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Abstract: Background: In recent decades, several viruses have jumped from animals to humans,
triggering sizable outbreaks. The current unprecedent outbreak SARS-COV-2 is prompting a search for
new cost-effective therapies to combat this deadly pathogen. Suitably functionalized polysubstituted
quinoxalines show very interesting biological properties (antiviral, anticancer, and antileishmanial),
ensuring them a bright future in medicinal chemistry. Objectives: Focusing on the promising
development of new quinoxaline derivatives as antiviral drugs, this review forms part of our program
on the anti-infectious activity of quinoxaline derivatives. Methods: Study compiles and discusses
recently published studies concerning the therapeutic potential of the antiviral activity of quinoxaline
derivatives, covering the literature between 2010 and 2020. Results: A final total of 20 studies
included in this review. Conclusions: This review points to a growing interest in the development of
compounds bearing a quinoxaline moiety for antiviral treatment. This promising moiety with different
molecular targets warrants further investigation, which may well yield even more encouraging results
regarding this scaffold.
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1. Introduction

Humans have a long history of viral infections. For some viral diseases, vaccines and antiviral drugs
have made it possible to prevent infections or have helped those infected to recover. Recent antiviral drug
development has led to the discovery of effective new treatments to control Human Immunodeficiency
Virus (HIV) and Hepatitis C virus (HCV) infections [1]. However, several viruses have jumped
from animals to humans triggering sizable outbreaks. One example is the 2014–2016 outbreak of
Ebola in West Africa, which resulted in over 28,000 infected patients and was responsible for over
11,000 deaths [2], making it the most lethal member of the Ebola family. The SARS-COV-2 outbreak
worldwide continues to pose a serious threat to public health, with no reliable treatment yet available.
In addition, the last decade has seen the development of only a few novel antivirals as remdesivir and
favipiravir, initially used respectively as Ebola and influenzae treatment and proposed for repurposing
in the SARS-CoV-2 outbreak, or sofosbuvir and daclatasvir, which have dramatically changed the
prognosis in HCV infection [3,4]. However, this unprecedented SARS-CoV-2 crisis underlines the
urgency of developing new cost-effective therapies to combat the deadly pathogen.
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Nitrogen-containing heterocycles are promising compounds for the development of new drugs or
novel potential lead molecules [5–8]. The quinoxaline scaffold, a bioisoster of quinoline and naphthalene,
is one of the heterocycles currently attracting attention.

Quinoxaline, formed by the fusion of benzene and pyrazine rings, is a white crystalline powder
whose melting point is 29–30 ◦C and whose molecular formula is C8H6N2 [9,10]. Its synthesis has
been intensively studied in the past. The classic method of quinoxaline preparation is to condense
o-phenylenediamine with a dicarbonyl compound. This procedure requires high temperatures, a strong
acid catalyst, and long reaction times [11,12]. Other strategies described for the synthesis of quinoxaline
derivatives involve condensation of 1,2-diamines with α-diketones [13], 1,4-addition of 1,2-diamines
to diazenylbutenes [14], cyclization–oxidation of phenacyl bromides [15], and oxidative coupling
of epoxides with ene-1,2-diamines [16]. There are also several green synthetic methods, like using
recyclable catalysts [17], one-pot synthesis [18], microwave-assisted synthesis [19,20], and reactions in
aqueous medium [21].

Suitably functionalized polysubstituted quinoxalines show very interesting biological properties
(antiviral [22], anticancer [23], and antileishmanial [24]), ensuring them a bright future in medicinal
chemistry [11,25]. Many drug candidates bearing quinoxaline core structures have been identified,
such as S-2720 (Figure 1), found to be a very potent inhibitor of HIV-1 reverse transcriptase [26].
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Figure 1. Chemical structure of S-2720. 
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antiviral activity of quinoxaline derivatives, covering the literature between 2010 and 2020. 

2. Methods 

2.1. Background Definition 

The search method employed in this systematic review was to select studies that evaluated the 
biological activity and mechanism of action of quinoxaline derivatives. 

2.2. Data Sources and Searches 

Three different databases were used to conduct a comprehensive survey: MEDLINE/PubMed 
(National Library of Medicine—www.ncbi.nlm.nih.gov/pubmed), Web of Science (Thomson Reuters 
Scientific—www.webofknowledge.com/), and Science Direct (Elsevier www.sciencedirect.com). The 
search terms “quinoxaline” and “antiviral” were chosen so as to detect everything published about 
quinoxaline before applying exclusion criteria. Searches were conducted using the limit dates of 1 
January 2010 and 1 May 2020. 

2.3. Study Selection 

The review was performed in three main stages by three independent reviewers. In the first 
stage, articles’ titles and abstracts were assessed according to the eligibility criteria (Table 1). In the 
second stage, duplicated articles were deleted. Finally, the authors read each selected full text and 

Figure 1. Chemical structure of S-2720.

This review investigates the new quinoxaline derivatives that are showing promise as antiviral
drugs as part of our program focused on the anti-infectious activity of quinoxaline derivatives.
It compiles and discusses recently published studies concerning the therapeutic potential of the
antiviral activity of quinoxaline derivatives, covering the literature between 2010 and 2020.

2. Methods

2.1. Background Definition

The search method employed in this systematic review was to select studies that evaluated the
biological activity and mechanism of action of quinoxaline derivatives.

2.2. Data Sources and Searches

Three different databases were used to conduct a comprehensive survey: MEDLINE/PubMed
(National Library of Medicine—www.ncbi.nlm.nih.gov/pubmed), Web of Science (Thomson Reuters
Scientific—www.webofknowledge.com/), and Science Direct (Elsevier www.sciencedirect.com).
The search terms “quinoxaline” and “antiviral” were chosen so as to detect everything published
about quinoxaline before applying exclusion criteria. Searches were conducted using the limit dates of
1 January 2010 and 1 May 2020.

2.3. Study Selection

The review was performed in three main stages by three independent reviewers. In the first
stage, articles’ titles and abstracts were assessed according to the eligibility criteria (Table 1). In the
second stage, duplicated articles were deleted. Finally, the authors read each selected full text and
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eliminated articles fitting the exclusion criteria. During this final stage, articles found in the reference
lists of selected manuscripts, but which had not been listed under the search terms in the databases,
were added.

Table 1. Inclusion and exclusion criteria.

Parameter Inclusion Exclusion

1 Language English, French Any other language

2 Type of study Biological activity, In vitro
and/or in vivo studies

Exclusively in silico, articles that focus only on
synthesis or other purely chemical parameters

3 Type of publication Original manuscripts
Reviews, book chapters, posters, table of

contents, personal opinions, indexes,
conference abstracts, letters

4 Search terms Merely citing keywords in text

5 Mechanism of
action

Articles that evaluate the
biological activity of

quinoxaline derivatives

Articles that concern non-human or
animal viruses

2.4. Data Extraction Process

The following information was extracted from all the selected studies: type of study, biological
matrix used, compound structure and nomenclature, and main conclusions.

3. Results

The database search identified 216 records. After the first evaluation phase (title/abstract),
175 records were excluded. Eight repeated files were discarded, leaving 33 articles.

No other paper was added from the reference lists of the identified studies (which had not been
found in the initial search). A second phase was therefore conducted with a total of 33 articles.

After the full-text reading, 13 articles were excluded and one was included, leaving a final total of
21 studies included in this review. This process is illustrated by a flow diagram in Figure 2.
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After critical reading, articles were divided into categories according to the activity assessed in
each study (Table 2). A manuscript could be assigned to more than one category if a single study
evaluated more than one type of antiviral activity.

Table 2. Activities associated with quinoxaline derivatives based on virus classification.

Activity Reference

DNA viruses
Herpesviridae [28–32]

Poxviridae [33]
Hepadnaviridae [34]
RNA viruses
Picornaviridae [35]

Orthomyxoviridae [36]
Filoviridae [2]

Flaviviridae [31,37–42]
Rhabdoviridae [43,44]
Retroviridae [45–47]

4. Discussion

4.1. Quinoxaline Derivatives Active against DNA Viruses

DNA viruses have DNA genomes that are replicated by either host or virally encoded DNA
polymerases. DNA viruses with a large genome, particularly the families of Herpesviridae and Poxviridae,
encode a number of proteins that counter host defenses. [48] Double-stranded DNA viruses can be
subdivided into three groups: (1) those with a small size DNA genome (<10 kb), such as polyomaviruses
and papillomaviruses; (2) those with a medium-sized DNA genome (ca., 35 kb), such as adenoviruses;
and (3) those with a large DNA genome (ca., 130–250 kb), such as herpesviruses and poxviruses [49].

4.1.1. Quinoxaline Derivatives Active against Herpesviridae

The Herpesviridae are a ubiquitous worldwide family responsible for viral infections. Among its
members frequently encountered are, herpes simplex viruses (HSV-1 and HSV-2), human
cytomegalovirus (HCMV), and Epstein Barr virus (EBV) [28,50,51]. Usually, these infections remain
latent and patients are often asymptomatic, particularly immunocompetent populations. However,
in immunocompromised patients especially (e.g., AIDS, cancer, etc.), there can be clinical symptoms
such as meningitidis or pneumoniae leading to death. Treatments against HSV or HCMV like ganciclovir,
valganciclovir, foscarnet, or cidofovir, are currently available but they are limited by toxicity and/or
poor oral bioavailability [28,52,53]. In addition, drug resistance is emerging. Hence there is a need to
identify improved agents that circumvent one or more of these problems.

In 2012, a series of new [1,2,4]triazolo[4,3-a]quinoxaline derivatives and their pyrimido-quinoxaline
isosters were synthesized and evaluated as potential antiviral agents. Twenty-two novel compounds
were obtained. Among them, 1-(4-chloro-8-methyl[1,2,4]triazolo[4,3a]quinoxaline-1-yl)-3-phenyl
thiourea 1 showed the highest antiviral activity in a plaque-reduction assay against Herpes simplex
virus grown on Vero African monkey kidney cells, reducing the number of plaques by 25% at 20 µg/mL
(Figure 3). Nine other compounds reduced the number of plaques by less than 25% at 80 µg/mL,
leading the authors to the conclusion that the thiourea moiety may be responsible for antiviral activity
and highlighting the importance of the moieties selected in developing antiviral activity [29]. However,
antiviral activity remained disappointing compared to positive control aphidicolin, which reduced the
number of plaques by 100% at 5 µg/mL, even though compound 1 showed lower cytotoxicity.
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yl)hydrazones and their acyclic C-nucleoside analogues, 1-(4-phenyl-[1,2,4]triazolo[4,3-a]quinoxalin-
1-yl)alditols. 

Recently, nine novel quinoxaline derivatives were synthetized via different nucleophilic 
reactions using ethyl (6,7-dimethyl-2-oxo-3,4-dihydroquinoxalin-3-yl)acetate 4 and ethyl (6-methyl-
2-oxo-3,4-dihydroquinoxalin-3-yl)acetate 5, 3-methylquinoxalin-2(1H)-one, and 1,4-
dihydroquinoxaline-2,3-dione as precursors [31] (Table 3). When their antiviral activity against 
HCMV was compared to the standard drug ganciclovir (EC50 = 0.059 µM), two derivatives 
demonstrated higher activity, each with EC50 < 0.05 µM. Notably, the toxicity of 4 and 8 (CC50 = 108.47 
and >150 µM, respectively) was comparable to the reference drug (CC50 >150 µM) and compound 6 
showed the poorest safety profile with CC50 = 2.34 µM.  

Figure 3. Chemical structure of 1-(4-chloro-8-methyl[1,2,4]triazolo[4,3a]quinoxaline-1-yl)-3-phenyl
thiourea 1.

The synthesis of four new aldehydo-sugar-N-(3-phenylquinoxalin-2-yl)hydrazones 2a-d and their
acyclic C-nucleoside analogues, 1-(4-phenyl-[1,2,4]triazolo[4,3-a]quinoxalin-1-yl)alditols 3a-d (Figure 4)
indicated that these compounds exhibited very weak antiviral activity against HSV-1 in a plaque
reduction infectivity assay in comparison to aphidicolin taken as reference [30].
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Figure 4. Chemical structure of new series of aldehydo-sugar-N-(3-phenylquinoxalin-2-yl)hydrazones
and their acyclic C-nucleoside analogues, 1-(4-phenyl-[1,2,4]triazolo[4,3-a]quinoxalin-1-yl)alditols.

Recently, nine novel quinoxaline derivatives were synthetized via different nucleophilic reactions
using ethyl (6,7-dimethyl-2-oxo-3,4-dihydroquinoxalin-3-yl)acetate 4 and ethyl (6-methyl-2-oxo-3,4-
dihydroquinoxalin-3-yl)acetate 5, 3-methylquinoxalin-2(1H)-one, and 1,4-dihydroquinoxaline-2,3-dione
as precursors [31] (Table 3). When their antiviral activity against HCMV was compared to the
standard drug ganciclovir (EC50 = 0.059 µM), two derivatives demonstrated higher activity, each
with EC50 < 0.05 µM. Notably, the toxicity of 4 and 8 (CC50 = 108.47 and >150 µM, respectively) was
comparable to the reference drug (CC50 >150 µM) and compound 6 showed the poorest safety profile
with CC50 = 2.34 µM.

Four other compounds showed promising antiviral activity. Antiviral activity was observed to
depend on varying chemical characteristics, like the presence of a dimethylquinoxalinyl methylene
nucleus as a common structural feature and the presence of a lipophilic ester function (Figure 5).
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In this study, the pyridoquinoxaline nucleus proved to be a useful nucleus, as some of the
synthetized compounds showed a favorable profile for established drugs like as ganciclovir, acyclovir,
foscarnet, and aphidicolin [28] (Table 4),
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Table 4. HCMV pol/pra IC50 for lead compounds.

Compound Structure HCMV pol Activity
IC50 (nM)

HCMV pra Activity
IC50 (nM)

9
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Ganciclovir - 1300

Acyclovir - >20,000

Foscarnet 2500 -

Aphidicolin - 487 -

Pol: enzymatic activity; Pra: antiviral activity.

The morpholinomethyl side chain afforded good levels of both enzymatic and antiviral activity
whereas the benzofuran moiety resulted in extremely potent enzymatic and antiviral activity. However,
despite excellent biological activity, the calculated log P of compound 10 proves the need to continue
pharmacomodulation efforts aimed at improving its hydrosolubility.

Finally, EBV is a very common virus that can increase the risk of developing certain rare cancers.
The malignant transformation of normal human epithelial cells results from exposure to EBV and
that transformation is dependent on the presence of phorbol esters, which stimulate cell proliferation
through rapid activation of protein kinase C [32,54]. Novel 3-amioquinoxalin-2(1H)-one derivatives and
derivatives with pyrimidine ring linked to quinoxaline through sulfur (Figure 7) exhibited properties
against EBV antigen activation.Molecules 2020, 25, x FOR PEER REVIEW 8 of 20 
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Figure 7. General structures of 3-aminoquinoxalin-2(1H)-one derivatives and derivatives with
pyrimidine ring linked to quinoxaline through sulfur exhibiting anti EBV antigen activation.

On a series of 22 original compounds, six derivatives demonstrated stronger inhibitory effect
on EBV than oleanolic acid as reference, without showing any cytotoxicity. The structure–activity
relationship proved that disubstitution with alkyl groups on both nitrogen of hydrazine and quinoxaline
was crucial for activity especially for the allyl group. This high activity could result from a hydrophobic
interaction between the alkyl group and the hydrophobic region of the binding site of the receptor.
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The presence of a methoxy group on the phenyl group and substitution with a pyrimidine nucleus
linked to quinoxaline through sulfur were also conducive to activity [32].

4.1.2. Quinoxaline Derivatives Active against Poxviridae

The Poxviridae family include 38 viruses that can infect a wide range of hosts, including mammals,
birds, reptiles, and insects [55]. The causative agent of Smallpox and Molluscum contagiosum, two
human specific diseases, belongs to the poxviruses. Although variola was globally eradicated,
Molluscum contagiosum results from a usually benign infection with mild skin disease characterized
by lesions that may appear anywhere on the body. Within 6–12 months, Molluscum contagiosum
typically resolves without scarring, but may take as long as many years in some people with weakened
immune systems [56].

In a series of nine new halophenyl pyrrolo[2,3-b]quinoxaline derivatives, none of the compounds
proved inhibitory at subtoxic concentration except ethyl 2-(4-chlorophenyl)-1-methyl-2,4-dihydro-
1H-pyrrolo-[2,3-b]quinoxaline 11 (Figure 8), which inhibited the vaccinia virus and was considered as
a potential lead compound for poxvirus inhibition, with an EC50 value of 2 µM in HEL cell cultures
and moderate antiproliferative activity (CC50 >20 µM) [33].
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4.1.3. Quinoxaline Derivatives Active against Hepadnaviridae

Hepatitis B virus (HBV) is a member of the Hepadnaviridae family. This virus can cause liver
infections that lead to various hepatic diseases such as hepatitis, cirrhosis, and hepatic cancer. A new
class of 3-(1′,2′-dihydroxyeth-1′-yl)-1-phenylpyrazolo[3,4-b]quinoxaline demonstrated encouraging
anti-hepatitis B activity at 100 µM, but the five most potent compounds were associated with high
cytotoxicity (cytotoxicity >30% at 100 µM) [34].

4.2. Quinoxaline Derivatives Active against ARN Viruses

Human disease-causing RNA viruses include Orthomyxoviruses, Hepatitis C Virus (HCV), Ebola
disease, SARS, and retroviruses including adult human T-cell lymphotropic virus type 1 (HTLV-1)
and human immunodeficiency virus (HIV). RNA viruses have RNA as genetic material, either
single-stranded RNA or double-stranded RNA. Viruses may exploit the presence of RNA-dependent
RNA polymerases for replication of their genomes or, in retroviruses, reverse transcriptase produces
viral DNA, which can be integrated into the host DNA under its integrase function [57].

4.2.1. Quinoxaline Derivatives Active against Picornaviridae

Enteroviruses, which include coxsackievirus A and B, belong to Picornaviridae, a single-stranded
RNA virus family. They are implicated in various diseases, with a wide range of symptoms;
and exceptionally, coxsakieviruses can be responsible for more severe diseases, such as flaccid
paralysis myocarditis, pericarditis, encephalitis, or systemic neonatal disease [35,58,59]. To date, there
are conventional treatments or vaccines against coxsackieviruses, which cause acute or chronic disease
in infants, children, and immunocompromised persons.



Molecules 2020, 25, 2784 9 of 19

In order to develop more effective antivirals, 14 new quinoxaline derivatives (Figure 9) were
synthetized and tested against a panel of viruses for which the efficacy of therapeutic agents was
unsatisfactory [35].
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Among these new quinoxalines, ethyl 4-(((2,3-dimethoxyquinoxalin-6-yl)methyl)thio)benzoate 11,
4-(((2,3-dimethoxyquinoxalin-6-yl)methyl)thio)benzoic acid 12 and ethyl 6-(((2,3-dimethoxyquinoxalin-
6-yl)methyl)thio)nicotinate 13 displayed remarkable activity against coxsackievirus B5 (CBV5), with an
EC50 = 0.09 µM, 0.06 µM, and 0.3 µM, respectively (Table 5). The absence of cytotoxicity towards the
Vero-76 cells of compound 11 led to further experimental/in silico investigation aimed at determining its
mechanism of action. These investigations demonstrated that compound 11 inhibits CBV5 by targeting
the early events of attachment, entry or uncoating, as it can favorably insert into a hydrophobic pocket
on the VP1 chain of the capsid protomer implicated in the protein conformational changes during
infection of the host cell.

Table 5. Chemical structures, activity against coxsackievirus B5 and cytotoxicity.

Compound Structure EC50 CBV5 (µM) CC50 Vero-76 cells (µM)
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4.2.2. Quinoxaline Derivatives Active against Orthomyxoviridae

Influenza viruses can cause contagious respiratory disease in humans and are responsible every
year for flu pandemics.

Based on the planar polyaromatic system (chromophore), quinoxaline derivatives are good
candidates to combat influenza viruses because of their potential to target the NS1 protein, a highly
conserved influenza virus encoded protein. Since the N-terminal domain of the NS1A protein results
in a six-helical chain fold with a deep cavity at the center of the double-stranded RNA-binding surface,
a small molecule could fit into the cavity and block virus replication [36,60–62]. 2,3,6-substitued
quinoxaline has also yielded compounds identified as having valuable antiviral activity, particularly
under bis-2-furyl substitution. Maintaining bis-2-furyl substitution, a novel series of quinoxaline
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derivatives was synthetized to determine the influence of substitution at position 6. Two derivatives,
one with 3-methoxyphenyl group and one with 2-furyl at position 6, showed good activity with
an IC50 of 6.2 and 3.5 µM, respectively (Table 6). RNA intercalation experiments showed that both
compounds could bind to the NS1A RNA-binding domain, demonstrating the antiviral potential of
these quinoxaline derivatives [36].

Table 6. Structure and activity of 2,3,6-substitued quinoxaline.

Compound Structure % Binding at 50 µM % Intercalation at 50 µM

14
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4.2.3. Quinoxaline Derivatives Active against Filoviridae

Ebola and Marburg belong to the Filoviridae family of single-stranded RNA viruses. These viruses
were responsible for the 2014–2015 outbreak of hemorrhagic fever in Western Africa, resulting in a total
of 28,616 infected people, including 11,310 deaths, for a case-fatality rate of 40%. There is currently
no antiviral drug licensed by the U.S. Food and Drug Administration (FDA) to treat Ebola infection;
however, four drugs called ZMapp remdesivir, Mab114, and REGN-EB3, are under investigation,
as each has reduced the risk of death from Ebola [63,64]. Actually, the outbreak is not yet over, with
new cases identified in the Democratic Republic of Congo, and the need for antiviral candidates
remains strong.

A critical virus–host interaction required for virus egress and dissemination involves late-budding
domains containing PPxY motifs, which are highly conserved in the matrix protein of a large number of
RNA viruses. Targeting this interaction, a novel series of quinoxaline-2-mercapto-acetyl-urea analogues
(Figure 10) were synthetized and evaluated for their ability to inhibit viral egress of Marburg and Ebola
in VP40 VLP budding assay in HEK293T cells [2]. Among them, four compounds demonstrated strong
RNA viral egress inhibition potential.
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4.2.4. Quinoxaline Derivatives Active against Flaviviridae

HCV is responsible for both acute and chronic hepatitis, ranging in severity from a mild illness
lasting a few weeks to a serious, lifelong illness. Globally, an estimated 71 million people have chronic
HCV infection and in 2016, approximately 399,000 people died from HCV [65]. Antiviral drugs can
cure more than 95% of HCV patients, but access to treatment is poor due to its high cost, which is why
research is ongoing.

Several quinoxaline derivatives were evaluated for their anti-HCV potential. Even though novel
quinoxaline derivatives synthetized using ethyl (6,7-dimethyl-2-oxo-3,4-dihydroquinoxalin-3-yl)acetate
4 and ethyl (6-methyl-2-oxo-3,4-dihydroquinoxalin-3-yl)acetate 5, 3-methylquinoxalin-2(1H)-one,
and 1,4-dihydroquinoxaline-2,3-dione as precursors failed to demonstrate any activity against HCV [31],
in pyrido[2,3-g]quinoxalinone series, 5-chloro-3-(thiophen-2-yl)pyrido[2,3-g]quinoxaline-2(1H)-one
16 (Figure 11) was able to inhibit HCV replication in a subgenomic replication assay with
EC50 = 7.5 ± 0.5 µM. However, it was also cytotoxic for GS4.1 cells (CC50 = 21 ± 20 µM) [37,38,55].
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However, grazoprevir 17, a novel P2-P4 quinoxaline macrocyclic NS3/4a protease inhibitor with
broad activity across genotypes and resistant variants, is currently approved for the treatment for
HCV [39] (Figure 12).
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The structure–activity relationship shows that grazoprevir’s efficacy derives from lipophilic
interaction at P2 position in addition to a contribution from the P2-P4 constraint [66]. The P2 quinoxaline
moiety largely avoids direct interaction with residues Arg-155 and Asp-168, the two most common
resistance-associated residues, but interacts with the catalytic His-57 and Asp-81, which explains
its activity against most HCV genotypes and resistant variants [67]. Modeling studies showed that
in patients who failed to achieve sustained virologic response with simeprevir, grazoprevir was
efficacious because of a strong direct cation–quinoxaline interaction with the Lys-155 side chain of
double substitution R155K/D168A [40]. More recently, eliminating the P2-P4 moiety was considered
aiming at conformational flexibility and exploration of diverse quinoxalines at position P2 in order
to improve potency and resistance profile. The structure–activity relationship indicated that a small
hydrophobic substituent at position 3 of P2 quinoxaline effectively maintains activity against resistant
variants, as derivatives with a larger group at position 3 of P2 quinoxaline shift out of the binding
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site [41,42]. Further investigations involved replacement of the quinoxaline moiety by a quinoline
scaffold, leading to interesting analogues [68].

4.2.5. Quinoxaline Derivatives Active against Rhabdoviridae

Vesicular stomatis virus (VSV) is a virus in the family Rhabdoviridae. This virus is zoonotic and
in infected humans leads to a flu-like illness characterized by fever, headache, myalgia, weakness,
and occasionally vesicular lesions of the mouth [69]. As VSV infection results in a short 3–5-day illness,
no specific treatment is available and VSV is commonly used as a laboratory virus to study the properties
of viruses. Indoloquinoxaline derivatives and their benzoindoloquinoxalines were synthetized
and assessed for their anti-VSV activity, interferon-inducing ability, and cytotoxicity (Figure 13).
Anti-viral activity was significantly reduced with annulation of benzene ring in indoloquinoxaline
derivatives [43,44].
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As these indoloquinoxalines were more active antivirals when they were added immediately after
virus infection, it was supposed that their antiviral action was first mediated by interferon.

4.2.6. Quinoxaline Derivatives Active against Retroviridae

While there is no cure for HIV, there are very effective treatments that enable most people with
the virus to live a long and healthy life. Combination antiretroviral therapy is required for durable
virologic suppression. Reverse transcriptase is one of the most frequent targets for the treatment
of HIV infection, since the blockage of this enzyme can stop an essential step in viral replication.
However, a growing number of cases of resistant HIV strains and serious adverse events due to the
antiretroviral therapy administered have encouraged attempts to develop new HIV agents, more active,
less toxic, and with increased tolerability to mutation [70]. Some quinoxaline derivatives like HBY,
HBQ, and S-2720 have demonstrated high potency as reverse transcriptase inhibitors (Figure 14).
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For these reasons, design, synthesis, and evaluation of new quinoxaline derivatives was
investigated. Using a computational approach, 58 quinoxaline compounds were identified, and 25 new
quinoxaline and quinoxaline-related compounds were synthetized and evaluated as inhibitors of
reverse transcriptase (RT). Chemical features identified as crucial for reverse transcriptase inhibition
were the presence of a five- or six-membered aromatic ring and a hydrophilic center that can be
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nitrogen, oxygen, or sulfur. Six of these derivatives presented the highest inhibitory activity at
100 µM, ranging from 56% to 99% of reverse transcriptase inhibition, and were considered as hit
compounds. One compound was a particularly interesting derivative, with values comparable to
those of commercial compound nevirapine when used at 10 µM (both showing reverse transcriptase
inhibition % = 91) [45] (Table 7).

Table 7. Activity of new potential quinoxaline derivatives as inhibitors of reverse transcriptase.

Compound Structure
%RT Inhibition

MT2 IC50 (µM) Selectivity Index (SI)
100 µM 10 µM

18
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Compound 19 displayed similar inhibitory activity with nevirapine, with an EC50 = 3.1 nM vs.
EC50 = 6.7 nM respectively and can be considered a promising lead compound [45].

Moreover, this new class of integrase inhibitors proved very effective against HIV, showing a high
therapeutic index. Three representatives of this class, raltegravir, elvitegravir, and dolutegravir are
currently available. However, for two of them have led to reported cases of resistance, indicating to an
urgent need to develop other new effective anti-HIV agents. In a structure-based drug design approach,
the quinoxaline scaffold was identified as a core moiety to design potential novel anti-HIV agents.
A series of seven new 6-chloro-7-fluoroquinoxaline derivatives with various substituents at position 2
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and 3 was also synthetized. Among them, two derivatives 23 and 24 bearing bulky substitution at
position 2 and 3 exhibited better activity compared to unsubstituted or less bulky substitutions [46].
In addition, these two compounds revealed no cytotoxicity on VERO cells (Table 8).

Table 8. HIV activity and cytotoxicity study of the two most potent new 6-chloro-7-
fluoroquinoxaline derivatives.

Compound Structure Strain IIIB IC50 (µg/mL) Vero IC50 (µg/mL)
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Derivatives in series 1 displayed moderate activity with gelatinase enzymatic inhibition ranging 
from 34.79 ± 6.3 µM to >500 µM against 5.64 ± 0.6 µM for LY52 taken as reference. The best activity 
was observed for a para-chloro phenyl substituent. In series II, two derivatives 25 and 26 
demonstrated similar activity with LY52, probably because the substituents introduced have enough 
space and the right orientation to guide the compounds to fit into the binding cavity (Table 9). In 
addition, as compound 26 displayed slightly more potent activity than compound 25, it was 
concluded that the phenolic hydroxyl group could provide a more effective hydrogen-bonding 
interaction, resulting in increased affinity. Substitution with an aliphatic group led to inactive 
compounds.  
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Recently, an approach aimed at dysregulation of gelatinase and pathogenesis of HIV led to the
synthesis of two new classes of gelatinase inhibitors bearing a quinoxalinone motif, based on this
coplanar scaffold being able to penetrate into the relatively broad S1 binding domain of gelatinase.
The acylamide (Series I) and acylhydrazone (Series II) linkage can also act as potent H-bonding
acceptor/donor to interact with the active amino acid of the enzyme [47] (Figure 15).
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Figure 15. Structure and model of the binding site of new gelatinase inhibitors.

Derivatives in series 1 displayed moderate activity with gelatinase enzymatic inhibition ranging
from 34.79 ± 6.3 µM to >500 µM against 5.64 ± 0.6 µM for LY52 taken as reference. The best activity
was observed for a para-chloro phenyl substituent. In series II, two derivatives 25 and 26 demonstrated
similar activity with LY52, probably because the substituents introduced have enough space and
the right orientation to guide the compounds to fit into the binding cavity (Table 9). In addition,
as compound 26 displayed slightly more potent activity than compound 25, it was concluded that the
phenolic hydroxyl group could provide a more effective hydrogen-bonding interaction, resulting in
increased affinity. Substitution with an aliphatic group led to inactive compounds.
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Table 9. Enzymatic inhibition and cytotoxicity study of tested compounds.

Compound Structure Gelatinase IC50 (µM) C8166 CC50 (µM)
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5. Conclusions

Quinoxaline represent an important class of nitrogen-containing heterocycles with a wide range
of potential biological activities. This review points to a growing interest in the development of
compounds bearing a quinoxaline moiety for antiviral treatment. Regarding the antiviral activity
of quinoxaline derivatives, studies showed that these derivatives represented very encouraging
agents for investigators as they exhibit some activity against a large number of different viruses.
Future investigations of this moiety requiring analysis of structure–activity relationships, as well as
the mechanisms of action of these compounds could give some more encouraging results and may
provide to new useful therapeutics.
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