rice straw (50%) Hericium erinaceus 36.5–44.2 25.1 59.8 4.0 ND 11.0 [87] 

Hard wood sawdust (50%) + wheat straw (50%) Hericium erinaceus 41.4–46.5 24.7 60.8 4.2 ND 10.3 [87] 
Hardwood sawdust (30%) + corn stalk (60%) 

+ rice bran (10%) 
Auricularia polytricha 27.3–41.0 11.1 76.1 0.9 ND 4.8 [129] 

“ND” = not determined. 
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4. Lignocellulolytic Enzyme Production by Mushroom Using Agro-Industrial Wastes  

The decomposition of lignocellulosic materials is carried out by decomposers such as bacteria, 
microfungi, mushrooms, earthworms, and woodlice, all of which play an important role in the 
terrestrial carbon cycle [130–132]. Lignocellulose is a composite of three main biopolymers: cellulose, 
hemicellulose and lignin. Due to the different bonding functions that exist among these polymers, 
lignocellulose degradation requires the synergistic action of multiple carbohydrate-active enzymes. 
These are involved in the assembly and breakdown of glycosidic bonds [132–134]. The degradation 
of lignocellulosic biomass is achieved through cooperative activities of hydrolytic and oxidative 
enzymes [134–136], as is shown in Figure 4. The hydrolytic system is responsible for cellulose and 
hemicellulose degradations, whereas the oxidative system is known to participate in lignin 
degradation. 

 
Figure 4. Scheme of the main enzymes involved in the lignocellulosic degradation process. 

4.1. Cellulose Degradation Enzymes 

Commonly, cellulose hydrolysis requires a combination of three main types of cellulase: 
endo-1,4-β-D-glucanase (endoglucanase, EC 3.2.1.4), exo-1,4-β-D-glucanase or cellobiohydrolases 
(exoglucanase, EC 3.2.1.91) and β-glucosidase (β-D-glucoside glucanhydrolase, EC 3.2.1.21), in order 
to convert cellulose into oligosaccharides, cellobiose, and glucose [137,138]. The degradation of 
cellulose by various cellulase enzymes is diagrammed in Figure 5. Endoglucanases preferentially 
hydrolyze internal β-1,4-glucosidic linkages in the cellulose chains, generating a number of reducing 
ends [138,139]. This enzyme also acts on cellodextrins, which are the intermediate product of 
cellulose hydrolysis, and converts them to cellobiose and glucose. Exoglucanases release cellobiose 
from the reducing end or the nonreducing end of the cellulose chain, facilitating the production of 
mostly cellobiose which can readily be converted to glucose by β-glucosidases [136,140,141]. These 
enzymes may also act on cellodextrins and larger cello-oligosaccharides, in which case they are 
commonly named cellodextrinases [142]. Oligosaccharides released as a result of these activities are 
converted to glucose by the action of cellodextrinases (EC 3.2.1.74), whereas the cellobiose released 
mainly by the action of cellobiohydrolases is converted to glucose by β-glucosidases [139]. 
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Figure 5. Enzymes involved in cellulose degradation. 

Cellulases are produced in a wide range of organisms such as plants, some animals, and certain 
microorganisms including protozoans, bacteria, and fungi. Among these organisms, fungi have been 
studied extensively for their cellulase producing capabilities, such as the genera Aspergillus, 
Penicillium, Rhizopus and Trichoderma [143–146]. However, mushrooms are the most potent 
degraders of natural lignocellulosic waste. They are mostly grown on litter, dead wood, or in soil 
and nature-rich cellulose [9]. Several previous reports have found that various mushrooms species 
can produce cellulase via solid state fermentation (SSF) of agricultural or natural lignocellulosic 
waste [147–149]. Many agricultural or natural lignocellulosic solid waste, especially different kinds 
of straw (wheat, sorghum, rice) and sawdust (oak and pine), were used as a substrate or source for 
mushroom growth and cellulases production [150–153]. Furthermore, other forms of lignocellulosic 
waste, such as peanut hulls, mandarin peels, cotton waste, corn stovers and tree leaves (Fagus 
sylvatica), have also been used as substrates to determine cellulase activity [150,154,155]. The 
high-value potential of these forms of waste is encouraging as they can be sources that support the 
growth and cellulases production of different mushroom species, namely Ganoderma, Grifola, 
Lentinula, Lentinus, Pleurotus, Piptoporus and Trametes by SSF [152,156–159]. Different agricultural or 
natural lignocellulosic forms of waste that have been fermented by various mushroom species are 
summarized in Table 5. 
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Table 5. Production of enzymes in solid state fermentation of cellulose degradation by some 
mushrooms using agro-industrial wastes. 

Enzyme Agro-Industrial Wastes Mushroom Species Activity  Reference 
Total cellulase Wheat straw Lentinula edodes 45–60 U/mL [151] 

  Pleurotus dryinus 41–120 U/mL [151,160] 
  Pleurotus ostreatus 665–1185 U/mL [151] 
  Pleurotus tuber-regium 505 U/mL [151] 
  Fomitopsis sp. 3.5 U/gds [159] 
 Tree leaves (Fagus sylvatica) Lentinula edodes 40–45 U/mL [151] 
  Pleurotus dryinus 205 U/mL [151] 
  Pleurotus ostreatus 14–15 U/mL [151] 
  Pleurotus tuber-regium 20 U/mL [151] 
 Sorghum straw Pycnosporus sanguineus 0.8 U/gds [153] 
  Pleurotus ostreatus 1.3 U/gds [153] 
  Pleurotus eryngii 0.7 U/gds [153] 
  Phanerochaete chrysosporium 1.1 U/gds [153] 
  Trametes versicolor 1.0 U/gds [153] 
 Eucalyptus wood chip Wolfiporia cocos 1.4–8.3 U/gds [161] 
  Laetiporeus sulfureus 0.8–15.4 U/gds [161] 
  Poria medulla-panis 0.4–3.4 U/gds [161] 
  Pycnoporus coccineus 1.8–3.7 U/gds [161] 
  Phlebia tremellosa 0.6–2.0 U/gds [161] 
  Trametes versicolor 0.8–4.0 U/gds [161] 

Endoglucanase Wheat straw Lentinus tigrinus 1230 U/gds [156] 
  Lentinula edodes 180–345 U/mL [151] 
  Pleurotus dryinus 910 U/mL [151] 
  Pleurotus ostreatus 185-245 U/mL [151] 
  Pleurotus tuber-regium 150 U/mL [151] 
  Piptoporus betulinus 83.5 U/gds [157] 
 

Tree leaves (Fagus sylvatica) 
Lentinula edodes 40–65 U/mL [151] 

 Pleurotus dryinus 1130 U/mL [151] 
  Pleurotus ostreatus 25–1300 U/mL [151] 
  Pleurotus tuber-regium 150 U/mL [151] 
 Sorghum straw Pycnosporus sanguineus 2.0 U/gds [153] 
  Pleurotus ostreatus 2.3 U/gds [153] 
  Pleurotus eryngii 1.4 U/gds [153] 
  Phanerochaete chrysosporium 4.0 U/gds [153] 
  Trametes versicolor 2.2 U/gds [153] 
 Sugarcane bagasse Lentinus sajor-caju 13.9–18.9 U/gds [162] 
  Pleurotus ostreatus 3.0 U/gds [163] 
 Sawdust  Trametes trogii  504 U/gds [164] 
  Coriolus versicolor 0.6 U/gds [165] 
  Ganoderma applanatum 0.1 U/gds [165] 
  Pycnoporus sanguineus 0.6 U/gds [165] 
  Trametes villosa 0.2 U/gds [165] 
  Pleurotus ostreatus 3.0 U/gds [163] 
  Lentinus sajor-caju 0.9 U/gds [163] 
 Rice straw Pleurotus ostreatus 7.1 U/gds [163] 
  Lentinus sajor-caju 1.9 U/gds [163] 
 Oak sawdust Grifola frondosa 12.3 U/gds [152] 
 Pine chip Coriolus versicolor 2.4 U/gds [165] 
  Ganoderma applanatum 2.8 U/gds [165] 
  Pycnoporus sanguineus 4.8 U/gds [165] 
  Trametes villosa 3.9 U/gds [165] 
 Green tea waste Microporus xanthopus 38.6 U/gds [166] 
 Wheat straw Fomitopsis sp. 53.6 U/gds [159] 
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Table 5. Cont. 

Enzyme Agro-Industrial Wastes Mushroom Species Activity  Reference 
Exoglucanase Oak sawdust Grifola frondosa 16.2 U/gds [152] 

 Rice straw Pleurotus ostreatus 2.0 U/gds [163] 
  Lentinus sajor-caju 1.8 U/gds [163] 
 Sugarcane bagasse Pleurotus ostreatus 7.0 U/gds [163] 
  Lentinus sajor-caju 2.0 U/gds [163] 
 Sawdust  Pleurotus ostreatus 2.8 U/gds [163] 
  Lentinus sajor-caju 0.6 U/gds [163] 
 Corn stover Irpex lacteus 69.3 U/gds [167] 

β -Glucosidase Sorghum straw Pycnosporus sanguineus 0.4 U/gds [153] 
  Pleurotus ostreatus 0.2 U/gds [153] 
  Pleurotus eryngii 0.2 U/gds [153] 
  Phanerochaete chrysosporium 1.1 U/gds [153] 
  Trametes versicolor 1.9 U/gds [153] 
 Eucalyptus wood chip Wolfiporia cocos 8.3–42.0 U/gds [161] 
  Laetiporeus sulfureus 7.6–37 U/gds [161] 
  Poria medulla-panis 2.7–10.5 U/gds [161] 
  Pycnoporus coccineus 8.0–22.0 U/gds [161] 
  Phlebia tremellosa 3.8–15.6 U/gds [161] 
  Trametes versicolor 3.8–20.0 U/gds [161] 
 Oak sawdust  Grifola frondosa  2.3 U/gds [152] 
 Rice straw Pleurotus ostreatus 2.5 U/gds [163] 
  Lentinus sajor-caju 1.2 U/gds [163] 
 Sugarcane bagasse Pleurotus ostreatus 3.5 U/gds [163] 
  Lentinus sajor-caju 2.6–12.3 U/gds [162,163] 
 Sawdust  Pleurotus ostreatus 2.2 U/gds [163] 
  Lentinus sajor-caju 0.2 U/gds [163] 
  Coriolus versicolor 0.5 U/gds [165] 
  Ganoderma applanatum 0.4 U/gds [165] 
  Pycnoporus sanguineus 0.4 U/gds [165] 
  Trametes villosa 0.5 U/gds [165] 
  Trametes trogii  0.89 U/gds [164] 
 Pine chip Coriolus versicolor 0.3 U/gds [165] 
  Ganoderma applanatum 0.1 U/gds [165] 
  Pycnoporus sanguineus 0.8 U/gds [165] 
  Trametes villosa 0.5 U/gds [165] 
 Wheat straw Piptoporus betulinus 78.8 U/gds [157] 
  Pleurotus dryinus 401 U/gds [160] 
  Lentinula edodes 0.1 U/gds [168] 
 Sorghum straw Pleurotus eryngii 0.23 U/gds [153] 

Cellulase activity is mainly tested using a reducing sugar assay to determine cellulase 
hydrolysis activity at the end of the production process [169]. The common enzyme activity assays 
consist of total cellulase assays, endoglucanase assays, exoglucanase assays and β-glucosidase 
assays [140]. Filter paper assay (FPA) is widely used to determine total cellulase activity. The degree 
of filter paper activity is determined as the micromole of glucose equivalent liberated per minute of 
culture filtrate under assay conditions [170]. Endoglucanase activity can be measured using the 
carboxymethyl cellulose (CMC) as a substrate. This carboxymethyl cellulase (CMCase) is mainly 
measured by examining the reducing sugars of enzymatic reactions with CMC based on the 
procedure described by [171]. The exoglucanase activity mainly uses commercial Avicel as a 
substrate for measuring the activity [169]. The β-glucosidase assay can be measured based on the 
procedure of Kubicek [172] using chromogenic and nonchromogenic substrates such as 
p-nitrophenol-β-glucoside (pNPG) and cellobiose, respectively [173,174]. Moreover, various 
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reducing sugar assays, for instance, 3,5-dinitrosalicylic acid (DNS), glucose oxidase (GOD) and 
high-performance liquid chromatography were also used. 

4.2. Hemicellulose Degradation Enzymes 

Hemicelluloses are usually classified based on the backbone sugars present in the structural 
polymer with typical glucose galactose, xylose, mannose, and arabinose. The principal 
hemicelluloses are comprised of xyloglucans, xylans, mannans, glucomannans, and mixed linkage 
β-glucans [175,176]. In order to digest hemicellulose, microorganisms need to be able to produce a 
variety of enzymes to hydrolyze complex substrates with a synergistic action. Hemicellulolytic 
enzymes or hemicellulases are glycoside hydrolases or carbohydrate esterases that are responsible 
for polysaccharide degradation. The enzymes include xylanase (EC 3.2.1.8), β-xylosidase (EC 
3.2.1.37), α-arabinofuranosidase (EC 3.2.1.55) α-glucuronidase (EC 3.2.1.139), and β-mannosidases 
(EC 3.2.1.25) [134,138]. 

4.2.1. Xylanases 

Xylan is a heteropolysaccharide and a major hemicellulose. The main chain of xylan consists of 
β-1,4-linked D-xylopyranosyl residues, which are partially replaced with O-acetyl, L-arabinosyl and 
4-O-methyl-D-glucuronic acid. The xylan backbone is substituted by different side chains with 
L-arabinose, D-galactose, D-mannoses, and glucouronic acid linked by glysosidic bonds and ester 
bonds with ferulic acid [177–180]. Biodegradation of xylan requires diverse modes of action of 
hydrolytic enzymes. Xylanases are a group of glycoside hydrolase enzymes that breakdown 
hemicelluloses through the degradation of the linear polysaccharide xylan into xylose by catalyzing 
the hydrolysis of the glycosidic linkage (β-1,4) of xylosides. The xylanolytic enzyme system includes 
a mixture of endo-1,4-β-xylanases also called endo-xylanases, β-xylosidases, α-arabino- 
furanosidases, α-glucuronidases and acetylxylanases, which attach to the specific site of xylan as is 
displayed in Figure 6 [181,182]. Endo-xylanases randomly hydrolyze β-1,4-xylanopyranosyl 
linkages of xylan to form xylo-oligosaccharides, xylotriose, xylobiose and xylose. The hydrolysis of 
xylans is not attacked randomly but depends upon the degree of branching, chain length, and 
presence of substituents in the substrate molecule [183]. 

 
Figure 6. Enzymes involved in xylan degradation. 

β-Xylosidase attacks from the non-reducing end of xylo-oligosaccharides, xylotriose or 
xylobiose, that are generated by the action of endo-xylanase and ultimately liberate xylose sugar 
(Figure 6). Biomass can be used as a substrate for this enzyme production process. However, a 
limitation of the commercial application of this substance is related to various factors such as their 
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physical limitations, the limited hydrolysis of xylans due to their diverged branched nature, the fact 
that their enzymes are associated with a narrow pH range and thermal instability, their end product 
inhibition levels and the cost of enzyme production. These comprise the unreachability of substrates 
to xylanase enzymes [178]. The use of substrates with agricultural or industrial biomass for enzyme 
production serves as an alternative way to overcome the limitations of the costs of enzyme 
production; however, biomass pretreatment is sometimes needed to improve efficiency in the 
practical hydrolysis of biomass. 

Many microorganisms, such as fungi, bacteria and yeast, can degrade hemicellulose by 
producing xylanases. A determination of xylanase activities can be analyzed by several methods. 
The plate assay has been used for decades as a primary screening method to select xylanase 
producing strains. The screening strains are cultured on agar medium containing xylan as their 
carbon source until clear zones are observed (the xylan hydrolysis area) after being stained with 
Congo red dye [183] or Gram’s iodine solution [184]. Plate assay methods rely on interactions 
between a dye and a polymeric substrate for the indirect detection of hydrolysis but require the use 
of relevant controls and independent confirmation of the relevant enzymatic activities. Xylans, such 
as oat spelt, beech wood [185], and birch-wood xylans [186,187], was used as a substrate to 
determine endo-xylanase activity. The enzyme activities were determined from the presence of 
reducing sugars as xylose equivalents liberated from the enzymatic hydrolysis by the DNS method 
[188] or the Nelson [189] and Somogyi [190] methods. However, xylans obtained from natural 
sources contain not only xylose residues but also arabinose and glucuronic acid residues. Thus, 
comparisons of xylanase activity in various studies have been difficult. Xylanase activity varies 
according to the source of the xylans. Other types of substrates can be applied. Specifically, 
p-nitrophenyl-glycoside substrate (p-nitrophenyl esters with substrate) can be used as a 
chromogenic substrate for the calorimetric assay of β-xylosidase activity. The substrate is colorless in 
neutral or alkaline solution. After enzymatic hydrolysis, p-nitrophenol is liberated as alkaline pH 
develops a yellow color that is suitable for the quantitative measurement of the enzyme activity.  

Multifunctional xylanolytic enzyme system is relatively common in fungi, actinomycetes and 
bacteria [190,191]. A large variety of industrial xylanase enzymes are produced from various kind of 
microorganisms [192]. SSF with batch processing has been used for the utilization of agro-industrial 
waste [193]. However, very few studies have reported on the xylanolytic enzymes obtained from 
mushroom on SSF (Table 6). These potential outcomes provide opportunities for scientists to explore 
the hydrolytic potential of xylanase for the efficient saccharifcation of lignocellulosic biomass from 
mushroom cultivation. 

4.2.2. Mananases 

The two most important and representative hemicelluloses are xylans and mannans. Mannans 
are polysaccharides that consist of mannose-based backbones linked by β-1,4-linkage with variable 
degrees of side substitutions. These polysaccharides are renewable resources and their enzymatic 
conversion is of great interest in the field of lignocellulose biotechnology [194]. The enzyme 
breakdown of mannans is accomplished with β-mannanase (β-1,4-D-mannan mannohydrolase, EC 
3.2.1.78) as it randomly attacks the internal β-1,4-D-mannopyranosyl linkage within the main chain 
of various mannan-based polysaccharides, such as galactomannans, glucomannans, and 
galactoglucomannans, to release mannooligosaccharides (MOS), manotetrose, manotriose and 
manobiose [176]. 
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Table 6. Production of enzymes in solid state fermentation of hemicellulose degradation by some 
mushrooms using agro-industrial wastes. 

Enzyme Agro-Industrial Wastes Mushroom Species Activity  Reference 
Total xylanase Tree leaves 

(Fagus sylvatica) 
Lentinula edodes 85–200 U/mL [151] 

 Pleurotus dryinus 2145 U/mL [151] 
  Pleurotus ostreatus 160–1400 U/mL [151] 
  Pleurotus tuber-regium 155 U/mL [151] 
 Wheat straw Lentinula edodes 195–275 U/mL [151] 
  Pleurotus dryinus 1450 U/mL [151] 
  Pleurotus ostreatus 260–735 U/mL [151] 
  Pleurotus tuber-regium 260 U/mL [151] 
 Wheat bran Fomes fomentarius 7–63 U/mL [154] 
  Ganoderma applanatum 3 U/mL [154] 
  Pleurotus ostreatus 16 U/mL [154] 
  Trametes hirsuta 8 U/mL [154] 
  Trametes ochracea 35 U/mL [154] 
  Trametes versicolor 21 U/mL [154] 
  Trametes pubescens 32 U/mL [154] 
  Trametes biforme 19 U/mL [154] 

Endo-1,4-β-xylanase Rice straw Pleurotus ostreatus 21 U/gds [195] 
 Sawdust Pleurotus ostreatus 9 U/gds [195] 
 Sugarcane bagasse Ganoderma lucidum 33 U/gds [196] 
 Tomato pomace Pleurotus ostreatus 9 U/gds [197] 
  Trametes versicolor 50 U/gds [197] 
 Jerusalem artichoke stalk Schizophyllum commune 106 U/gds [198] 
 Oak leaves Marasmius quercophilus 73 U/gds [199] 
  Mycena inclinata 105 U/gds [199] 
  Pholiota lenta 83.2 U/gds [199] 
 Wheat straw Pleurotus citrinopileatus 0.12 U/gds [200] 
  Pleurotus ostreatus 0.14 U/gds [200] 

 Pine wood chip 
Ceriporiopsis 

subvermispora 
0.25 U/gds [201] 

 Eucalyptus wood chip 
Ceriporiopsis 

subvermispora 
0.12 U/gds [201] 

 Soya bran Fomes sclerodermeus 31 U/gds [202] 
 Rice bran mixed rice husk Leucoagaricus meleagris 0.8 U/gds [203] 
 Sugarcane bagasse 

mixed wheat bran 
Pleurotus ostreatus 8.7 U/gds [204] 

 Ganoderma lucidum 16.3 U/gds [204] 
  Trametes versicolor 36.7 U/gds [204] 

1,4-β-Xylosidase Oak leaves Marasmius quercophilus 1.7 U/gds [199] 
  Mycena inclinata 5.8 U/gds [199] 
  Pholiota lenta 1.6 U/gds [199] 

 Pine wood chip 
Ceriporiopsis 

subvermispora 
4.4 U/gds [201] 

 Eucalyptus wood chip 
Ceriporiopsis 

subvermispora 
2.6 U/gds [201] 

 Wheat straw Pleurotus citrinopileatus 11.5 U/gds [200] 
  Pleurotus ostreatus 14.3 U/gds [200] 

 
Sugarcane bagasse mixed 

wheat bran 
Ganoderma lucidum 0.4 U/gds [204] 

  Trametes versicolor 1.5 U/gds [204] 
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Table 6. Cont. 

Enzyme Agro-Industrial Wastes Mushroom Species Activity  Reference 
Endo-1,4-β-mannanase Oak leaves Marasmius quercophilus 3.4 U/gds [199] 

  Mycena inclinata 3.2 U/gds [199] 
  Pholiota lenta 11.8 U/gds [199] 
 Pine wood chip Ceriporiopsis subvermispora 90.4 U/gds [201] 
 Eucalyptus wood chip Ceriporiopsis subvermispora 52.2 U/gds [201] 

1,4-β-Mannosidase Oak leaves Marasmius quercophilus 5.9 U/gds [199] 
  Mycena inclinata 4.2 U/gds [199] 

The degradation of the mannan backbone is performed by the action of β-mannanases, and the 
further degradation requires β-mannosidase (β-1,4-D-mannopyranoside hydrolase, EC 3.2.1.25) to 
hydrolyze the terminal ends (non-reducing ends) of MOS into sugar-based mannose. Subsequently, 
β-glucosidases remove 1,4-glucopyranose units at the non-reducing ends of the oligomers derived 
from the degradation of glucomannan and galactoglucomannan [171,205] as is shown in Figure 7. 
Xylanases and mannanases are important enzymes for the hydrolysis of hemicelluloses. β-mannan is 
found in many feedstuffs including soybean meal, palm kernel meal, copra meal, and sesame meal 
and other leguminous feeds [206]. β-Mannanases are widely applied to randomly hydrolyze the 
β-1,4-mannopyranoside linkage of mannan-based polysaccharides in many industries. 

 
Figure 7. Enzymes involved in mannan degradation. 
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4.2.3. Arabinanases 

Arabinanases are a group of hydrolytic enzymes that include endo-arabinanases (EC 3.2.1.99), 
arabinosidases (EC 3.2.1.55), and α-L-arabinofuranosidase. These work synergistically to generate 
L-arabinose from arabinan as is shown in Figure 8 [207–211]. The biodegradation of xylan requires 
the cooperation of xylanases, β-xylosidase, α-L-arabinofuranosidase, α-glucuronidase, and 
acetylxylanases [181,182]. The removal of the side groups of xylans is catalyzed by 
α-L-arabinofuranosidases (E.C. 3.2.1.55), α-D-glucuronidases and acetylxylan esterases, which 
remove acetyl and phenolic side branches and act synergistically on the complex polymer [178]. 
Fungi produce extracellular arabinanases, a group of hydrolytic enzymes that include 
α-L-arabinofuranosidases and endo-arabinanases to specifically release L-arabinose from 
polysaccharides including xylans and pectin [212]. Importantly, α-L-arabinofuranosidases catalyze 
the hydrolysis of α-L-arabinofuranosidic linkage at terminal non-reducing- α-L-1,2-, α-L-1,3- and 
α-L-1,5-arabinofuranosyl residues obtained from different oligosaccharides and polysaccharides 
(α-L-arabinosides, arabinans, arabinoxylans, and arabinogalactans) and act synergistically with 
other hemicellulases to completely breakdown hemicellulose [212,213]. The L-arabinofuranoside 
substitutions on xylan strongly inhibit the action of xylan-degrading enzymes, thus preventing the 
complete degradation of xylan to xylose units [213]. The α-L-arabinofuranosidases can be found in 
plants, bacteria and fungi [186]. 

The colorimetric method is used to determine α-L-arabinofuranosidases activity. Notably, the 
p-nitrophenol-linked substrate, 4-nitrophenyl α-L-arabinofuranoside, is used for the enzyme assay 
by determining the amount of p-nitrophenol released from the enzyme-substrate reaction 
[186,214,215]. Arabinoxylans, such as wheat four arabinoxylan and sugar beet arabinan, is also used 
for the determination of enzyme activity [180] by monitoring the generation of arabinose from 
polysaccharide substrates. Liberated arabinose can be determined by the DNS method [187]. 

 
Figure 8. Enzymes involved in arabinan degradation. 

4.3. Lignin Degradation Enzymes 

Lignin degradation is the primordial step in lignocellulose degradation enabling the 
accessibility of cellulose and hemicellulose [216,217]. Ligninolytic microorganisms can degrade 
lignins via the secretion of oxidative enzymes, such as peroxidases and laccases, or by producing a 
source of heterogeneous aromatics. Ligninolytic enzymes or ligninases are mainly comprised of 
laccases (Lac, EC 1.10.3.2), lignin peroxidases (LiPs, EC 1.11.1.14), manganese peroxidases (MnPs, EC 
1.11.1.13), versatile peroxidases (VPs) and dye decolorizing peroxidases (DyPs, EC 1.11.1.19) 
[116,218]. These enzymes display less substrate specificity than cellulases and hemicellulases 
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[124,218,219]. Additionally, Lac, LiP and MnP, and many other enzymes, such as aromatic acid 
reductase, aryl alcohol dehydrogenase, catalase aromatic aldehyde oxidase, dioxygenase, quinone 
oxidoreductase, vanillate hydroxylase, veratryl alcohol oxidase and versatile peroxidase, are also 
involved in lignin digestion [219].  

Mushroom species are most frequently reported as Lac and MnP producers and least frequently 
reported as LiP and VP producers. Previous publications have reported that T. versicolor [220] and 
Bjerkandera adusta [221] produce both oxidase (Lac) and peroxidase (MnP and LiP). Lentinula edodes 
[222], P. eryngii [223] and Ceripotiopsis subvermispora [224] are lignin-degrading mushrooms that use 
Lac and at least one of the peroxidases. Only Lac was produced from S. commune and only 
peroxidases were produced from Phanerochaete chrysosporium [225,226]. Several publications have 
reported that Ph. chrysosporium is an excellent lignin decomposer, and it has been suggested for its 
commercial use. The ligninolytic enzymes were fermented in SSF using different agro-industrial 
waste, as is shown in Table 7. 

Table 7. Production of enzymes in solid state fermentation of lignin degradation by some 
mushrooms using agro-industrial wastes. 

Enzyme Agro-Industrial Wastes Mushroom Species Activity  Reference 
Laccase Tree leaves (Fagus sylvatica) Lentinula edodes 7–52 U/L [151] 

  Pleurotus dryinus 16 U/L [151] 
  Pleurotus ostreatus 6.3–8.0 U/L [151] 
  Pleurotus tuber-regium 2.1 U/L [151] 
 Wheat straw Lentinula edodes 3.6–5.2 U/L [151] 
  Pleurotus dryinus 5.7 U/L [151] 
  Pleurotus ostreatus 1.1–10.1 U/L [151] 
  Pleurotus tuber-regium 10 U/L [151] 
  Pleurotus citrinopileatus 1.2–3.7 U/gds [200] 

 Wheat bran Fomes fomentarius 
7430–17510 

U/L 
[154] 

  Ganoderma applanatum 1910 U/L [154] 
  Pleurotus ostreatus 9210 U/L [154] 
  Trametes hirsuta 7350 U/L [154] 
  Trametes ochracea 3930 U/L [154] 
  Trametes versicolor 17860 U/L [154] 
  Trametes pubescens 5319 U/L [154] 
  Trametes biforme 4960 U/L [154] 

 
Wheat bran mixed corn 

straw 
Trametes versicolor 32.1 U/gds [227] 

Laccase Corn stalk Trametes versicolor 2,765.81 U/L [228] 
 Sawdust Coriolopsis gallica 200 U/gds [229] 
 Sugarcane bagasse Pleurotus ostreatus 151.6 U/gds [230] 
 Oat husk Cerrena unicolor 28.2 U/gds [231] 
 Pineapple leaves Ganoderma lucidum 42.7 U/gds [232] 
 Rice bran mixed wheat bran Stereum ostrea 24962 U/L [233] 

 Rice straw 
Schizophyllum 

commune 
431.2 U/gsd [234] 

 Sugarcane bagasse mixed 
wheat bran 

Ganoderma lucidum 9.4 U/gds [204] 
 Pleurotus ostreatus 2.1 U/gds [204] 
  Trametes versicolor 1.9 U/gds [204] 
 Soya bran Fomes sclerodermeus 14.5 U/gds [202] 

Manganese 
peroxidase 

Tree leaves (Fagus sylvatica) Lentinula edodes 1.0–6.7 U/L [151] 
 Pleurotus dryinus 5.7 U/L [151] 

  Pleurotus ostreatus 7–15 U/L [151] 
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Table 7. Cont. 

Enzyme Agro-Industrial Wastes Mushroom Species Activity  Reference 
  Pleurotus tuber-regium 20 U/L [151] 
 Wheat straw Lentinula edodes 20–55 U/L [151] 
  Pleurotus dryinus 13 U/L [151] 
  Pleurotus ostreatus 7–12 U/L [151] 
  Pleurotus tuber-regium 2.2 U/L [151] 
  Pleurotus citrinopileatus 4.9 U/gds [200] 
 Wheat bran Fomes fomentarius 350 U/L [154] 
  Pleurotus ostreatus 20 U/L [154] 
  Trametes versicolor 20–50 U/L [154] 
  Trametes biforme 570 U/L [154] 
 Oat husk Cerrena unicolor 20.4 U/gds [231] 
 Pineapple leaves Ganoderma lucidum 82.7 U/gds [232] 
 Rice bran mixed wheat bran Stereum ostrea 3895 U/L [233] 
 Rice straw Schizophyllum commune 1964 U/gsd [234] 
 Eucalyptus sawdust Lentinula edodes 700 U/gds [235] 
 Soya bran Fomes sclerodermeus 14.5 U/gds [202] 
 Sugarcane bagasse mixed 

wheat bran 
Ganoderma lucidum 1.9 U/gds [204] 

 Pleurotus ostreatus 2.3 U/gds [204] 
  Tramets versicolor 2.1 U/gds [204] 
 Barley husk Bjerkandera adusta 510 U/kgds [236] 

Lignin peroxidases Jatropha waste Pleurotus ostreatus 49916 U/L [237] 
 Corn cob Ganoderma lucidum 561.4 U/gds [238] 
 Pineapple leaves Ganoderma lucidum 287.5 U/gds [232] 
 Rice bran mixed wheat bran Stereum ostrea 72.8 U/L [233] 
 Rice straw Schizophyllum commune 1467.3 U/gsd [234] 
 Barley husk Bjerkandera adusta 1700 U/kgds [236] 
 Sugarcane bagasse mixed 

wheat bran 
Ganoderma lucidum 0.6 U/gds [204] 

 Pleurotus ostreatus 0.5 U/gds [204] 
  Trametes versicolor 0.7 U/gds [204] 

Versatile peroxidase Banana peel Pleurotus eryngii 36 U/gds [239] 

4.3.1. Laccases 

Laccases are a group of multicopper containing enzymes belonging to the blue multicopper 
oxidase family. The enzymes are also known as polyphenol oxidases, among which laccases oxidize 
one-electron of phenolic compounds with an associated reduction of oxygen to water as a 
by-product [240,241]. The enzymes do not require H2O2 for substrate oxidation. Lac can oxidize both 
phenolic aromatic compounds such as methylated phenol, aromatic amine and non-phenolic 
aromatic compounds such as veratryl alcohol in lignin to form phenoxy-free radicals. In this way, 
lignin degradation and lignin structural conversion can occur [242], as is shown in Figure 9. This 
oxidation process produces phenoxy radicals that can be converted to quinine by a second enzyme 
catalyzed reaction [166,243]. 
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Figure 9. Typical reaction of laccase on phenols oxidation modifled from Minussi et al. [244]. 

Laccases contain four copper ions except for the laccase that is obtained from Phlebia radiata, 
which has only two copper ions [245]. There are three types of Lac depending on the copper number 
at the active site [246]. Type I: copper does not bind O2 but functions only as an electron transfer site. 
The type I copper center consists of a single copper atom that is coordinated with two histidine 
residues and one cysteine residue. In some cases, a methionine motif serves as a ligand with a 
trinuclear center. The Type II copper center has two histidines and a water molecule that serves as a 
ligand. The type III copper center contains two copper atoms that each possess three histidine 
ligands and are linked to one another via a hydroxide bridging ligand. Most of the studies on Lac 
have reported that the fungi and mushrooms present in basidiomycetes, deuteromycetes and 
ascomycetes act as Lac producers [247]. Among these fungi, the major Lac producers are white-rot 
fungi in basidiomycetes [246]. White-rot fungi Pycnoporus cinnabarinus, Phlebia radiate, P. ostreatus, 
and T. versicolour are also known to produce one isoform of Lac [248]. Cotton stalks, aromatic 
compounds, wood, and plant extracts were found to be inducers for Lac production [249]. For Lac 
production, extracted 3-hydroxyanthranilic acid (3-HAA) obtained from wheat straw was found to 
be a potential Lac stimulator [250]. The mixture of coffee pulp and urea was also able to enhance the 
Lac activity in Py. sanguineus culture. Some researchers have found a novel Lac obtained from T. 
orientalis, which has a molecular mass of 44.0 kDa. The enzyme contains a typical copper II binding 
domain and shares three N-glycosylation sites. But it has no copper I binding domain [251] Dias and 
colleagues [252] have reported a new zymogram dried 2,2’-azino-bis(3-ethylbenzo- 
thiazoline-6-sulfonic acid) (ABTS)-impregnated discs assay for laccase activity detection, which is 
associated with easy assay and rapid screening. The laccase activity was determined at a wavelength 
of 420 nm by measuring the oxidation of ABTS in phosphate citrate buffer at a pH value of 4.0 [253]. 
The other guaiacol assay has been reported for laccase assay by Kalra et al. [254] to measure the 
reddish-brown color development at 450 nm as a consequence of the oxidation of guaiacol by Lac. 

4.3.2. Lignin Peroxidases 

Lignin peroxidase (LiP) belongs to the family of oxidoreductases. LiP has ferric heme as an 
electron donor which is able to reduce oxygen molecules to hydrogen peroxidase and superoxides. 
LiP-Fe(III) uses H2O2 to oxidize aryl cation radicals as the initial substrate. The resulting amount of 
the lacked electron LiP is not stable and draws electrons from the substrate for stability of the 
electron condition. Finally, the oxidation cycle ends when LiP-Fe(IV) is turned to the resting ferric 
state [255]. This reaction exhibits a degree of stoichiometry of one H2O2 compound consumed per the 
amount of aldehyde formed. LiP is a strong oxidant and is non-specific with a substrate. It can 
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degrade both structures of phenolic aromatic and non-phenolic aromatic compounds. Veratryl 
alcohol was found to be an inducer of LiP that was produced from white-rot fungi. The molecular 
weight of LiP was approximately 41 kDa and contains one mole of Fe protoporphyrin IX. It is a 
glycoprotein with isoelectric point (pI) as 3.2–4.0 that displays high redox potential activity and an 
optimum pH value at 3.0 [250].  

There are two methods for lignin peroxidase detection [250]. One involves the measurement of 
veratraldehyde from veratryl alcohol oxidation using a UV spectrophotometer at 310 nm. One unit 
of activity is defined as one micromole of veratryl alcohol oxidized in one min, while the activities 
are reported in units/L (U/L). The 1,2-bis(3,4-dimethoxyphenyl) propane-1,3-diol is a substrate of 
this enzyme, whereas 3,4-dimethoxybenzaldehyde, 1-(3,4-dimethoxyphenyl) ethane-1,2-diol, and 
H2O, are its products, as is displayed in Figure 10. 

 
Figure 10. General reaction catalyzed by lignin peroxidase. (A) cleavage of C-C of lignin, (B) 
oxidation of veratryl alcohol is generally used to estimate the lignin peroxidase activity. 

The other method is the Azure B assay. In this method, the relevant reaction assay contains 
Azure B dye, H2O2, and sodium tartrate buffer (pH 4.5). The activity is measured at a 615 nm 
wavelength [256]. This method has been identified as a good assay to reduce the turbidity caused by 
organic materials under the UV range. Mushrooms have been found as the first LiP producers, 
namely T. versicolor, P. ostreatus, G. lucidum, and Bjerkandera spices [232,257]. 

4.3.3. Manganese Peroxidase 

Manganese peroxidase (MnP) belongs to the family of oxidoreductases and cannot react 
directly with the lignin structure [250]. There are two groups: (1) Manganese dependent peroxidase 
is an extracellular enzyme that requires both H2O2 for lignin oxidation, Mn2+ as a co-factor and (2) 
Manganese independent peroxidase is an extracellular enzyme that requires H2O2 in lignin 
oxidation but does not need Mn2+ (Figure 11) [258]. The major substrates of manganese peroxidase 
are low molecular weight substances and organic acid compounds. In the mechanism cycle of lignin 
degradation, Mn2+ is an electron donor and MnP is oxidized by H2O2 as follows: 

“MnP + H2O2 → MnP compound I + H2O” (1) 

“MnP compound I + Mn2+ → MnP compound II + Mn3+” (2) 

“MnP compound II + Mn2+ → MnP + Mn3+ + H2O” (3) 
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Figure 11. Lignin depolymerisation with manganese peroxidase [259]. 

The electron-lacking MnP is nonstable and accepts an electron from Mn2+ to Mn3+ that then 
reacts with certain organic acid chelators such as oxalate, malonate, and lactate. The chelated-Mn3+ 
will act as a mediator to oxidize simple phenols, amines, and phenolic lignins. The enzyme can 
oxidize both phenolic and non-phenolic lignins [260]. The 3,3’-diaminobenzidine (DAB) assay [261] 
and manganese peroxidase (MnP) assay [262] are the methods used for identification of peroxidase 
using 0.01% phenol red or 2 mM 2,6-dimethoxyphenol (DMP) as a substrate. 

Many mushroom species have been identified as MnP-producing fungi, especially P. ostreatus 
and Ph. chrysosporium [263]. Manganese dependent peroxidase is produced from P. pulmonarius, 
which can oxidize both non-phenolic and phenolic compounds for xenobiotic compound 
degradation. Kuhar and co-workers [264] have reported that MnCl2 can induce MnP activity and has 
a high specificity for Mn2+ binding sites. 

4.3.4. Versatile Peroxidase 

Versatile peroxidase (VP) is also known as a hybrid peroxidase or polyvalent peroxidase for 
Mn2+ oxidation. VP includes both LiP and MnP activities. Consequently, VP is able to degrade a 
wider range of substrates than non-hybrid enzymes. VP requires H2O2 as an electron acceptor to 
catalyze the oxidative reaction at the heme center with the release of a water molecule [250]. VP is a 
heme-containing glycoprotein that has a two-channel structure: the wider channel for access to H2O2 
and the narrow channel for access to manganese. Low molecular substrates will be oxidized at the 
heme center by H2O2-ferric state binding (heme forming iron peroxide complex). This activated 
heme complex is able to oxidize the aromatic substrate using Mn2+, and then secretes Mn3+ and water 
[265] (Figure 12). VP has been produced by SSF of P. eryngii and P. ostreatus on wheat straw, 
sawdust, and banana peels [223,266]. Pleurotus ostreatus and Bjerkandera sp. were cultured in 
glucose-peptone broth and glucose ammonium medium using submerged fermentation for VP 
production [267]. The molecular weight and pI of VP obtained from P. eryngii were approximately 40 
kDa and 4.1, respectively [268]. The VP activity can be determined by monitoring manganese 
oxidation and Reactive clack (RB5) decolorization [267]. 
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Figure 12. Scheme of the versatile peroxidase catalytic cycle [265]. 

4.3.5. Dye Decolorizing Peroxidases 

Dye decolorizing peroxidases (DyPs) are a new family of glycoproteins that have one heme as a 
cofactor occurring in basidiomycetous fungi and eubacteria. DyPs require H2O2 as an electron 
acceptor and are similar to VP; however, DyPs can oxidize the high-redox potential anthraquinone 
dyes in addition to typical peroxidase substrates such as RBs, phenols, veratryl alcohol [269,270]. 
There are four types of DyPs from A to D based on their primary sequences [271]. However, type A 
DyPs has been reported as the potential type that is most effective in lignin depolymerization. The 
important characteristic of DyPs is the degradation of hydroxyl-free anthraquinone, which is not a 
substrate of other peroxidases [270]. DyPs can oxidize certain phenolic compounds such as 
2,6-dimethoxyphenol and guaiacol. Only a few types of fungi can produce DyPs, especially type 
D-DyP, whereas they are mostly present in bacteria (types A, B, and C). The first DyP was 
discovered in B. adusta [272]. The wood-rotting fungi A. auricula-jadae, Mycetinis scorodonius, Exidia 
glandulosa, P. sapidus DSM8266 and Mycena epipterygia have also been reported as DyPs producers 
[273,274]. White-rot fungus, Irpex lacteus CD2, exhibited DyPs activity when it was grown in Kirk’s 
medium containing lignins [275]. Many previous publications have reported that DyPs might be 
important for the ligninolytic system in white-rot fungi despite the fact that the biological roles of 
DyPs are unknown in terms of different substrate specificities. The mechanism of DyPs is similar to 
that of plant peroxidase, which is known to generate transient intermediates (compound I and 
compound II). The reaction of compound I with 1 eq electrons from a reducing substrate generates 
the [FeIV = O]+ intermediate compound II [271]. The optimum pH value of DyPs is acidic [276]. DyPs 
activity was assayed by the decolorization of an anthraquinone dye RB19 at 595 nm [275]. 

4.4. Application of Lignocellulolytic Enzymes in Bioprocessing 

Enzyme technology possesses great potential to reduce environmental pollution and offers 
potential benefits in the comprehensive utilization of lignocellulosic biomass. Lignocellulolytic 
enzymes have received attention because of their potential applications in various agro-industrial 
bioprocesses, such as the conversion of hemicellulosic biomass to fuels and chemical production, the 
clarification of juices, the green processing of certain foods and beverages, the enhancement of 
animal digestibility in feedstock, the delignification of paper and pulp, the improvement of fabric 
properties in the textile industry and waste utilization [277–279]. Cellulase is widely used in the 
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textile and laundry detergent industries as it can play a part in the hydrolysis of cellulose and 
improve fabric properties for the textile industry and for cleaning textiles in the laundry detergent 
industry [154,280]. The food and beverage processing industries have used cellulase for the 
hydrolysis of cellulose during the drying of coffee beans and for the extraction of fruits and 
vegetables in juice production [281,282]. Cellulase, α-L-arabinofuranosidases and other glycosidases 
have also been used in brewery and wine production [213,277]. The enzymatic hydrolysis of grapes 
utilizes α-L-arabinofuranosidases and other glycosidases to enhance the flavor of wine by the release 
of free terpenols, an important aspect in the development of the aroma in wine. The enzyme 
treatment by α-L-arabinofuranosidases during sourdough preparation in the bread industry delays 
the staling process of bread and increases the shelf life of bread [213]. This results in economic 
benefits in terms of the preservation of bread and bread storage issues. Enzyme technology has a 
significant potential to improve the properties of pulp. Cellulases, xylanase and other hemicellulases 
are commonly used enzymes to assist in pulp bleaching for the reduction of environmental pollution 
loads [283]. Cellulases are used to improve the performance of dissolved pulp [277]. Additionally, 
α-L-arabinofuranosidases enhance the delignification of pulp in the bleaching process as it can 
cleave the arabionose side chain that inhibits the action of xylanase [213]. Laccase can be used for 
lignin removal in prehydrolysis of lignocellulosic biomass [284]. Xylanolytic enzymes have potential 
applications across food and feed industries [278]. A combination of α-L-arabinofuranosidases with 
cellulases, pectinases and xylanases enhance the feed digestibility and utilization of polysaccharides 
in feedstuffs [186,213]. Arabinoxylans are the major non-starch polysaccharide fractions in wheat, 
which increase digesta viscosity, reduce the digestibility of nutrients and decrease the feed efficiency 
and growth performance when fed to poultry, especially in broiler chickens [278]. Various reports 
have revealed the positive effects of MOS on intestinal microflora, along with efficient intestinal 
structure and function. MOS-based nutrition supplements are widely used in nutrition as a natural 
additive [279]. The treatment of copra meal rich in β-mannan with mannanase has been reported to 
reduce the population of Salmonella and Escherichia coli, increase the level of metabolizable energy 
and improve the nutrient digestibility in broilers [285]. Olaniyi et al. [207] reported that the 
treatment of cassava peels and corn cobs with mannanase increased the degradation of the complex 
carbohydrate fractions in the samples and resulted in increasing the amount of crude protein and 
certain mineral contents. Kim et al. [273] reported that the supplementation of β-mannanase for diet 
feeds does not mitigate the heat stress of aged laying hens raised under hot climatic conditions. 
Saeed et al. [206] describes the promising beneficial effects of β-mannanase in the poultry feed 
industry as the supplementation of β-mannanase in poultry diets that positively improved blood 
glucose and anabolic hormone homeostasis, digestible energy, and digestible amino acids. These 
enzymes have been used as food additives in the poultry raising industry and have been employed 
in the improvement of nutritional properties of agricultural silage and grain feed. 

Manganese peroxidase is an important enzyme associated with the lignin and organic pollutant 
degradation systems, for instance bioremediation, dye decolorization, pulp bleaching, 
biomechanical pulping and in the production of a range of highly valuable products that have been 
obtained from residual lignins [286]. DyPs can be applied in the treatment of wastewater that 
contain synthetic dyes which are used in the manufacture of textiles, cosmetics, food, and 
pharmaceuticals. In the food industry, DyPs obtained from M. scorodonius, namely the MaxiBright® 
brand, are used to whiten whey in cheese making [274]. Enzymes have been extensively used in 
various industries as well as in a lot of the resulting products. Thus, genetic engineering is a 
powerful tool for the enhancement of ligninolytic enzyme production. White-rot fungus, Ph. 
chrysosporium, is a good model for the study of lignin degradation using DNA technology. The 
genome sequence encoded several genes such as ten lignin peroxidases, five manganese 
peroxidases, and several other lignocellulolytic enzymes [287,288]. Laser mutagenesis of Phellinus 
igniarius SJZ2 (mutant) overexpressed Lac activity during 4 h of fermentation and was increased by 
36.84% in comparison with the wild type [242]. In addition to the overexpression of Lac in 
Saccharomyces cerevisiae using the laccase III (cvl3) gene obtained from T. versicolor, IFO1030 was 
secreted in the culture (45 U/L) [289]. Lignocellulosic enzymes are obtained from mushrooms, 
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especially white-rot basidiomycetes, which are interesting tools in the biotechnological process that 
is used in a wide range of lignin substrates. 

5. Conclusions 

The utilization of agro-industrial waste in mushroom cultivation and the production of 
lignocellulolytic enzymes can facilitate the reduction of some global waste management problems. 
The cultivation of edible mushrooms using agro-industrial waste represents the bioconversion of 
that waste into edible protein. Different types of agro-industrial waste can be used for the cultivation 
of substrates for mushroom cultivation. However, the composition and availability of 
agro-industrial waste in each area has been considered for the support of mushroom cultivation. 
Different mushroom species and C/N ratios in substrates are the crucial factors that affect the 
production and chemical composition of mushrooms. The nitrogen content of agro-industrial waste 
is low; therefore, this waste is generally associated with other nitrogen sources. The selected suitable 
substrate and mushroom species are important in obtaining the maximum yields. 

Mushrooms seem to be the most important players in lignocellulose degradation by producing 
both hydrolytic and oxidative enzymes. Hydrolytic enzymes (cellulases and hemicellulases) are 
known to be responsible for polysaccharide degradation, while oxidative enzymes (ligninases) are 
responsible for lignin modification and degradation. Current results indicate that agro-industrial 
waste has been evaluated for its potential use in lignocellulosic enzyme production by mushrooms. 
However, the variability of waste composition and mushroom species are influential in enzyme 
production. Therefore, further studies are needed to demine the suitable conditions (substrates, 
mushroom species and fermentation process) for effective lignocellulosic enzyme production in the 
pilot study and on the industrial scale. 
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