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Abstract: Copper ferrite nano-particles (CuFe2O4) were synthesized, characterized, modified with
polyaniline to form CuFe2O4/PANI nano-composite. They were used as new adsorbents for the
removal of the hazardous mercuric ions from aqueous solutions. High resolution transmission
electron microscope (HR-TEM), X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) and
Brunauer–Emmett–Teller (BET) were used for the characterization of the synthesized CuFe2O4

nano-particles (NPs) in presence and absence of PANI nano-composite. The synthesized CuFe2O4NPs
were of spherical shape with an average size of 10.8 nm. XRD analysis displayed crystal peaks
for CuFe2O4NPs and amorphous peaks CuFe2O4/PANI nano-composite due to the existence of
polyaniline layer. Contact time, adsorbent dose, solution pH, adsorption kinetics, adsorption isotherm
and recyclability were studied. The method at the optimum conditions exhibited high performance
with high mercury removal percentage of up to 99% with a maximum adsorption capacity 12.5 and
157.1 mg/g for CuFe2O4 and CuFe2O4/PANI, respectively. The adsorption processes were fitted to
Langmuir isotherms. The adsorption behavior of CuFe2O4@PANI composite towards Hg2+ ions is
attributed to the soft acid–soft base strong interaction between PANI and Hg(II) ions. High stability
and enhanced re-usability are offered using CuFe2O4@PANI composite due to its enhanced removal
efficiency. No significant removal decrease was noticed after five adsorption–desorption cycles.
In addition, it possesses an easy removal from aqueous solutions by external magnetic field after
adsorption experiments. These indicated the enhancement of polyaniline to the surface of CuFe2O4

toward the adsorption of mercury from aqueous solutions.

Keywords: CuFe2O4 nano-particles; CuFe2O4/PANI composite; mercury (II) removal; adsorption

1. Introduction

A clean water resource is a vital and necessary goal for the whole world. Toxic heavy metals
like Hg, Pb, Cd, and Ni are considered the most dangerous environmental pollutants in the water,
thus becoming of prior anxiety because of their toxicity and non-biodegradability to plants, animals
and human [1,2]. Mercury is one of these heavy metals that can cause serious environmental and health
problems as chronic and acute poisoning. It exists in different forms such as metallic Hg, Hg+, Hg2+,
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and organic mercury containing phenyl, methyl, and ethyl groups, etc. It causes different diseases
such as Alzheimer’s disease, amyotrophic lateral sclerosis, Parkinson’s disease, and damaging of the
immune system and kidneys. Mercury is considered as prior hazardous pollutant by the Agency for
Toxic Substances and Disease Registry [3]. One of its natural sources is the volcanoes that produce
almost half of the mercury emissions released in atmosphere. It is also produced from different
industrial sources such as pharmaceuticals, chloralkali, plastic, textile, paint, rubber, paper, cement,
electronic industry, coal combustion, fertilizers, oil refining, and rubber processing [4,5]. The other
half is generated by humans by various means including 65% in combustion, 11% in the production
of gold, 6.8% in the production of non-ferrous metal, 6.4% in the production of cement, 3.0% in the
waste disposal including municipal waste, and 3.0% in the production of caustic soda [6]. According to
the World Health Organization (WHO), 1 µg/L is the maximum permissible concentration of Hg(II)in
drinking water [7]. According to the European Union (EU), the maximum acceptable level of Hg(II) is
5 µg/L for wastewater discharge [8–10]. River and lake water in the nearby industries may contain
mercuric discharges which are fatal for aquatic as well as for human life. These discharges could
accumulate in the stomach and remain non digestible resulting in the formation of cancerous diseases.
Long-term exposure to mercury could cause serious damage to nerves, brain, kidney, lung irritation,
eye irritation, skin rashes, vomiting, and diarrhea [11].Researchers have been used a lot of techniques to
get rid of heavy metals in particularly mercury ion from waste water such as sorption and filtration [12],
ion exchange [13,14], chemical precipitation [6], adsorption [15–17], solid phase extraction [18], and
adsorption process using nano-materials [19–27]. The adsorption technique is the most effective and
commonly used due to its high removal efficiency and cheapness.

Recently, there is a focus on the application of nano-materials in the removal of different
environmental pollutants. This is based on their distinctive properties such as high surface area,
high adsorption, and special photoelectric property. However, they are suffering from difficulty of
their separation from aqueous solutions due to their small particle size which restricts the application
in water treatment. So, it is preferable using magnetic nano-materials that can be easily separated from
solution with external magnetic field [28–30].

Magnetic nano-materials possess adsorbent properties that qualify them for use as promising
adsorbent materials, which open up a wide field for engineering separation applications. These magnetic
nano-particles can be separated based on their nanostructures due to the easy direction of magnetization,
which will vary depending on the arrangement of the atoms in the magnetic structure [31–33]. Applying
a low density magnetic field stimulates the magnetization of the material and therefore makes the use of
magnetic force possible, but when the magnetic field is cut off, the magnetization immediately decreases
to zero. This last point is important for the release of particles after adsorption of the waste [34,35].
The main drawback of using magnetic nano-particles is the low potential pollutant removal ability.
To invade this defect, the surface of magnetic nano-particles has been modified. The surface properties
of nano-particles can be greatly enhanced after this modification. This is preferred through the Van der
Waals interaction between the modified material and the reduced solvent shielding of the ions in the
interlamellar environment.

Polyaniline (PANI) has attracted much attention because of its several unique properties [36–38].
It is highly stable in air and soluble in various solvents and exhibits dramatic changes in its electronic
structure and physical properties in the protonated state. It also shows magnetic behavior because of
its high spin density [39,40].

In the present work, modification of CuFe2O4 nano-particles (NPs) with polyaniline was used as
a novel adsorbent for mercury removal in aqueous solutions. The nano-particles were synthesized,
characterized, and used as an adsorbent for mercury removal under optimum conditions. The removal
efficiency of the prepared adsorbents was investigated, and their adsorption and desorption behaviors
towards mercury species were studied.
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2. Results and Discussion

2.1. Adsorbent Characterization

2.1.1. X-ray Diffraction Pattern

The phase identification of CuFe2O4 and CuFe2O4/PANI nano-composites was illustrated by
X-ray diffraction (XRD) as shown in Figure 1. All of the high intensity peaks are indexed and refined as
tetragonal structure with I41/amd space group, which is consistent with standard Joint Committee
on Powder Diffraction Standards (JCPDS) card no. 34-0425.The obtained XRD pattern exhibits good
crystallinity for CuFe2O4. The reflection plans (101), (112), (211), (220), (303), and (224) coincide with
the tetragonal spinel phase for CuFe2O4 with a characteristic peak appears at 2θ 35.5◦. The reflection
plans (010), (100), and (110) coincide with the amorphous phase of standard data for polyaniline. It is
apparent that the broad diffraction peak centered at 2θ value 25.3◦ (110) in Figure 1 is the characteristic
peak of the PANI layer. This can be ascribed to the periodicity parallel and perpendicular to the polymer
chains, respectively [41]. The characteristic peak of CuFe2O4 still appears at 35.5◦ and little shift for the
other peaks when doped with PANI. The average crystalline size of the prepared nano-composite was
calculated using Scherrer’s equation [42]:

d = 0.9 λ/β cos θ (1)

where d is the average crystalline size, λ is the wavelength of CuKα,β is the full width at half maximum
(FWHM) of most intense diffraction peak (211), and θ is the Bragg’s angle. The average particle size is
estimated to be 10.8 and 23.4 nm for CuFe2O4 and CuFe2O4/PANI nano-composites, respectively.
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Figure 1. Pattern of both CuFe2O4 and CuFe2O4/PANI nano-composites. 

2.1.2. High Resolution Transmission Electron Microscopy (HRTEM) 

TEM images for CuFe2O4 nano-particles showed spherical shaped nano-particles with small 
agglomeration and nano sizes of 10.8 nm that coincides with the XRD result. The particles are dense 
and regularly distributed with clear boundary between neighboring particles as observed in Figure 
2a. TEM images of CuFe2O4/PANI nano-composite revealed the light shell nature of PANI in which 
dark core copper ferrite particles are embedded as shown in Figure 2b. 

Figure 1. Pattern of both CuFe2O4 and CuFe2O4/PANI nano-composites.

2.1.2. High Resolution Transmission Electron Microscopy (HRTEM)

TEM images for CuFe2O4 nano-particles showed spherical shaped nano-particles with small
agglomeration and nano sizes of 10.8 nm that coincides with the XRD result. The particles are dense
and regularly distributed with clear boundary between neighboring particles as observed in Figure 2a.
TEM images of CuFe2O4/PANI nano-composite revealed the light shell nature of PANI in which dark
core copper ferrite particles are embedded as shown in Figure 2b.
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Figure 2. Images of (A) CuFe2O4 and (B) CuFe2O4/PANI nano-composites.

2.1.3. Brunauer–Emmett–Teller (BET)

The N2 adsorption–desorption experiment at 77 K for CuFe2O4 and CuFe2O4/PANI
nano-composites are shown in Figure 3. The figure shows an adsorption isotherm of the type IV with
a hysteresis loop that is associated with capillary condensation within the mesoporous regions [43],
with a hysteresis loop type H3, which is usually indicative of aggregates of platelet particles or
adsorbents containing slit pores. The initial part of the isotherm (until p/po

≈ 0.4) can be attributed to
monolayer/multilayer adsorption because it follows the same path of desorption, which demonstrates
weak adsorbate–adsorbent interactions. The hysteresis loop begins at p/po = 0.4 and it ends at p/po = 0.95;
the hysteresis loop exhibits limited adsorption. This phenomenon is related to the presence of particles
that are not rigidly joined together. The BET surface area and pore volume of the nano-composite are
recorded in Table 1. The pore size of CuFe2O4 nano-particles was about 9.9 nm. It was regarded as a
mesoporous material of surface area 44.7 m2/g and pore volume of 0.11 cm3/g. For CuFe2O4/PANI
nano-composites, the BET surface area is lower, around 30.8 m2/g, due to the lower cumulative volume
of pores (0.06 cm3/g).

Molecules 2020, 25, x 4 of 15 

 

 
 

Figure 2. Images of (A) CuFe2O4 and (B) CuFe2O4/PANI nano-composites. 

2.1.3. Brunauer–Emmett–Teller (BET) 

The N2 adsorption–desorption experiment at 77 K for CuFe2O4 and CuFe2O4/PANI nano-
composites are shown in Figure 3. The figure shows an adsorption isotherm of the type IV with a 
hysteresis loop that is associated with capillary condensation within the mesoporous regions [43], 
with a hysteresis loop type H3, which is usually indicative of aggregates of platelet particles or 
adsorbents containing slit pores. The initial part of the isotherm (until p/po ≈ 0.4) can be attributed to 
monolayer/multilayer adsorption because it follows the same path of desorption, which 
demonstrates weak adsorbate–adsorbent interactions. The hysteresis loop begins at p/po = 0.4 and it 
ends at p/po = 0.95; the hysteresis loop exhibits limited adsorption. This phenomenon is related to the 
presence of particles that are not rigidly joined together. The BET surface area and pore volume of 
the nano-composite are recorded in Table 1. The pore size of CuFe2O4 nano-particles was about 9.9 
nm. It was regarded as a mesoporous material of surface area 44.7 m2/g and pore volume of 0.11 
cm3/g. For CuFe2O4/PANI nano-composites, the BET surface area is lower, around 30.8 m2/g, due to 
the lower cumulative volume of pores (0.06 cm3/g). 

 
Figure 3. N2 adsorption–desorption isotherms of coupled CuFe2O4 and CuFe2O4/PANI (polyaniline) 
nano-composites. 

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40 CUFe2O4

Vo
lu

m
e(

cc
/g

)

Relative pressure(p/po)
0.0 0.2 0.4 0.6 0.8 1.0

0

20

40

60

80

Vo
lu

m
e(

cc
/g

)

Relative pressure(p/po)

CUFe2O4/PAN

PANI layer 

(A) (B) 

Figure 3. N2 adsorption–desorption isotherms of coupled CuFe2O4 and CuFe2O4/PANI
(polyaniline) nano-composites.

Table 1. General surface characteristics of CuFe2O4 and CuFe2O4/PANI nano-composites obtained by
N2 adsorption at 77 K.

Sample Surface Area(m2/g) Average Pore Volume(cm3/g) Average Pore Diameter (nm)

CuFe2O4/PANI 30.8 0.06 17.8
CuFe2O4 NP 44.7 0.11 9.9
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2.1.4. Fourier Transforms–Infrared Spectroscopy (FTIR)

The FTIR spectra of CuFe2O4 and CuFe2O4/PANI nano-composites are shown as supplementary
material in Supplementary Materials Figure S1. CuFe2O4 spectrum has only a characteristic peak at
574.9 cm−1 of M–O bond while CuFe2O4/PANI spectrum has several characteristics peaks corresponding
to polyaniline. These include peaks at 3419.1 cm−1 assigned for N–H stretching, 1561.1 cm−1 assigned
to stretching vibration of C=C, 1469.7 cm−1 assigned to stretching vibration of C–C, 1298.7 cm−1 C–N
stretching vibrations, 1135.8 cm−1 for C–H bending mode and 777 cm−1 assigned to the wagging of
=C–H. Hence the obtained results confirm the presence of copper ferrite nano-particles doped PANI.

2.1.5. Thermal Analysis

Thermal-gravimetric analysis (TGA) of CuFe2O4/PANI is presented in Figure S2. It showed an
overall weight loss of 35% in the range of 25–800 ◦C. A weight loss before 100 ◦C is noticed in the TGA
curve due to residual water evaporation. Another weight loss is noticed within the ranging from 310
to 480 ◦C and 480 to 630 ◦C due to the thermal degradation of the lower and the higher weight PANI
chains, respectively.

2.2. Adsorption Study

Nano-composite particles consisting of CuFe2O4 and that doped with PANI were prepared and
tested as adsorbing substances to remove mercuric ions from aqueous solutions and some industrial
waste water.

2.2.1. Effect of Mercury Concentration

The removal efficiency of mercury ions using CuFe2O4NPs was 82% beginning from 10 up to
120 µg/mL. The adsorption performed at pH value 7 for 30 mL of the adsorbent solution stirred for
120 min. While CuFe2O4/PANI nano-composites exhibit higher removal efficiency of 99.5% when
varying the concentration of Hg2+ from 10 to 32 µg/mL. It begins to decrease to 92.3% upon increasing
the concentration of mercury up to 120 µg/mL (Figure 4).
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CuFe2O4/PANI, adsorbent amount = 0.1 g CuFe2O4 and 0.2 g CuFe2O4/PANI and pH 7).

2.2.2. Effect of Contact Time

As shown in Figure 5, the concentration of Hg(II) ions was studied relative to the contact time
of each adsorbent. It was found that the time required to obtain more than 80% of Hg(II) removal
was 2 h for CuFe2O4. However, in case of CuFe2O4/PANI composite, the time required to achieve the
equilibrium was one hour with a removal percentage of 99.5%. To examine the adsorption mechanism,
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kinetics is the vital feature. Pseudo first order and second order models were fitted as the practical
kinetics data. The obtained results were presented in Table 2. The adsorption process for both CuFe2O4

and CuFe2O4/PANI composite obeyed the second order model.
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Figure 5. Effect of contact time on adsorption optimization using CuFe2O4 and CuFe2O4/PANI
nano-composites sorbents (V = 30 mL, Hg2+ concentration = 25 µg/mL, adsorbent amount = 0.1 g
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Table 2. Adsorption kinetics parameters.

Adsorbent
Pseudo-First Order Second Order

k1(min−1) qe1(mg/g) R2 k2(g/(mg. min)) qe2(mg/g) qe
exp R2

CuFe2O4 0.0056 1.571 0.942 5.3 × 10−3 5.8922 7.1086 0.991
CuFe2O4/PANI 0.0732 2.2134 0.953 0.1121 8.3356 8.4123 0.998

2.2.3. Effect of Adsorbent Amount

To optimize the amount of adsorbent NPs, different amounts from each adsorbent in the range of
0.05 to 0.3 g were put in contact with 30 mL of 25 µg/mL Hg2+ solutions of pH 7 and 60 min contact time.
As shown in Figure 6, it was observed that the maximum adsorption (i.e., 99.5% removal efficiency)
was attained after using 0.2 and 0.1 g for CuFe2O4NPs and CuFe2O4/PANI composite, respectively.
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Figure 6. Effect of CuFe2O4 and CuFe2O4/PANI nano-composite sorbents amount on adsorption
optimization (V = 30 mL, Hg2+ concentration = 25 µg/mL, contact time =2 h for CuFe2O4 and 1 h for
CuFe2O4/PANI and pH 7).

2.2.4. Effect of pH

The pH is an essential parameter for Hg2+ adsorption due to its relevance to Hg speciation, as
well as the interactions between Hg species and adsorbent surfaces. When the feed water pH was
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varied from 6.0 to 9.0, Hg2+ removal efficiency of CuFe2O4/polyaniline remained at ~99.5% (Figure 7A).
For CuFe2O4NPs the removal percentage of Hg(II) ions became constant until pH reaches 7. This can be
explained that at higher pH values, oxygen-containing groups (e.g., –OH) are ionized to –O–, forming
negative charges on the CuFe2O4 surface.
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composite sorbents (V= 30 mL, Hg2+ concentration= 25 µg/mL, adsorbent amount = 0.1 g CuFe2O4 and 
0.2 g CuFe2O4/PANI and contact time = 2 h for CuFe2O4 and 1 h for CuFe2O4/PANI). (B) Plots of the 
zeta potential as a function of pH for CuFe2O4/PANI and PANI. 
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Figure 7. (A) Effect of pH on adsorption optimization using CuFe2O4 and CuFe2O4/PANI
nano-composite sorbents (V= 30 mL, Hg2+ concentration= 25 µg/mL, adsorbent amount = 0.1 g
CuFe2O4 and 0.2 g CuFe2O4/PANI and contact time = 2 h for CuFe2O4 and 1 h for CuFe2O4/PANI).
(B) Plots of the zeta potential as a function of pH for CuFe2O4/PANI and PANI.

Based on zeta potential results (Figure 7B),the Point of Zero Charge for both PANI and
CuFe2O4/PANI composite, is around 4–6 and 6, respectively. CuFe2O4/PANI composite had net
negative charges at pH > 6.0 and positive charges at pH < 6.0. At low pH values (e.g., pH < 5.0 for
PANI-HCl), nitrogen atoms of imine groups were preferentially bound by protons, causing the PANI
surfaces carrying positive charges.

2.3. Adsorption Isotherms

Langmuir (Equation (2), Freundlich (Equation (3), and Temkin (Equation (4) models were
applied to calculate the sorption of Hg2+ ions for both CuFe2O4 and CuFe2O4/PANI nano-composite
(Figures 8 and 9).

1/Qt = 1/Xmb Ct + 1/Xm (2)

Log Qt = (1/n) log Ct + log kF (3)

Qt = (RT/BT) ln Ct + (RT/BT) ln KT (4)

where: Qt is adsorption capacity at equilibrium (mg/g), Ct is equilibrium concentration of the Hg2+

solution (µg/mL), t (min) is contact time, Xm (mg/g) is maximum monolayer adsorption capacity
and b (L/mg) is the adsorption equilibrium constant. Relative adsorption capacities and sorption
intensities n and Kf (mg/g), and the constants of Freundlich model, were calculated. Temkin constants,
BT (kJ/mol) and KT (L/mg) whose are constants of heat of sorption and maximum binding energy
were estimated. A 30 mL of different mercury concentrations ranging from 10 to 200 µg/mLwere
tested under the optimum conditions and the adsorption was expressed by three equilibrium models:
Langmuir, Freundlich, and Temkin to illustrate the adsorption capacity and adsorption behavior.
The theory of Langmuir assumes that the adsorption occurs by monolayer on the surface of the
adsorbent with the same adsorption sites (homogeneous surface), while Freundlich is an empirical
theory at which the adsorption occurs by multilayer on the surface of the adsorbent with different
adsorption sites (heterogeneous surface). Temkin assumed that there are indirect interactions between
adsorbate molecules and the heat of adsorption of all molecules decrease linearly with increasing
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surface coverage [44]. The results are summarized in Table 3 and confirm the reasonable adsorption
capacity of the used nano-composite material and follows Langmuir isotherm model.
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Table 3. Isotherm constants for the adsorption of mercury onto CuFe2O4 and CuFe2O4/PANI
nano-composites.

Model Parameters CuFe2O4 CuFe2O4/PANI Unit

Langmuir
Xm 12.5 157.1 mg/g
B 0.561 0.153 L/mg

R2 0.998 0.999

Freundlich
N 1.06 1.34 mg/g
Kf 2.75 5.24 mg/g
R2 0.997 0.995

Temkin
KT 0.34 0.744 L/mg
bT 0.371 0.162 K J/mol
R2 0.980 0.997

2.4. Competitive Adsorption of Different Heavy Metals

The adsorption of some metal ions such as Hg+, Hg2+, Fe2+, Cu2+, Cr6+, Pb2+, and Ag+ was
investigated. CuFe2O4NPs revealed an affinity order: Fe2+ > Hg2+ > Hg+ ~ Cr6+ > Ag+ >> Pb2+.
No remarkable adsorption for Cu2+ ions using CuFe2O4NPs. For CuFe2O4/PANI nano-composite,
the affinity order was: Hg2+ > Hg+ > Fe2+~ Cr6+ > Cu2+ > Pb2+. No remarkable adsorption for
Ag+ ions using CuFe2O4/PANI nano-composite. The removal percentage of the studied ions using
CuFe2O4NPs and CuFe2O4/PANI nano-composite is shown in Figure 10. From the mentioned results,
CuFe2O4/PANI nano-composite revealed an enhanced removal power towards inorganic mercury than
CuFe2O4NPs only.
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Figure 10. Removal of different metal ions with CuFe2O4 and CuFe2O4/PANI nano-composite.

2.5. Regeneration

The adsorbent material was regenerated after each adsorption cycle of mercury by washing with
0.1 M acetic acid. After five cycles of regeneration, the efficiency of CuFe2O4 NPs for the removal of
Hg+ ions remains 82.0% however, there was a decrease in the removal efficiency of the CuFe2O4/PANI
sorbent reached to 85.3% as shown in Figure 11.
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2.6. Comparison with Other Sorbents for Mercury Removal

Water pollution becomes a critical issue around the world, and heavy metals contribute to major
pollution in water. The application of nano-materials for the removal of mercuric ions from water
has attracted significant attention. Table 4 summarizes some of reported sorbents used for mercury
removal included the present work. The prepared copper ferrite loaded by polyaniline provides higher
maximum adsorption capacity [12,17,18,20,26], short contact time [12,20,23,27], andhigher removal
percentage [12,18–21,24–27].

Table 4. Some materials used for the removal of mercuric ion.

Adsorbent Type Maximum Adsorption
Capacity mg/g Contact Time Removal % Ref.

Poly(vinylalcohol)/poly(vinylimidazole) complexing
membrane 120 125 min 99.4 [12]

Dithiocarbamate-incorporated mono size polystyrene 33.2 30 min NR [17]
Magnetic iron oxide nanoparticles modified with

2-mercaptobenzothiazole 0.59 4 min 98.6 [18]

Thiolated multi-walled carbon nanotubes 204.64 40 min 98 [19]
Amidoamine functionalized multi-walled carbon nanotubes

(MWCNT-AA) 101.35 180 min 80 [20]

Mercaptopropyl-coated cobalt ferrite (CoFe2O4) magnetic
nanoparticles NR 30 min 97 [21]

Poly(aniline-co-5-sulfo-2-anisidine) nanoparticles 2063 48 h 99.8 [23]
Gold Nanoparticle−Aluminum Oxide 676 30 min >97 [24]

Mercaptoamine-functionalised silica-coated magnetic
nanoparticles (MAF-SCMNPs) 355 120 min NR [25]

Polyaniline Nanotubes 0.8239 60 min 90 [26]
Iron oxide nanoparticles NR 24 h 87 [27]

CuFe2O4
CuFe2O4/PAN

12.5
157.1

120 min
60 min

82
99.5

This
work

2.7. Mechanism of Adsorption

The adsorption mechanism of Hg2+ ions using CuFe2O4 and CuFe2O4/PANI composite is shown
in Figure 12. The adsorption mechanism can be explained in two ways. Physical adsorption can
be occurred on the surface of PANI layer or in the porosity of the adsorbent or chemical adsorption
through the interaction between the PANI base layers with mercuric ions. In addition, at the working
pH value, oxygen-containing groups (e.g., –OH) in CuFe2O4 can be ionized to –O−, forming negative
charges on the CuFe2O4 surface and enhance the favorable adsorption of Hg2+ ions.
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3. Materials and Methods

3.1. Materials

For the experimental purpose, all chemicals used were of analytical reagent grade, 98–99%.
Metal nitrates, chloride, and sulfate were of the highest purity and supplied by Sigma-Aldrich
(St. Louis, MO, USA). Polyethylene glycol 6000 (PEG), potassium hydroxide, and ammonium
peroxydisulfate were purchased from Fluka (Ronkonoma, NY, USA). Aniline was purchased from
Central Drug House Ltd. (New Delhi, India) and distilled prior to use. All the chemicals were used as
received without any further purification.

3.2. Apparatus

High-resolution transmission electron microscopy (HRTEM) images were taken by JEOL-JEM-2100
electron microscope instrument (Osaka, Japan). The prepared adsorbents were characterized by X-ray
diffraction (XRD) which were carried out by BRUKER D2 PHASER 2nd generation X-ray diffractometer
(Berline, Germany) using CuKα,β radiation (λ= 0.154 nm) in the angular region of 2θ= 4–80◦. Operation
conditions were 40KV, 40 mA and scanning speed of 8◦/min. The Brunauer–Emmett–Teller (BET)
surface area measurements were carried out by N2 adsorption–desorption at 77 K using Nova 3200 s
(Florida, FL, USA) unite instrument, in the relative pressure (p/po) at 0.25104. Fourier Transform Infrared
(ATR-FTIR) was used to obtain the spectra in a spectral range of 4000–500 cm−1. Inductively coupled
argon plasma (ICAP 6500 Duo, Thermo Scientific, Abingdon, UK) as used for mercury ion evaluation.

3.3. Preparation of CuFe2O4Nano-Particles

The synthesis of the nano-particles was done by using the co-precipitation technique [45].
Briefly 11.7 mmol CuSO4 and 14.98 mmol FeCl3 were dissolved in 200 mL 1 wt.% PEG solution.
The solution was kept under stirring for about one hour to insure the equilibrium between all the
components. To the above mixture, 4M KOH was added drop-wise with vigorous stirring until
reaching a pH 9. The mixture was kept under magnetic stirring for another two hours then aged
overnight. The precipitate was filtered, washed with distilled water until it was free from Cl− and
SO4

2− ions and dried at 70 ◦C for two h. The precipitated was then calcined at 600 ◦C in air for 3 h and
then ground using agate motor to obtain a fine powder.

3.4. Preparation of CuFe2O4/PANI Nano-Composite

The polyaniline copper ferrite nano-composite was prepared using chemical polymerization
method by dispersing 2 g of the previously prepared CuFe2O4 nano-particles in 200 mL of 2M HCl and
stirred vigorously at room temperature for 10 min. A 4.5 mL aliquot of distilled aniline monomer was
added under continuous stirring for 30 min. To the above suspension, 20 mL of 19.7 mmol (NH4)2S2O8

solution was added drop-wisely, as a polymerization initiator. An immediate color change of the
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solution to blue green was observed. The suspension was stirred to complete the polymerization
process for about 1 h. The copper ferrite doped PANI was separated on a filter paper, rinsed with
distilled water, and finally dried at 100◦C in an electrical oven. The produced powder has a green color
which represents emeraldine salt of polyaniline.

3.5. Removal of Mercury from Waste Water

A range of mercury (II) ion (10–120 µg/mL) was prepared. For the adsorption studies different
amounts of either CuFe2O4 or CuFe2O4/PANI nano-composite (ranged from 0.05 to 0.3 g) were added
to 30 mL of the prepared solution at room temperature and pH 7. These solutions were stirred for a
contact time varied from 15 min to 2 h. After adsorption, the solutions were filtered and the adsorbent
material was separated. The concentration of Hg2+ ion was evaluated before and after the removal of
mercury by inductively coupled argon plasma.

The removal percentage of mercury was calculated using the following equation:

Removal% = ((C0 − Ct))/C0× 100 (5)

where, C0 and Ct are the mercury concentration in µg/mL at initial and after time t, respectively.

4. Conclusions

CuFe2O4/PANI nano-composite was successfully prepared and its adsorption properties towards
Hg2+ ions removal were checked. An X-ray diffractometer, TEM, and BET were used to characterize
the prepared nano-composites. The crystallite size of the synthesized CuFe2O4 and CuFe2O4/PANI
nano-composite was 10.2 and 23.4 nm, respectively. Under the optimum conditions, CuFe2O4/PANI
offer higher removal efficiency than CuFe2O4 for Hg+/ Hg+2 ions which were 95.3 and 99.5%, respectively.
Both adsorbents followed the second order model and Langmuir model with adsorption capacity
of 12.5 and 157.1 mg/g for CuFe2O4 and CuFe2O4/PANI composite, respectively. After five cycles of
regeneration, the efficiency of CuFe2O4NPs for the removal of Hg+ ions remains 82.0% however, there
was a decrease in the removal efficiency of the CuFe2O4/PANI sorbent reached to 85.3%with lower
efficiency and good performance when used again after five cycles. These materials were successfully
applied for the removal of Hg2+ ions with a high efficiency over other studied heavy metals.

Supplementary Materials: The following are available online, Figure S1: FTIR spectra of (A) CuFe2O4 and (B)
CuFe2O4/PANI nanocomposites; Figure S2: Thermal-gravimetric analysis (TGA) of CuFe2O4/PANI.
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