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Abstract: There are still controversies regarding the correlation between the beneficial effects for
health and the administration of isolated compounds or crude extracts in therapeutic applications.
Campomanesia xanthocarpa, found in the Brazilian Cerrado, demonstrated beneficial effects in
metabolic disorders associated with obesity. We investigated the effects of Campomanesia xanthocarpa
hydroethanolic extract and two isolated substances from the extract (S1 and S2) in a diet-induced obesity
(DIO) model. Male Swiss mice were divided into five groups: (1) American Institute of Nutrition
(AIN-93M) diet, (2) high-fat diet (HF), (3) HF supplemented with C. xanthocarpa hydroethanolic leaf
extract at 100 mg/kg (HFE), (4) HF supplemented with S1 at 1 mg/kg (HFS1) and (5) HF supplemented
with S2 at 1 mg/kg (HFS2). The HFS1, HFS2 and HFE groups did not present decreasing body weight
or visceral adiposity gain. No differences in glycemic and lipid parameters, or in the expression of
protein content in two cytokines, interleukin-6 (IL-6) and anti-inflammatory (IL-10), were observed.
Only the HFS1 group displayed decreased food intake. Even though substantial effects such as an
improvement in obesity features or the metabolic and histological parameters promoted by S1, S2 and
the extract were not observed, further investigations are necessary to evaluate the principal genes
and protein expressions involved in regulating food behavior promoted by S1.
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1. Introduction

Obesity is defined as excessive fat accumulation that may impair health [1] and is considered a risk
factor for the development of noncommunicable diseases (NCDs), including cardiovascular diseases
(CVDs) and diabetes [2]. According to the World Health Organization (WHO), about 41 million deaths
have occurred due to NCDs, equivalent to 71% of all deaths in the world and 80% of all premature
deaths [2], affecting individuals in low- and middle-income nations the most [2,3]. They are known
as chronic diseases due to their long duration and the fact that they result from a set of genetic,
physiological, environmental, and behavioral factors [2].

Central obesity, also known as abdominal obesity, is a crucial factor in the development of
metabolic disturbances such as glucose intolerance, insulin resistance, hypertension, dyslipidemia,
and nonalcoholic fatty liver disease (NAFLD), and all of these conditions are features of principal
metabolic syndrome (MetS) [4]. Physical inactivity, age, genetic profile, obesity, and an unhealthy diet
may be considered primary causes of MetS [5,6]. The evidence indicates that lifestyle modification
is the first line of choice, and drug therapy is an important strategy for the management of MetS [7].
Current data, as reported by the World Obesity Federation (WOF), demonstrate that 1.2 trillion dollars
will be spent on the treatment of obesity-associated diseases in 2025 [8], with synthetic drugs as the first
choice for treatment. Several pharmaceutical products available on the market are used to treat obesity
and its metabolic disturbances; however, some of these products have been associated with severe side
effects [9]. For this reason, novel natural compounds with medicinal properties have been studied in
order to develop effective agents that may be less toxic and produce fewer undesirable effects [10].
Thus, the acceptance of medicinal plants as an alternative therapy has grown considerably [11].

Campomanesia xanthocarpa (C. xanthocarpa), which belongs to the Myrtaceae family, is found
in the Brazilian Cerrado and is used in Brazilian popular medicine for its antiulcerogenic [12],
anti-inflammatory [10], antidiarrheal, and antimicrobial activity [13], and antioxidant potential [14].
A previous study by our group demonstrated that some C. xanthocarpa extracts were able to influence
the metabolic dysfunctions commonly associated with obesity conditions [15]; in the present study,
we observed that few studies so far have evaluated the effects of C. xanthocarpa extracts, such as by using
leaf aqueous extracts [16,17] in animal models fed with diets that promote metabolic disturbances.

The difficulty in assessing which of the two therapeutic approaches—the use of extracts acting
with a synergistic effect or isolated substances—provide the most beneficial effects on metabolic
disturbances remains one of the challenges when using natural products to prevent or treat obesity.
Bioactive compounds found in a variety of plants have attracted attention due to their pharmacological
properties, and among these important substances are chalcones and flavanones, which belong to the
flavonoid family [18]. Current studies have demonstrated that chalcones and flavanones exhibited
metabolic effects in diet-induced obesity (DIO) animal models, such as reducing body weight gain and
fat deposition in white adipose tissue, decreased plasma cholesterol, glucose, insulin and triglycerides
levels, alleviated glucose tolerance and chronic inflammation in white adipose tissue and reduced
fat content in the liver [19–22]. These metabolic effects promoted by chalcones and flavanones were
also observed in in vitro cells, such as adipocytes, suppressing intracellular lipid accumulation and
inhibiting adipocyte differentiation [23], and hepatocytes, ameliorating hepatic steatosis [24].

The present study is the first to evaluate the effects of C. xanthocarpa hydroethanolic
leaf extract per se, and two isolated compounds, substance 1 (S1) (comprised of
2′,4′-dihydroxy-3′,5′-dimethyl-6′-methoxychalcone (chalcone)) and substance 2 (S2) (comprised of
5-hydroxy-7-methoxy-8-metylflavanone (flavanone)), were studied. The aim of this study is to observe
the synergistic effect promoted by C. xanthocarpa hydroethanolic leaf extract (Ext) and the two substances
(S1 and S2) isolated from the extract on obesity features and metabolic and histological parameters in
high-fat diet (HFD)-fed mice.
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2. Results

2.1. S1, S2 and Ext Have Not Influenced on Decreasing Body Weight and Visceral Adiposity

Differences in body weight gain were not observed at the end of the first month of supplementation
(data not shown). At the end of two months, the high-fat diet (HF) group presented a higher body
weight gain compared to the American Institute of Nutrition (AIN-93M) group (data not shown).
The HF group and the group fed HF supplemented with C. xanthocarpa hydroethanolic leaf extract
(HFE) had an increased body weight gain at the end of three months of the experiment, while the
groups fed HF supplemented with S1 (HFS1) and S2 (HFS2) did not present differences compared to
the AIN-93M group. With regard to adiposity index and total visceral adipose tissue weight, the HF,
HFE, and HFS2 groups obtained higher values; however, the HFS1 group did not show differences
compared to the AIN-93M group. These findings suggest that the HFS1, HFS2 and HFE groups did
not mitigate body weight and visceral fat gain; even though there were no differences among the
supplemented groups in comparison to the HF group, it is important to emphasize that the HFE group
displayed higher average values of final body weight, body weight gain, total visceral fat and adiposity
index (Table 1).

Table 1. Initial and final body weight, body weight gain, total visceral fat, and adiposity index of
groups fed American Institute of Nutrition (AIN-93M) diet, high-fat diet (HF), HF supplemented
with extract (Ext) at 100 mg/kg (HFE), HF supplemented with substance 1 (HFS1) at 1 mg/kg, and HF
supplemented with substance 2 (HFS2) at 1 mg/kg from the first to 13th week.

Parameter Groups

AIN-93M HF HFE
(100 mg/kg)

HFS1
(1 mg/kg)

HFS2
(1 mg/kg)

Initial body weight (g) 36.08 ± 1.11 37.45 ± 1.13 38.09 ± 1.17 35.83 ± 0.89 36.16 ± 1.33
Final body weight (g) # 37.33 ± 1.18 45.09 ± 1.80 49.09 ± 1.86 *** 42.41 ± 1.78 43.75 ± 2.81
Body weight gain (g) # 1.25 ± 0.55 7.63 ± 0.83 ** 11.00 ± 1.10 *** 6.58 ± 1.20 7.58 ± 1.67

Total visceral fat (g) 2.326 ± 0.239 4.000 ± 0.351 * 4.796 ± 0.229 *** 3.708 ± 0.419 4.186 ± 0.534 **
Adiposity index (%) 6.091 ± 0.537 8.721 ± 0.560 * 9.440 ± 0.292 ** 8.504 ± 0.739 9.169 ± 0.851 *

Values represent mean ± standard error of the mean. In the same line, * p ≤ 0.05, ** p ≤ 0.01, and *** p ≤ 0.001
compared with AIN-93M group. ANOVA on ranks followed by Tukey’s post-test, # median Dunn’s post-test.

2.2. S1 Attenuated Food Intake; However, S2 and Ext Did Not Decrease Food and Calorie Intake

The AIN-93M group presented a higher food intake compared to all groups at the end of the first
(fourth week), second (eighth week), and third (13th week) month of the experiment. However, at the
end of the experiment (13th week), the HFS1 group demonstrated lower food intake compared to the
HF and AIN-93M groups.

Even though the AIN-93M group had a higher food intake, the HF and HFE groups displayed an
increased daily caloric intake and weight gain per caloric intake coefficient (WGPCI). However, the HFE
group obtained a higher feed efficiency index (FEI) compared to the AIN-93M group, demonstrating
that the crude extract did not have an influence on food behavior and calorie intake. Lower average
values of FEI and WGPCI values were observed in the HFS1 and HFS2 groups. Taken together,
these data suggest that the supplemented groups do not displayed differences in calorie intake, FEI and
WGPCI; however, the HFS1 group displayed a decreased food intake at the end of supplementation,
while HFS2 and HFE were not able to present this effect (Table 2).
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Table 2. Food intake at fourth, eighth, and 13th weeks: total food intake, daily caloric intake,
feed efficiency index (FEI), and weight gain per caloric intake coefficient (WGPCI) of groups fed
AIN-93M diet, high-fat diet (HF), HF supplemented with Ext at 100 mg/kg (HFE), HF supplemented
with substance 1 (HFS1) at 1 mg/kg, and HF supplemented with substance 2 (HFS2) at 1 mg/kg.

Parameters Groups

AIN-93M HF HFE
(100 mg/kg)

HFS1
(1 mg/kg)

HFS2
(1 mg/kg)

Food intake (4th week) (g) 112.33 ± 2.59 95.90 ± 2.64 * 98.09 ± 3.55 93.41 ± 3.24 ** 96.16 ± 5.58 *
Food intake (8th week) (g) # 102.91 ± 3.47 86.60 ± 2.02 85.63 ± 1.75 * 84.16 ± 1.44 * 82.91 ± 4.03 *

Food intake (13th week) (g) # 135.50 ± 5.46 107.16 ± 4.67 * 107.72 ± 2.83 103.75 ± 2.01 *,& 100.75 ± 5.41 *
Total food intake (total g) # 350.75 ± 10.89 292.54 ± 10.11 * 291.45 ± 7.65 281.33 ± 5.84 * 279.83 ± 14.66 *

Daily caloric intake (kcal/day) 14.80 ± 0.46 17.22 ± 0.59 * 17.16 ± 0.45 * 16.57 ± 0.34 16.47 ± 0.85
FEI 37.22 ± 1.18 44.96 ± 1.79 48.96 ± 1.86 *** 42.29 ± 1.78 43.62 ± 2.81

WGPCI 36.72 ± 1.29 45.06 ± 1.80 * 49.06 ± 1.86 *** 42.39 ± 1.78 43.72 ± 2.81

Values represent mean ± standard error of the mean. In the same line, * p ≤ 0.05, ** p ≤ 0.01, and *** p ≤ 0.001
compared with AIN-93M group; & p ≤ 0.05 compared with HF. ANOVA on ranks followed by Tukey’s post-test,
# median Dunn’s post-test.2.3. S1 and S2 did not influence adipocyte size; Ext increased adipocyte area

The HFE group displayed an increased adipocyte area (Figure 1c) compared with the AIN-93M
group (Figure 1a), and there were no differences among HF (Figure 1b), HFS1 (Figure 1d), and HFS2
(Figure 1e) groups.
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mean. * p < 0.05 compared with AIN-93M group. 
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Figure 1. Adipocyte area of (a) AIN-93M diet group, (b) high-fat diet (HF) group, (c) HF supplemented
with Ext at 100 mg/kg (HFE) group, (d) HF supplemented with substance 1 at 1 mg/kg (HFS1) group;
(e) HF supplemented with substance 2 at 1 mg/kg (HFS2) group; and (f) all adipocyte areas (µm2).
Hematoxylin and eosin staining of 5.0 µm sections of epidydimal adipose tissue. Magnification: 20×;
bar scale: 100 µm. Results in (f) are expressed as mean ± standard error of the mean. * p < 0.05
compared with AIN-93M group.

2.3. Ext Diminished HDL-C and Increased LDL-C Levels, Whereas S1 and S2 Diminished LDL-C and
Increased HDL-C Levels Compared to HFE Group

At the end of the study, serum lipid analysis revealed no differences in total cholesterol (Figure 2a)
and triglyceride (Figure 2b) levels among the groups. However, HFE decreased serum high-density
lipoprotein cholesterol (HDL-C) levels (Figure 2c) and increased low-density lipoprotein cholesterol
(LDL-C) levels (Figure 2d) compared to the HF group. The HFS2 and HFS1 group demonstrated higher
HDL-C levels when compared to the HFE group (Figure 2c), while the HFS2 group displayed lower
LDL-C levels compared to the HFE group (Figure 2d).
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Figure 2. Lipid serum analysis of AIN-93M diet group, high-fat diet (HF) group, HF supplemented
with Ext at 100 mg/kg (HFE) group, HF supplemented with substance 1 at 1 mg/kg (HFS1) group,
and HF supplemented with substance 2 at 1 mg/kg (HFS2) group: (a) total cholesterol (CT; mmol/L);
(b) triglyceride (mmol/L); (c) high-density lipoprotein cholesterol (HDL-C; mmol/L); (d) low-density
lipoprotein cholesterol (LDL-C; mmol/L). Results are expressed as mean ± standard error of mean.
* p ≤ 0.05 compared with AIN-93M, # p ≤ 0.05 compared with HF, and & p ≤ 0.05 compared with HFE.
ANOVA on ranks followed by Tukey’s post-test.
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2.4. S1, S2, and Ext Have Not Influenced on Glycemic Metabolism

The first oral glucose tolerance test (OGTT) was performed before the introduction of diets and
supplementation with Ext, S1, and S2; consequently, all groups responded equally without differences
(Figure 3a). After 3 months of diet (HFD) and supplementation, increased area under the curve (AUC)
OGTT values were observed in the HF, HFE, HFS1, and HFS2 groups compared with the AIN-93M
group (Figure 3b). After euthanasia, fasting blood glucose was evaluated, and no differences were
observed among the groups (Figure 3c). These findings suggest that substances S1 and S2 and Ext
have no influence on glycemic parameters.
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at 100 mg/kg (HFE) group, HF supplemented with substance 1 at 1 mg/kg (HFS1) group, and HF
supplemented with substance 2 at 1 mg/kg (HSF2) group; (d) Second OGTT–AUC graphic after diets
and supplementation; (e) Fasting blood glucose at the end of the experiment. Results are expressed as
mean ± standard error of mean. ** p ≤ 0.01 and *** p ≤ 0.001 compared with AIN-93M. ANOVA on
ranks followed by Tukey’s post-test.

2.5. S1, S2 and Ext Have Not Influenced on Insulin Parameters

Insulin tolerance tests (ITTs) were performed at the end of the experiment (13th week). The HF and
HFS2 groups displayed higher AUC–ITT values compared to the AIN-93M group (Figure 4). The HFS1
and HFE groups did not present differences between the AIN-93M and HF groups (Figure 4), suggesting
that neither S1 and S2 nor Ext were able to influence insulin parameters after supplementation.
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2.6. S1, S2 and Ext Have Not Attenuated Hepatic Steatosis Percentage

The AIN-93M group had a prevalence of hepatic steatosis <5% compared with the HF, HFE,
and HFS1 groups (Figure 5), with no difference compared to the HFS2 group; the latter had a
higher prevalence of hepatic steatosis (<5%) than the HFE group (p = 0.0006). When we evaluated
microvesicular steatosis, our data showed that it was more prevalent in the HF, HFE, and HFS1 groups
than in the AIN-93M group, while the HFE group had a higher prevalence of microvesicular steatosis
than the HFS2 group (p = 0.003). The absence of lobular inflammation was more evident in the
AIN-93M group compared to the HF and HFS1 groups (p = 0.003). These differences among groups
were not observed for other parameters, such as apoptosis and the presence of a glycogenated nucleus.
In addition, due to the absence of ballooning and Mallory’s hyaline, inferential statistical analysis was
not possible (Table 3).
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Figure 5. Liver histology of (a) AIN-93M diet group, (b) high-fat diet (HF) group, (c) HF supplemented
with Ext at 100 mg/kg (HFE) group, (d) HF supplemented with substance 1 at 1 mg/kg (HFS1) group,
and (e) HF supplemented with substance 2 at 1 mg/kg (HFS2) group. Hematoxylin and eosin staining
of 5.0 µm sections of liver. Magnification: 20×; bar scale: 10 µm.
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Table 3. Liver histopathological analysis following scores on hepatic steatosis, microvesicular steatosis, lobular inflammation, ballooning, Mallory’s hyaline, apoptosis,
glycogenated nucleus of AIN-93M diet group, high-fat diet (HF) group, HF supplemented with Ext at 100 mg/kg (HFE) group, HF supplemented with substance 1 at
1 mg/kg (HFS1) group, and HF supplemented with substance 2 at 1 mg/kg (HFS2) group.

Parameters Groups

AIN-93M
(n = 12)

HF
(n = 11)

HFE
(100 mg/kg)

(n = 11)

HFS1
(1 mg/kg)
(n = 10)

HFS2
(1 mg/kg)
(n = 12)

Hepatic steatosis (p = 0.0006 *)
<5% 100.0 (12) 18.2 (2) 0.0 (0) 30.0 (3) 58.3 (7)

5 to 33% 0.0 (0) 27.2 (3) 36.4 (4) 30.0 (3) 16.7 (2)
34 to 66% 0.0 (0) 36.4 (4) 27.3 (3) 40.0 (4) 8.3 (1)

>66% 0.0 (0) 18.2 (2) 36.4 (4) 0.0 (0) 16.7 (2)

Microvesicular steatosis (p = 0.003)
Absence 100.0 (12) 81.8 (9) 36.4 (4) 60,0 (6) 91.7 (11)
Presence 0.0 (0) 18.2 (2) 63.6 (7) 40.0 (4) 8.3 (1)

Lobular inflammation (p = 0.003)
Absence 100.0 (12) 63.6 (7) 9.1 (1) 30.0 (3) 50.0 (6)

<1 focus/field 0.0 (0) 36.4 (4) 72.7 (8) 50.0 (5) 33.3 (4)
2–4 foci/field 0.0 (0) 0.0 (0) 18.2 (2) 20.0 (2) 16.7 (2)

Ballooning a

Absence 100.0 (12) 100.0 (11) 100.0 (11) 100.0 (10) 100.0 (12)

Mallory’s hyaline a

Absence 100.0 (12) 100.0 (11) 100.0 (11) 100.0 (10) 100.0 (12)

Apoptosis (p = 0.48)
Absence 100.0 (12) 100.0 (11) 90.9 (10) 90.0 (9) 100.0 (12)
Presence 0.0 (0) 0.0 (0) 9.1 (1) 10.0 (1) 0.0 (0)

Glycogenated nucleus

None/rare 100.0 (12) 100.0 (11) 81.8 (9) 100.0 (10) 100.0 (12)

Some 0.0 (0) 0.0 (0) 18.2 (1) 0.0 (0) 0.0 (0)
a Inferential statistical analysis not available due to the absence of values in the analyzed categories. * Data presented as relative frequency (absolute frequency). Value of p on chi-square test.
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2.7. Ext, S1, and S2 Had No Influence on Pancreas Hypertrophy

The HF group displayed differences in the islets of Langerhans, demonstrating pancreatic
hypertrophy in comparison to the AIN-93M group (p < 0.05). The HFE, HFS1, and HFS2 groups
maintained pancreatic morphology without improving hypertrophy when compared to the HF group.
Inflammatory cells were not identified among the groups (p = 0.17) and no alterations were observed
in pancreatic acini (Table 4).

Table 4. Analysis of pancreatic alterations observed in groups fed AIN-93M diet, high-fat diet (HF),
HF supplemented with Ext at 100 mg/kg (HFE), HF supplemented with substance 1 at 1 mg/kg (HFS1),
and HF supplemented with substance 2 at 1 mg/kg (HFS2).

Parameters Experimental Groups % (n)

AIN-93M
(n = 12)

HF
(n = 11)

HFE
(100 mg/kg)

(n = 11)

HFS1
(1 mg/kg)
(n = 10)

HFS2
(1 mg/kg)
(n = 11)

Islets of Langerhans (p = 0.04 *)
No alteration 100.0 (12) 45.5 (11) * 63.6 (7) 80.0 (8) 81.8 (9)
Hypertrophy 0.0 (0) 54.6 (6) 36.4 (4) 20.0 (2) 18.2 (2)

Pancreatic acini (**)
No alteration 100.0 (12) 100.0 (11) 100.0 (11) 100.0 (10) 100.0 (11)

Inflammatory cells (p = 0.17)
No alteration
Peri-insulitis 100.0 (12)0.0 (0) 81.8 (9)18.2 (2) 81.8 (9)18.2 (2) 100.0 (10)0.0 (0) 100.0 (11)0.0 (0)

* Significant association by chi-square test followed by Bonferroni’s post-test. ** Inferential statistical analysis not
feasible due to the absence of values in the categories analyzed.

2.8. S1, S2, and Ext Groups Had No Influence on IL-6 and IL-10 Protein Expression in Epididymal
Adipose Tissue

Regarding the average values among groups, it was observed that the AIN-93M group showed
a tendency to display an increased expression of IL-6 and IL-10 protein content (Figure 6), without
differences when compared to the HF group. At the same time, the HFE, HFS1, and HFS2 groups
showed no differences when compared to the HF and AIN-93M groups.
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Figure 6. Effects of Ext, S1, and S2 on pro-inflammatory (interleukin-6 (IL-6)) and anti-inflammatory
(IL-10) cytokines in epididymal adipose tissue: (a) IL-6 (pg/mg protein) and (b) IL-10 (pg/mg protein)
of groups fed AIN-93M diet, high-fat diet (HF), HF supplemented with Ext at 100 mg/kg (HFE),
HF supplemented with substance 1 at 1 mg/kg (HFS1), and HF supplemented with substance 2 at
1 mg/kg (HFS2). Results are expressed as mean ± standard error of mean. ANOVA on ranks followed
by Tukey’s post-test.
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3. Discussion

Most studies that evaluate the actions of C. xanthocarpa in common metabolic disturbances that
could be associated with obesity were not performed in diet-induced obese (DIO) animal models [15].
The present study is the first to compare the effects of C. xanthocarpa hydroethanolic leaf extract (Ext)
and two isolated substances from the extract, 2′,4′-dihydroxy-3′,5′-dimethyl-6′-methoxychalcone
(S1; chalcone) and 5-hydroxy-7-methoxy-8-methylflavanone (S2; flavanone) in HFD-fed mice to
evaluate whether a multitargeted approach may be more effective as a therapeutic strategy than using
isolated compounds.

Two important baseline studies observed that Ext and S1 (chalcone) were used as anti-inflammatory
agents in carrageenan-induced paw edema in rodents [10] and that S2 (flavanone) displayed
trypanocidal activity against Trypanosoma cruzi [25]. At the same time, toxic effects, such as alterations
in food consumption, water intake, behavior and the weight of organs (heart, lung, spleen, liver and
kidney) from Ext were not observed [10]. Based on these results that Ext did not promote signs of
toxicity, we decided to compare the effects of long-term of supplementation with Ext, S1 and S2 in
DIO mice.

Other studies have demonstrated therapeutic potential using different types of extracts from
diverse parts of C. xanthocarpa in both animal models and human clinical trials, such as antiplatelet,
antithrombotic, hypoglycemic, weight loss, antihypertensive, and hypocholesterolemic activity and
anti-inflammatory effects, without side effects such as gastric disturbances [10,15,16,26,27].

Even though Ext has presented phenols, flavonoids and tannins that were quantified following
specific methodologies in the baseline study [10], our results revealed that Ext did not improve most
metabolic and histological parameters and obesity features in HFD-fed mice. Despite not evaluating
the mechanism of action involved in impairing metabolic responses found by Ext, it is important to
emphasize that, depending on the experimental model (rodents or human clinical trials), different
metabolic responses may be observed [28,29], and the different stimuli to which these models are
subjected must be considered, such as different types of extracts, as observed from C. xanthocarpa
leaf aqueous extracts [16,17,25], time and dose of treatment, diet, genetic factors, age, and gender,
which may influence metabolic responses [30–33].

Chalcones and flavanones are found in a variety of plant species and belong to the flavonoid
family. These compounds have gained attention due to their pharmacological activity [18]. We tested
S1 (chalcone) and S2 (flavanone), which were isolated from C. xanthocarpa hydroethanolic leaf extract.
We observed that S1 and S2 did not improve obesity features, including body weight gain and visceral
adiposity. However, our main results demonstrated that S1 (chalcone) was able to diminish food intake,
suggesting that this compound could be a potential substance for appetite control.

The imbalance between energy expenditure and energy intake is proposed to be one of the causes
of obesity; consequently, drugs to diminish energy intake or enhance energy expenditure or both
without side effects is a field of interest, as natural dietary products are one option due to their potential
for appetite control and as an alternative source for weight loss agents [34].

The homeostatic control of energy intake involves a complex system that involves both peripheral
and central nervous system signs that are integrated and regulate satiation [35]. These mechanisms
include the activation of anorexigenic mediators such as proopiomelanocortin (POMC), glucagon-like
peptide-1 (GLP-1), and peptide YY (PYY) and the suppression of orexigenic mediators such as
neuropeptide (NPY) and agouti-related peptide (AgRP) in the hypothalamus arcuate nucleus (ARC)
and brainstem, which is the area that contributes to balancing energy and glucose, resulting in increased
satiety (by stopping eating) and reduced food intake (by initiating eating). In addition, the appetite
regulation activity of bioactive compounds in the gastrointestinal tract may decrease ghrelin in the
stomach and increase, for instance, PYY and GLP-1, which encourage the pancreas to release insulin.
Furthermore, leptin released from adipose tissue also affects the brain in regulating appetite [36,37].

Even though we observed decreased food consumption without differences in visceral adiposity
promoted by S1, this substance presented lower average values, especially in adiposity index and
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total visceral fat, suggesting that a higher concentration or prolonged time of supplementation with
S1 could be proposed to promote effects on adiposity. Thus, further elucidation will be necessary to
clarify whether S1 can be considered an appetite control agent, especially considering homeostatic
and hedonic mechanisms related to eating behavior, as observed in certain mechanisms related to
peripheral hormones, such as leptin, ghrelin, and insulin, as well in the relationships between neural
pathways involved in food reward [37].

Neither the two isolated substances nor the crude extract were able to act on glycemic and
insulinemic metabolism. In addition, no differences were observed in total cholesterol and triglyceride
levels. On the other hand, the HFE group diminished HDL-C and increased LDL-C levels in comparison
to the HF group, reinforcing the idea that Ext could impair certain metabolic parameters instead of
improving them. The HFS1 and HFS2 groups presented decreased LDL-C and increased HDL-C
levels compared to the HFE and AIN-93M groups, demonstrating that S1 and S2 had no influence on
lipid parameters.

Even though the group that received the AIN-93M diet had higher LDL-C and lower HDL-C
levels compared to the HFS1 and HFS2 groups, other parameters, including body weight, adiposity
index, glucose, hepatic steatosis, and the islets of Langerhans hypertrophy, were satisfactory for the
characterization of our obesity model. These controversial metabolic results related to AIN-93M [38–40]
can be explained by the higher carbohydrate (55.07%) and lower protein (9.67%) content compared to
HFD, which presented 43.29% carbohydrate and 13.65% protein content [40].

In terms of histological parameters, the HFE group displayed higher adipocyte area in the
epidydimal adipose tissue in comparison to the AIN-93M group, demonstrating that adipocyte
hypertrophy was observed in the supplementation with Ext. In prolonged positive energy balance
conditions, adipocytes expand cell size to compensate for the need for increased lipid storage in white
adipose tissue; therefore, several deleterious effects may be associated with this unhealthy expansion
of white adipose tissue, which may lead to inflammation, altered adipokine secretion, fibrosis, hypoxia
and mitochondrial disfunction [41]. After evaluating the expression of important pro-inflammatory
and anti-inflammatory cytokines, IL-6 and IL-10, respectively, in epididymal adipose tissue, differences
were not observed among the groups, indicating that these specific adipokines could be not altered in
this condition.

Langerhans islet hypertrophy was more pronounced in the HF group. These results correlate with
another study that observed a marked increase in islet size in high-fat/sucrose diet-fed mice, suggesting
the adaptive enlargement of β-cell mass in response to insulin resistance, a metabolic condition
associated with hyperplasia and the hypertrophy of islets caused by the adaptive proliferation of
β-cells to maintain blood glucose levels [42].

Our data showed that the HF group had a higher prevalence of hepatic steatosis, microvesicular
hepatic steatosis, and inflammation. Ext had no influence on hepatic steatosis in the liver, and these
results correlate with those of another study, where a C. xanthocarpa decoction was unable to prevent
morphological alterations in the liver [43]. Even though some studies have shown that chalcones
can prevent hepatic steatosis in the liver [20,44], our results demonstrated that S1 (chalcone) had no
influence on hepatic and microvesicular steatosis; however, S2 (flavanone) showed a prevalence of
hepatic steatosis <5% and lower microvesicular steatosis and inflammation compared to Ext without
differences in comparison to HF.

S1 (chalcone), S2 (flavanone), and Ext showed their particularities in terms of metabolic effects in
HFD-fed mice; natural products may not exert effects in general, but only in certain metabolic and
histological parameters. Our results are in accordance with other studies demonstrating that some
natural products may improve some metabolic and histological parameters and, at the same time,
impair others [22,45]. In fact, one issue with studying natural products is that the effects from isolated
substances may act differently from a synergistic perspective. For many years, research on natural
products was focused on identifying, purifying, and finding specific concentrations that could be used
as active agents of these substances; however, some studies have observed that a total extract might
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exert a better effect than an equivalent dose, suggesting that a multitargeted approach to therapy could
be an alternative in some pathologies [46].

However, in our study, we observed that Ext could not improve most metabolic and histological
parameters, suggesting that a multitargeted approach in terms of a synergistic effect did not respond
adequately in our experimental model. These findings were discretely different from those for isolated
substances S1 (chalcone) and S2 (flavanone), which did not have substantial effects on metabolic and
histological parameters; however, S1 was able to diminish food intake. Thus, further investigations will
be necessary to elucidate the local tissue-specific mechanisms in the expression of specific genes and
proteins in adipose tissue and the central nervous system, in which S1 (chalcone) could be involved
in appetite regulation, and to evaluate whether S1 could have an influence on prolonging adiposity,
in terms of supplementation or standardizing doses to promote both effects on appetite control and
decreased visceral fat.

4. Materials and Methods

4.1. Plant Material and Preparation of Extract

Leaves from C. xanthocarpa were collected in Itaporã County, Mato Grosso do Sul State, Brazil.
Exsiccate (voucher specimen 4644) was deposited at the DDMS (Herbarium Code) Herbarium in
Dourados County at the Universidade Federal da Grande Dourados (UFGD, Dourados, Brazil).

The extract was prepared, according to methodology used by da Silva et al. [10], by macerating
the material in ethanol and water (70:30, v/v) at room temperature for 7 days. After this, the extract
was filtered (110 mm), and the residue underwent two or more extractions using the same process.
After 21 days, the filtrate was concentrated under reduced pressure and freeze-dried. The specific yield
was calculated as 12% (w/w). The freeze-dried material was stored at −4 ◦C and protected from light.

4.2. Isolation and Identification of Substances

The extract (49.8 g) was solubilized in water and ethanol (3:2 v/v) and fractionated with organic
solvents (dichloromethane and ethyl acetate), resulting in two extracts: dichloromethane extract (DE)
(9.2 g) and ethyl acetate extract (EAE) (13.1 g). EAE was fractionated by column chromatography with
solvents with increasing polarities (dichloromethane, ethyl acetate, and acetone), leading to 91 fractions
that were analyzed by thin layer chromatography (TLC) and clustered in 93 fractions. DE fractions
24–56 (511.4 mg) were purified by TLC in hexan EtOAc (8:2 v/v), resulting in isolate 1 (300.2 mg).
EAE was fractionated by chromatography column (CC) in dichloromethane (DCM; EAE1, 1.7 g), DCM:
EtOAc (1:1 v/v; EAEC2, 3.7 g), EtOAc (EEFC3, 2.9 g), and EtOH (EEFC4, 1.5 g). EAEC2 fraction was
fractionated by TLC prepared in hexan and EtOAc (7:3 v/v), resulting in isolate 2 (307.2 mg). The extract
indicated the presence of flavonoids, phenols and tannins according to da Silva et al. (2016) [10].

All isolated substances were identified by 1D and 2D NMR (Nuclear Magnetic Ressonance)
spectroscopy. The last were identified as chalcone and flavanone after RMN data analysis;
therefore, the analyses were compared in the literature. The chalcone was identified as
2′,4′-dihydroxy-3′,5′-dimethyl-6′-methoxychalcone (1) [10] and the flavanone was identified as
5-hydroxy-7-methoxy-8-methylflavanone (2) [25].

4.3. Ethics Statement

All animal experiments were submitted to and approved by the Ethics Committee on Animal Use,
Federal University of Mato Grosso do Sul (protocol no. 858/2017).

4.4. Animal Care and Experimental Procedure

Adult male Swiss mice (n = 60, 8 weeks of age) were divided into five groups: (1) AIN-93M diet
(n = 12); (2) high fat diet (HF; n = 12); (3) HF supplemented with C. xanthocarpa hydroethanolic leaf
extract at 100 mg/kg (HFE) (n = 12); (4) HF supplemented with S1 (chalcone) at 1 mg/kg (HFS1; n = 12);
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(5) HF supplemented with S2 (flavanone) at 1 mg/kg (HFS2; n = 12) for 12 weeks. The extract and
substances were administered daily by oral gavage. The doses used were followed according to a
previous study that evaluated the use of Ext (100 mg/kg) and S1 (1 mg/kg) in carrageen-induced paw
edema in rats [10]. An acute toxicity test was evaluated, and no toxicity signs were observed [10].
The standard diet was formulated according to the American Institute of Nutrition (AIN-93) for
maintenance [47] and the high-fat diet (HFD) was based on the AIN-93M diet, adapted according to
Lequinste et al. [48]. Each group had ad libitum access to water and food during the experimental
period. The composition of the experimental diets is listed in Table 5.

Table 5. Composition of experimental diets (g/kg of diet).

Experimental Groups (g/kg) AIN-93M Diet High-Fat Diet (HF)

Composition (g/kg)

Lard – 320.00
Corn starch 630.692 320.692

Casein (>85% of protein) 140.00 140.00
Cellulose 50.00 50.00

Vitamin mix 10.00 10.00
Mineral mix 35.00 35.00
Soybean oil 40.00 20.00

L-cistin 1.80 1.80
Choline bitartrate 2.50 2.50

Sucrose 100.00 100.00
Tert-butylhydroquinone 0.008 0.008

Energy (kcal/g) 3802.8 5302.8

Carbohydrates (%) 75.81 31.73
Protein (%) 14.73 10.56
Lipids (%) 9.47 57.71

Calories/g of diet 3.80 5.30

The mice were anesthetized using Isofluran and euthanized by inferior vena cava exsanguination
after 8 h of fasting when they reached 20 weeks of age. The blood and organs were collected for
further analysis.

4.5. Body Weight and Diet Intake

Mice were weighed twice per week to evaluate weight changes until the end of the study.
Food intake was measured weekly. Feed efficiency index (FEI) was calculated [49,50], which refers to
the amount of food consumed that can promote body weight gain, using Equation (1):

FEI = FBW − IBW/TF (1)

where FBW is the final body weight in grams, IBW is the initial body weight in grams, and TF is
the total amount of food ingested in grams. Furthermore, the weight gain per caloric intake index
(WGPCI) [49,50] was calculated to evaluate the animal’s capacity to convert consumed energy into
body weight, following Equation (2):

WGPCI = FBW − IBW/kcal consumed (2)

4.6. Biochemical Analysis

Serum glucose, serum triglyceride, total cholesterol, high-density lipoprotein cholesterol (HDL-C),
and low-density lipoprotein cholesterol (LDL-C) levels were analyzed by the enzymatic colorimetric
test (Labtest®, Lagoa Santa, Minas Gerais, Brazil).
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4.7. Oral Glucose Tolerance Test

An oral glucose tolerance test was performed at the beginning of supplementation with Ext, S1,
and S2, and 3 days before animals were euthanized after 8 h of fasting. Fasting glucose was verified via
flow rate (time 0) using a G-Tech® glucometer (G-Tech Free, Infopia Co., Ltd., Anyang, Gyeonggi-do,
South Korea). Thereafter, the animals received D-glucose (Vetec, Duque de Caxias, RJ, Brazil) at 2 g/kg
of body weight by oral gavage, and blood glucose was monitored at 15, 30, 60, and 120 min after
glucose administration. The area under the curve (AUC) was calculated for each animal and the mean
was calculated for each experimental group [51].

4.8. Insulin Tolerance Test

An insulin tolerance test was performed 5 days before euthanasia. Glycemia was verified with
the animals in a fed state (time 0). Then, insulin (Novorapid®, 100 UmL, Novo Nordisk, Bagsvaerd,
Denmark) at a dose of 0.75 units per kg of animal weight was injected intraperitoneally. Blood glucose
was monitored at 15, 30, and 60 min using a G-Tech® glucometer (G-Tech Free). The AUC was
calculated for each animal and the mean was calculated for each experimental group [51].

4.9. Quantification of Cytokine of Adipose Tissue

Epididymal adipose tissue was collected, weighed (100 mg), and stored at −80 ◦C. For total
protein extraction and quantification, the tissue was thawed on ice and homogenized in 1 mL of
Radioimmunoprecipitation Assay Buffer (RIPA) (RIPA lysis buffer, 10×, cat. no. 20-188, Merck,
Darmstadt, Germany). A cocktail of protease inhibitors was added (Protease Inhibitor Cocktail Set,
Calbiochem, cat. no. 539131, Merck, Darmstadt, Germany). The supernatant was collected after
centrifugation at 4 ◦C and stored again at−80 ◦C until cytokine analysis, according to the manufacturer’s
recommendations (MILLIPLEX MAP kit, Millipore, Billerica, MA, USA). Protein quantification was
based on bicinchoninic acid assay (BCA) following the manufacturer’s recommendations (BCA
Protein Assay kit, Merck, Darmstadt, Germany). The concentrations of IL-6 and IL-10 cytokines
(MCYTOMAG-70k) were analyzed and expressed as the ratio of cytokine picograms in relation to
protein content (mg of protein) [52].

4.10. Assessment of Body Fat and Liver Weight

After euthanasia, the liver and fat pads of white adipose tissue (omental, epididymal, perirenal,
retroperitoneal, and mesenteric) were dissected and weighed. The adiposity index was calculated by
the ratio of the sum of visceral white adipose tissue (g) and the final body weight of the animal × 100
and was expressed as percentage of adiposity [53].

4.11. Histological Analysis: Epididimal Adipose Tissue, Liver, and Pancreas

Samples of epididymal adipose tissue, liver, and pancreas were fixed with 10% formalin solution.
After fixation, the specimens were dehydrated, embedded in paraffin, cut in a microtome to a thickness
of 5 mm each, and stained with hematoxylin and eosin [54,55]. An expert pathologist performed the
histological analysis of the liver and classified the samples according to a score system by Kleiner
et al. [56]. A histological analysis of the pancreas followed the architecture of pancreas evaluation,
according to changes in the islets of Langerhans [57,58]. Images of the adipocyte area of the epididymal
adipose tissue were taken using a Leica DFC 495 digital camera system (Leica Microsystems, Wetzlar,
Germany) integrated into a Leica DM 5500B microscope (Leica Microsystems, Wetzlar, Germany)
with a magnification of 20×. The images were analyzed using the Leica Application Suite software,
version 4.0 (Leica Microsystems, Wetzlar, Germany), and the mean area of 100 adipocytes per sample
was determined [14].
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4.12. Statistical Analysis

The results were expressed as mean ± mean standard error (MSE). Statistically significant
differences in mean values among the groups were assessed using ANOVA followed by Tukey’s post-test
on parametric results, with a Kruskal–Wallis test followed by Dunn’s post-test on nonparametric
results. A chi-square test was used to evaluate the histological analysis, followed by Bonferroni’s
post-test. A level of p ≤ 0.05 was considered statistically significant. Statistical analysis was performed
using Jandel Sigma Stat, version 3.5 (Systat Software Inc., San Jose, CA, USA), and Sigma Plot, version
12.5 (Systat Software Inc.).

5. Conclusions

Most of the studies that evaluated the effects of extracts from C. xanthocarpa observed that a
multitargeted approach could be useful in therapy for metabolic dysfunctions associated (or not) with
obesity. In contrast to our findings, Ext did not improve metabolic, histologic, or obesity parameters.
We observed that substances S1 (chalcone) and S2 (flavanone), isolated from the extract, did not show
substantial effects on obesity features and metabolic parameters. In fact, our main findings revealed
that S1 (chalcone) was able to decrease food intake, demonstrating that this substance could be a
potential appetite regulatory agent. Thus, further investigations will be necessary to evaluate the
principal genes and protein expressions in adipose tissue and the central nervous system involved
in the regulation of appetite control and evaluate whether S1 could have an influence on prolonging
adiposity, in terms of supplementation or standardizing doses to promote both effects on appetite
control and decreased visceral fat.
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