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Abstract: Woody liana Schisandra chinensis contains valuable lignans, which are phenylpropanoids
with valuable biological activity. Among green and selective extraction methods, supercritical carbon
dioxide (SC-CO2) was shown to be the method of choice for the recovery of these naturally occurring
compounds. Carbon dioxide (CO2) was the solvent with the flow rate (10−25 g/min) with 2% ethanol
as co-solvent. In this piece of work operative parameters and working conditions were optimized by
experimenting with different pressures (200–400 bars) and temperatures (40–60 ◦C). The extraction
time varied from 60 to 120 min. HPLC-SPD-ESI -MS/MS techniques were applied to detect target
analytes. Twenty-six different lignans were identified in the S. chinensis SC-CO2 extracts.

Keywords: Schisandra chinensis; supercritical fluid extraction; HPLC-SPD-ESI-MS/MS; lignans

1. Introduction

Schisandra chinensis (Turczaninowia) Baillon, is a medicinal plant (of the Schisandraceae family),
known for its ethnomedicinal applications [1]. Its use in Chinese medicine dates back about 15 centuries,
second only to ginseng. S. chinensis is included in the traditional Chinese medicine formula Sheng-Mai
San, which has been used in the treatment of cardiovascular diseases [2]. Schisandra-based drugs, with
the common names Shengmai-injection, Shengi Wuweizi-Pan and Shengmai-Yin are also included in
the Chinese Pharmacopoeia [3].

The genus Schisandra (Schisandraceae family) consists of 25 species, two of which, namely Schisandra
chinensis and Schisandra repanda (Maximowiczia nigra (Maxim.) Nakai), have a history of medicinal
use [4]. Schisandra chinensis (synonyms: Kadsura chinensis, Maximoviczia amurensis, Maximoviczia
chinensis, Maximoviczia japonica, Sphaerostemma japonicum, Wu wei zi) is endemic in northwest China
(Heilongjiang Province), Korea, Russia (Primorye and Amur regions as well as Khabarovsk territory),
Shikotan, Kunashir, Iturup, and on the island of Sakhalin.
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Russian academician Komarov V.L. made a botanical description of S. chinensis (Turcz.) Baill. for
the first time in 1901 and gave the first information about its healing effect, having brought it from
expeditions to the Far East [5,6]. This is a deciduous liana, climbing up neighboring trees, up to 10−15 m
long. The stem is covered with wrinkled, flaky dark brown bark. The leaves are elliptical 5−10 cm
long, 3−5 cm wide, dicotyledonous flowers, up to 1.5 cm in diameter, with a distinct lemon aroma,
multi-berry fruits, up to 10 cm long, juicy red seeds with a smooth shiny surface, yellowish-brown.
Plant grinding develops an intense characteristic smell while the taste is spicy and bitter-burning.
The whole plant has a specific lemon smell. The modern use of S. chinensis started with a large number
of pharmacological and clinical studies conducted in the former USSR in the period 1940−1960 [7,8].

Various descriptions of the specific properties of S. chinensis are available in English in reviews
of Far Eastern medicinal plants. [9]. However, a large amount of information that was reported in
Russian journals [4,10–14] is practically not accessible to foreign scientists [15].

More than 40 individual lignans have been reported in the literature, 11 of them, namely
schisandrin, gomisin J, gomisin A, gomisin G, angeloygomisin H, angeloygomisin O, schisantherin
A, schisantherin B, γ-schisandrin (schisandrin B) and schisandrin C, characterize the S. chinensis
(Turcz.) Baill. present in several pharmacopeias. It has a chemical composition that differs from the
non-pharmacopeia species Schizandra sphenanthera Rehd. et Wils [16,17].

Lignans are phenylpropane dimers consisting of two propane residues C6–C3. Lignans are found
in various parts of the plant, especially in the seeds, the underground parts, the wood and woody
stems. They may be present in plants in free form and in the form of glycosides [18]. Schizandra
lignans are called schisandrins. The chemical skeleton of S. chinensis lignans is depicted in Figure 1
and all the substituents are presented in Table 1.
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Figure 1. Structure of S. chinensis lignans.

The lignans of S. chinensis have been typically extracted with ethanol or hazardous potentially
toxic organic solvents such as methanol, chloroform and n-hexane. A valid green alternative, in which
there is no need to work with a large number of organic solvents and the production does not need
explosion-proof rooms, is represented by supercritical fluid extraction (SFE) with many advantages
compared to common extraction methods (maceration, percolation Soxhlet extraction) [19,20].

SFE is a green, mild and selective extraction process, one of the best processes to get rid of residual
solvent in the extract. Among the supercritical solvents, carbon dioxide is the most common, offering
several advantages, because it is non-toxic, non-flammable, cost-effective, environmentally friendly
and renewable [25–27]. The SFE method is actively studied and applied in the processing of plant
materials [28,29].

The lignans of S. chinensis were extracted by supercritical CO2 (SC-CO2) using ethanol as
co-solvent [30–32]. Different parts of the plant were extracted by SFE, isolating 36 compounds from the
leaves, 43 compounds from lignified stems and 36 compounds from rhizomes and roots. S. chinensis
extracts contain a volatile fraction rich in essential oils (terpenes: monoterpenes, sesquiterpenes;
terpenoids: alcohols, esters, ketones) and a non-volatile part (carboxylic acids and lignans).
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Table 1. Chemical structures of S. chinensis lignans, according to the authors [18,21–24].

№ Compound Formula R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11

1 Schisandrin A
(Deoxyschisandrin) C24H32O6 CH3 CH3 CH3 CH3 CH3 CH3 CH3 H CH3 CH3 H

2 Schisandrol A
(Schisandrin) C24H32O7 CH3 CH3 CH3 CH3 CH3 CH3 CH3 H CH3 OH H

3
Schisandrin B
(Gomisin N,

Isokadsuranin)
C23H28O6 CH3 CH3 CH3 CH3 CH2 H CH3 H CH3 H

4 Schisandrol B
(Gomisin A) C23H28O7 CH2 CH3 CH3 CH3 CH3 CH3 H CH3 OH H

5 Schisandrin C C22H24O6 CH2 CH3 CH3 CH3 CH3 H CH3 H CH3 H

6 Isoschisandrin C24H32O7 CH3 CH3 CH3 CH3 CH3 CH3 CH3 OH CH3 H H

7 Gomisin K1 C23H30O6 H CH3 CH3 CH3 CH3 CH3 H CH3 H CH3 H

8 Gomisin K2 C23H30O6 H CH3 CH3 CH3 CH3 CH3 CH3 H CH3 H H

9 Schisanhenol
(Gomisin K3) C23H30O6 CH3 CH3 H CH3 CH3 CH3 CH3 H CH3 H H

10 Gomisin H C23H30O7 CH3 CH3 H CH3 CH3 CH3 CH3 H CH3 OH H

11 Tigloylgomisin H C28H36O8 CH3 CH3 Tigloyl CH3 CH3 CH3 CH3 H CH3 OH H

12 Angeloygomisin H C28H36O8 CH3 CH3 Angeloyl CH3 CH3 CH3 CH3 H CH3 OH H

13 Benzoylgomisin H C30H34O8 CH3 CH3 Benzoyl CH3 CH3 CH3 CH3 H CH3 OH H

4 Gomisin J C22H28O6 H CH3 CH3 CH3 CH3 H H CH3 H CH3 H

15 Schisanhenol B C22H26O6 CH3 CH3 H CH3 CH2 H CH3 H CH3 H

16 Gomisin N C23H28O6 CH3 CH3 CH3 CH3 CH2 CH3 H CH3 H H

17 Gomisin L1 C22H26O6 CH3 CH3 H CH3 CH2 H CH3 H CH3 H

18 Gomisin L2 C22H26O6 H CH3 CH3 CH3 CH2 H CH3 H CH3 H

19 Gomisin M1 C22H26O6 CH3 CH3 H CH3 CH2 CH3 H CH3 H H

20 Gomisin M2 C22H26O6 CH3 CH3 CH3 H CH2 CH3 H CH3 H H

21 Gomisin O C23H28O7 CH2 CH3 CH3 CH3 CH3 CH3 CH3 H H OH

22 Isogomisin O C23H28O7 CH3 CH3 CH3 CH3 CH2 H CH3 H CH3 OH

23 Angeloylsogomisin O C28H34O8 CH2 CH3 CH3 CH3 CH3 CH3 CH3 H H O-angeloyl

24 Gomisin P C23H28O8 CH2 CH3 CH3 CH3 CH3 H CH3 OH CH3 OH

25 Tigloylgomisin P C28H34O9 CH2 CH3 CH3 CH3 CH3 H CH3 OH CH3 O-tigloyl

26 Angeloylgomisin P
(Schisantherin C) C28H34O9 CH2 CH3 CH3 CH3 CH3 H CH3 OH CH3 O-angeloyl

27 Schisantherin A
(Gomisin C) C30H32O9 CH2 CH3 CH3 CH3 CH3 CH3 CH3 OH H O-bensoyl

28
Schisantherin B

(Gomisin B,
Schisandrer B)

C28H34O9 CH2 CH3 CH3 CH3 CH3 CH3 CH3 OH H O-angeloyl

29 Gomisin S C23H30O7 CH3 CH3 CH3 CH3 CH3 CH3 H CH3 H CH3 OH

30 Gomisin R
(6-Epi-gomisin) C22H24O7 CH2 CH3 CH3 CH2 CH3 H CH3 H H

31 Deangeloylgomisin B C23H28O8 CH2 CH3 CH3 CH3 CH3 CH3 CH3 OH H OH

32 Gomisin F C28H34O9 CH3 CH3 CH3 CH3 CH2 CH3 CH3 OH H O-angeloyl

33 Gomisin G C30H32O9 CH3 CH3 CH3 CH3 CH2 CH3 CH3 OH H O-bensoyl

34 Epigomisin O C23H28O7 CH2 CH3 CH3 CH3 CH3 CH3 CH3 CH3 H H

35 Angeloylgomisin Q C29H38O9 CH3 CH3 CH3 CH3 CH3 CH3 H CH3 CH3 OH O-angeloyl

2. Results and Discussion

Aiming to optimize the extraction of target analytes from the S. chinensis woody liana, several
experimental conditions were investigated. Carbon dioxide (CO2) was the solvent with the flow rate
(10−25 g/min) and 2% ethanol as co-solvent in the liquid phase. Extraction was performed in the
pressure range of 200–400 bar and the temperature range of 40–60 ◦C. The best results were obtained
at 350 bar and 60 ◦C. Increasing the pressure from 350 to 400 bar practically gave no increase in
yields. The temperature of 60 ◦C was chosen as the maximum allowable to avoid the decomposition of
target analytes. In this work HPLC-SPD-ESI-MS/MS techniques were used with additional ionization
and analysis of fragmented ions. High-accuracy mass spectrometric data were recorded on an ion
trap amaZon SL BRUKER DALTONIKS equipped with an ESI source in the mode of negative ions.
The three-stage ion separation mode was implemented. Under these conditions a total of 800 peaks
were detected in the ion chromatogram (Figure 2).
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Figure 2. Chemical profiles of S. chinensis (Russia), ion chromatogram from SC-CO2 extract.

Although this approach is not quantitative for evaluating each analyte, it is semiquantitative
when comparing a series of extractions and allows better comparison of the yield without loss of
individual analytes during fractionation and sample preparation. Only the total extraction yields were
completely quantified.

Table 2 summarizes all the molecular masses of the target analytes isolated from SC-CO2 of
S. chinensis. Among them, 26 biologically active substances were authenticated as lignans (m/z values
and fragment ions) by comparison with literature data [2,22,23,33–36].

Table 2. Lignans from S. chinensis SC-CO2 extract.

№ Identification Formula Calcula-ted
Mass

Observed
Mass

[M + H]+

Observed
Mass

[M + Na]+
MS/MS Stage 1
Fragmentation

MS/MS Stage 2
Fragmentati-on

MS/MS Stage 3
Fragmentation

1

Schisandrin C
[(12S,13R)-3,22-dimethoxy-12,13-dimethyl-

5,7,18,20-tetraoxapentacyclo
[13.7.0.02,10.04,8.017,21]docosa-1(22),

2,4(8),9,15,17(21)-hexaene]

C22H24O6 384.4224 385.02 355.01; 323.02 323.01; 299.02;
269.03; 234.98 307.98; 235.05

2

Gomisin M1 (Gomisin L1) [(9S,10R)-4,5,
19-trimethoxy-9,10-dimethyl-15,

17-dioxatetracyclo [10.7.0.02,7.014,18]
nonadeca-1(19),2,4,6,12,14(18)-hexaen-3-ol]

C22H26O6 386.4382 408.95 290.99; 394.03;
326.08; 274.96

260.97; 242.89;
172.97

3

Gomisin L2
[(9S,10R)-3,4,19-trimethoxy-9,10-dimethyl-15,17

-dioxatetracyclo[10.7.0.02,7.014,18]
nonadeca-1(19),2,4,6,12,14(18)-hexaen-5-ol]

C22H26O6 386.4382 386.98

356.98; 325.00;
284.93; 259.03;
226.99; 167.02;

137.17

297.04; 226.98;
182.97

4

Gomisin M2
[(9S,10R)-3,4,5-trimethoxy-9,10-dimethyl-15,17

-dioxatetracyclo[10.7.0.02,7.014,18]
nonadeca-1(19),2,4,6,12,14(18)-hexaen-19-ol]

C22H26O6 386.4382 387.01 355.01; 324.01;
284.97

339.98; 324.02;
284.97; 226.96 324.94; 296.90

5

Gomisin J
[(9S,10R)-3,4,15,16-tetramethoxy-9,10-
dimethyltricyclo[10.4.0.02,7]hexadeca
-1(16),2,4,6,12,14-hexaene-5,14-diol]

C22H28O6 388.4541 389.04 325.03; 357.01;
226.96; 286.97

227.01; 241.00;
269.03; 297.01 226.98; 198.98

6
Pregomisin

[5-[(2S,3R)-4-(3-hydroxy-4,5-dimethoxyphenyl)
-2,3-dimethylbutyl]-2,3-dimethoxyphenol]

C22H30O6 390.47 391.00
237.07; 205.03;
288.91; 326.96;

359.00
205.00; 173.00

7

Schisandrin B (Gomisin N, Isokadsuranin)
[3,4,5,19-tetramethoxy-9,10-dimethyl-15,17

-dioxatetracyclo[10.7.0.02,7.014,18]nonadeca-1
(19),2,4,6,12,14(18)-hexaene]

C23H28O6 400.3648 401.07 369.04 354.04; 338.00 322.97; 295.03;
264.03

8

Schisanhenol (Gomisin K3)
[(9S,10R)-4,5,14,15,16-pentamethoxy
-9,10-dimethyltricyclo[10.4.0.02,7]

hexadeca-1(16),2,4,6,12,14-hexaen-3-ol]

C23H30O6 402.4807 403.05 371.01; 340.03;
301.01; 259.00

340.03; 315.01;
300.98; 286.01;

233.07

324.99; 270.99;
227.02

9

Gomisin O
[(8R,9S,10S)-3,4,5,19-tetramethoxy-9,10-dimethyl

-15,17-dioxatetracyclo[10.7.0.02,7.014,18]
nonadeca-1(19),2,4,6,12,14(18)-hexaen-8-ol]

C23H28O7 416.3642 417.01 356.97; 373.01 329.00 313.97; 270.00

10

Erigomisin O
[(8S,9S,10S)-3,4,5,19-tetramethoxy-9,10-

dimethyl-15,17-dioxatetracyclo[10.7.0.02,7.014,
18]nonadeca-1(19),2,4,6,12,14(18)-hexaen-8-ol]

C23H28O7 416.3642 416.96 356.98; 340.98;
308.97 328.95; 313.98

11

Schisandrin A (Deoxyschisandrin)
[(9R,10S)-3,4,5,14,15,16-hexamethoxy-9,10-

dimethyltricyclo[10.4.0.02,7]
hexadeca-1(16),2,4,6,12,14-hexaene]

C24H32O6 416.5073 417.01 316.00; 346.99;
402.01

300.96; 284.95;
242.02

12 Demethylated metabolites of Schisandrol A 440.95
279.00; 322.89;
306.86; 258.89;

202.99

259.94;220.86;
137.02
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Table 2. Cont.

№ Identification Formula Calcula-ted
Mass

Observed
Mass

[M + H]+

Observed
Mass

[M + Na]+
MS/MS Stage 1
Fragmentation

MS/MS Stage 2
Fragmentati-on

MS/MS Stage 3
Fragmentation

13

Schisandrol A (Schisandrin)
[(9R,10S)-3,4,5,14,15,16-hexamethoxy-

9,10-dimethyltricyclo[10.4.0.02,7]hexadeca-
1(16),2,4,6,12,14-hexaen-9-ol]

C24H32O7 432.5067 433.50 415.03 384.04; 359.03 368.99; 353.05

14 7, 8-Dihydroxy-schisandrin C24H32O8 448.5061 470.95
332.90; 348.90;
200.84; 230.30;

274.74

332.89; 274.94;
244.93; 202.98;

155.17

15

Tigloylgomisin O
[[(8R,9S,10S)-3,4,5,19-tetramethoxy-
9,10-dimethyl-15,17-dioxatetracyclo

[10.7.0.02,7.014,18]nonadeca-1(19),2,4,6,12,14(18)
-hexaen-8-yl] (E)-2-methylbut-2-enoate]

C28H34O8 498.5648 521.92
208.01; 250.08;
304.99; 359.99;
402.85; 436.83

191.00; 375.89

16

Angeloylsogomisin O
[[(9S,10S,11R)-3,4,5,19-tetramethoxy-9,10

-dimethyl-15,17-dioxatetracyclo
[10.7.0.02,7.014,18]nonadeca-1(19),2,4,

6,12,14(18)-hexaen-11-yl]
(Z)-2-methylbut-2-enoate]

C28H34O8 498.5648 387.16 355.12
323.00; 341.00;
295.02; 262.94;

210.100

308.98; 262.97;
220.24

17

Angeloygomisin H
[[(9S,10S)-10-hydroxy-4,5,14,15,16-

pentamethoxy-9,10-dimethyl-3
-tricyclo[10.4.0.02,7]hexadeca-1(16)

,2,4,6,12,14-hexaenyl]
(Z)-2-methylbut-2-enoate]

C28H36O8 500.3806 500.95

368.93; 433.87;
472.83; 334.94;
288.84; 244.92;
207.21; 169.02

368.92; 352.97;
299.90; 244.80;
208.95; 156.99;

125.89

18 Micrantherin A C28H36O8 500.5806 522.93 422.91; 328.94;
386.00; 476.94

407.87; 392.92;
364.93; 350.88;
320.91; 295.02

19

Gomisin E
[(11R,12R,15R,24S,25S)-12-hydroxy-18,19,20-

trimethoxy-11,12,24,25-tetramethyl-
4,6,9,14-tetraoxapentacyclo[13.7.3.03,7.08,

22.016,21]pentacosa-1,3(7),8(22),
16,18,20-hexaen-13-one]

C28H34O9 514.3642 514.99 384.98; 355.03;
322.99 354.99; 322.97

20

Schisantherin D
[[(11S,12S,13S)-12-hydroxy-3,22-dimethoxy-

12,13-dimethyl-5,7,18,20-
tetraoxapentacyclo[13.7.0.02,10.04,
8.017,21]docosa-1(22),2,4(8),9,15,

17(21)-hexaen-11-yl]

C29H28O9 520.5272 542.89
380.89; 408.36;
451.55; 334.99;

200.93

21

Benzoylgomisin O
[[(8R,9S,10S)-3,4,5,19-tetramethoxy-9,10

-dimethyl-15,17-dioxatetracyclo
[10.7.0.02,7.014,18]nonadeca

-1(19),2,4,6,12,14(18)- hexaen-8-yl] benzoate]

C30H32O9 520.5703 542.91 380.89 364.66; 308.93;
193.02

22

Benzoylgomisin H
[[(9S,10S)-10-hydroxy-4,5,14,15,16

-pentamethoxy-9,10-dimethyl
-3-tricyclo[10.4.0.02,7]hexadeca

-1(16),2,4,6,12,14-hexaenyl] benzoate]

C30H34O8 522.5862 522.99

491.30; 448.09;
421.07; 399.03;
377.05; 335.11;
302.95; 269.78

271.39; 213.02

23

Gomisin D
[12,25-dihydroxy-18,19,20-trimethoxy-11,12,24,

25-tetramethyl-4,6,9,14-
tetraoxapentacyclo[13.7.3.03,7.08,22.016,21]

pentacosa-1,3(7),8(22),16, 18,20-hexaen-13-one]

C28H34O10 530.5636 553.97

510.97; 478.98;
400.97; 372.91;
334.94; 248.99;

202.87

382.92; 354.95;
339.03; 312.11;
277.00; 248.99;

189.03

24

Gomisin G [[(9S,10S,11S)-10-hydroxy-3,4,5,
19-tetramethoxy-9,10-dimethyl-15

,17-dioxatetracyclo[10.7.0.02,7.014,18]
nonadeca-1(19),2,4,6, 12,14(18)-hexaen-11-yl]

benzoate]

C30H32O9 536.3697 536.93 436.92; 414.99;
371.03; 341.04

422.80; 390.84;
360.99

25

Schisantherin A (Gomisin C)
[[(8S,9S,10S)-9-hydroxy-3,4,5,19-tetramethoxy-9,
10-dimethyl-15,17-dioxatetracyclo[10.7.0.02,7.014

,18]nonadeca-1(19),2,4,6,12,14(18)-
hexaen-8-yl] benzoate]

C30H32O9 536.5697 537.95 414.99; 371.05;
340.98 370.99; 341.02 341.01; 310.01;

282.06

26

Benzoylgomisin Q
[[(8S,9S,10S)-9-hydroxy-3,4,5,14,15,16-
hexamethoxy-9,10-dimethyl-8-tricyclo

[10.4.0.02,7]hexadeca-1(16),2,
4,6,12,14-hexaenyl] benzoate]

C31H36O9 552.3121 552.99 415.05; 436.98;
384.03

384.03; 400.01;
359.00

369.02; 352.99;
338.00

Figure 3 shows examples of the decoding spectra (collision-induced dissociation (CID) spectrum)
of the ion chromatogram obtained using tandem mass spectrometry. The CID spectrum in positive ion
modes of schisandrin B (gomisin N, isokadsuranin) from Russian S. chinensis.
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Figure 3. Collision-induced dissociation (CID) spectrum of the schisandrin B (gomisin N, isokadsuranin)
from S. chinensis, m/z 401.07.

The [M + H]+ ion produced one fragment with m/z 369.04 (Figure 3). The fragment ion with m/z
369.04 further formed two daughter ions with m/z 354.04 and m/z 338.00. The fragment ion with m/z
354.04 produced three daughter ions with m/z 322.97, m/z 295.03, and m/z 264.03.

The CID spectrum in positive ion modes of schisantherin A (gomisin C) from S. chinensis is shown
in Figure 4.
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Figure 4. CID spectrum of the schisantherin A (gomisin C) from S. chinensis, m/z 537.95.

The [M + H]+ ion produced three fragments with m/z 414.99, m/z 371.05 and m/z 340.98 (Figure 4).
The fragment ion with m/z 414.99 produced two characteristic daughter ions with m/z 370.99 and m/z
341.02. The fragment ion with m/z 370.99 formed three daughter ions with m/z 341.01, m/z 310.01,
and m/z 282.06.

The CID spectrum in positive ion modes of benzoylgomisin Q is shown in Figure 5.
The [M + H]+ ion produced three fragments with m/z 415.05, m/z 436.98 and m/z 384.03 (Figure 5).

The fragment ion with m/z 415.05 produced three daughter ions with m/z 400.0, m/z 384.03 and m/z
359.00. The fragment ion with m/z 384.03 yielded three daughter ions with m/z 369.02, m/z 352.99,
and m/z 338.00.
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Figure 5. CID spectrum of the benzoylgomisin Q from S. chinensis, m/z 522.99.

3. Materials and Methods

3.1. Materials

As the objects of the study, samples of S. chinensis (woody liana) were purchased from the area of
the Peschanka river near Lazovsky district (Sikhote Alin), Primorsky Krai, located at 43◦32′ N and
134◦33′ E, Russia. All samples were morphologically authenticated according to the current standard
of Russian Pharmacopeia [37].

3.2. Chemicals and Reagents

HPLC-grade acetonitrile was purchased from Fisher Scientific (Southborough, UK), MS-grade
formic acid was from Sigma-Aldrich (Steinheim, Germany). Ultra-pure water was prepared from a
SIEMENS ULTRA clear (SIEMENS water technologies, Germany), and all the other chemicals were
analytical grade.

3.3. SC-CO2 Extraction

SC-CO2 extraction was performed using the SFE-500 system (Thar SCF Waters, Milford, USA)
supercritical pressure extraction apparatus. System options included co-solvent pump (Thar Waters
P-50 High Pressure Pump), for extracting polar samples. CO2 flow meter (Siemens, Germany),
to measure the amount of CO2 being supplied to the system, multiple extraction vessels, to extract
different sample sizes or to increase the throughput of the system. Flow rate was 50 mL/min for liquid
CO2 and 1.76 mL/min for EtOH. Extraction samples of 10 g Schisandra chinensis wood were used.
The extraction time was counted after reaching the working pressure and equilibrium flow, and it was
6 h for each sample.

3.4. Liquid Chromatography

HPLC was performed using Shimadzu LC-20 Prominence HPLC (Shimadzu, Japan), equipped
with an UV−VIS detector. The analytical reverse phase column used was a Shodex ODP-40 4E C18
(4.6 × 250 mm, particle size: 4µm) to perform the separation of multicomponent mixtures. The gradient
elution program was as follows: 0.01−4 min, 100% A; 4−60 min, 100−25% A; 60−75 min, 25−0% A;
control washing 75−120 min 0% A. The entire HPLC analysis was performed using a UV−VIS detector
SPD-20A (Shimadzu, Japan) at wavelengths of 230 and 330 nm, at 17 ◦C provided with column oven
CTO-20A (Shimadzu, Japan) with an injection volume of 20 µL.

3.5. Mass Spectrometry

MS analysis was performed on an ion trap amaZon SL (BRUKER DALTONIKS, Germany)
equipped with an ESI source in negative ion mode. The optimized parameters were obtained as
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follows: ionization source temperature: 70 ◦C, gas flow: 4 L/min, nebulizer gas (atomizer): 7.3 psi,
capillary voltage: 4500 V, end plate bend voltage: 1500V, fragmentary: 280 V, collision energy: 60 eV.
An ion trap was used in the scan range m/z 100−1.700 for MS and MS/MS. The capture rate was one
spectrum for MS and two spectra for MS/MS. Data collection was controlled by Windows software for
BRUKER DALTONIKS. All experiments were repeated three times. A two-stage ion separation mode
(MS/MS mode) was implemented.

4. Conclusions

An optimized extraction process with SC-CO2 (and co-solvent 2% ethanol) of woody liana
S. chinensis provided the samples for an accurate analytical study by HPLC-SPD-MS/MS techniques.
Twenty-six different lignans typical of S. chinensis species were identified. This method allows one
to get all the studied ligands in a single extract without using a series of approaches and solvents,
different in polarity, which not only reduces the environmental pressure, but also simplifies the
production process. These data could support future investigations on the quality of pharmaceutical
preparations containing these S. chinensis extracts. This is because the biological activity is related
to the presence of the identified lignans. Their excellent transcutaneous penetration may offer new
therapeutic approaches with transdermal preparations based on SC-CO2 extracts of S. chinensis.
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