Dendrimer-functionalized hybrid materials based on silica as novel carriers of bioactive acids

Mateusz Pawlaczyk ^{1,*}, Grzegorz Schroeder ¹

- ¹ Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
- * Corresponding Author: mateusz.pawlaczyk@amu.edu.pl

Supplementary Information

Section A: The ESI-MS spectra of the synthesized dendrimers and their complexes with bioactive compounds studied

Figure S1. The ESI-MS positive spectrum of ester intermediate.

Figure S2. The ESI-MS positive spectra of the synthesized PAMAM dendrimers: (**a**) EDA, (**b**) TETA, (**c**) TREN and (**d**) TRI-OXA.

Figure S3. The ESI-MS spectra (positive – top; negative – bottom) of exemplary TREN poly(amidoamine) dendrimer complexes with the studied biomolecules: (**a**) salicylic acid, (**b**) nicotinic acid, (**c**) folic acid.

Section B: The supplement of the conducted adsorption experiments

Figure S4. The Langmuir isotherm model fitted to the experimental data of the adsorption processes. For some points SDs are smaller than the plotted symbols.

log c_{eq} [-]

Figure S5. The Freundlich isotherm model fitted to the experimental data of the adsorption processes. For some points SDs are smaller than the plotted symbols.

ln c_{eq} [-]

Figure S6. The Temkin isotherm model fitted to the experimental data of the adsorption processes. For some points SDs are smaller than the plotted symbols.

Figure S7. The Dubinin-Radushkevich isotherm model fitted to the experimental data of the adsorption processes. For some points SDs are smaller than the plotted symbols.

	Adsorbent	Temkin Isotherm			Dubinin-Raduschkevich Isotherm		
Biomolecule		B [J mol ⁻¹]	R ²	χ^2	E [kJ mol ⁻¹]	R ²	χ^2
Folic Acid	SiO2-epoxy	1.54	0.8608	0.010	0.209 ± 0.075	0.6052	43.592
	SiO ₂ -EDA	16.75	0.7564	16.250	0.260 ± 0.106	0.5474	9.514
	SiO ₂ -TETA	19.83	0.8038	7.689	0.296 ± 0.115	0.5717	9.091
	SiO ₂ -TREN	17.07	0.7635	12.862	0.273 ± 0.110	0.5508	9.160
	SiO2-TRI-OXA	11.58	0.7532	9.980	0.242 ± 0.099	0.5440	10.392
Salicylic Acid	SiO2-epoxy	0.25	0.9490	0.512	0.406 ± 0.108	0.7376	6.140
	SiO ₂ -EDA	9.47	0.7628 27.602 0.526 ± 0.185		0.526 ± 0.185	0.6173	12.798
	SiO ₂ -TETA	3.31	0.8354	8.626	0.462 ± 0.156	0.6366	14.136
	SiO ₂ -TREN	5.73	0.9098	12.498	2.448 ± 0.927	0.5824	6.369
	SiO2-TRI-OXA	2.82	0.8713	19.115	0.496 ± 0.166	0.6426	12.631
Nicotinic Acid	SiO2-epoxy	0.22	0.9299	0.636	0.020 ± 0.005	0.7540	61.718
	SiO ₂ -EDA	2.99	0.8557	6.049	0.871 ± 0.373	0.5207	8.278
	SiO ₂ -TETA	0.84	0.9587	0.473	0.813 ± 0.257	0.6676	6.779
	SiO ₂ -TREN	2.90	0.9294	6.128	0.997 ± 0.314	0.6593	7.170
	SiO2-TRI-OXA	1.18	0.9221	2.068	0.620 ± 0.219	0.6359	11.258

Table S1. Fitting of the experimental data to the Tekmin and the Dubinin-Radushkevich isothermal models.

Figure S8. The thermodynamic plots of the biomolecules adsorption processes corresponding the van't Hoff equation. For some points SDs are smaller than the plotted symbols.

C 1 C	TET 1	1 1 1 1	1 1 1	1 1	• •
Section C	: The supp	lement of the	conducted	driig-rele	ease experiments
occuron e	· · ···· · ··· · ··· ··· ··· ··· ··· ·	concerne or ence	contanctea	~~~~~	abe experiments

		Zero-Order	Model	Hixson-Crowe	Hixson-Crowell Model		
Biomolecule	Adsorbent	\mathbf{k}_1	R ²	k н-с	R ²		
		[mg h-1]	(χ ²)	[mg ^{1/3} h ⁻¹]	(χ ²)		
	SiO2-EDA	0.006 ± 0.002	0.5433	0.008 ± 0.004	0.4265		
			(0.085)		(0.078)		
	SO TETA	0.005 ± 0.002	0.5477	0.007 ± 0.003	0.4596		
Folic Acid	5102-1E1A		(0.058)	0.007 ± 0.003	(0.073)		
Folic Acia	SiO2-TREN	0.005 ± 0.002	0.5698	0.007 ± 0.004	0.4599		
			(0.061)	0.007 ± 0.004	(0.063)		
	SiO2-TRI-OXA	0.004 ± 0.001	0.5860	0.008 ± 0.004	0.4649		
			(0.059)		(0.072)		
	SiO ₂ -EDA	0.007 ± 0.004	0.3547	0.003 ± 0.002	0.3371		
			(0.042)		(0.111)		
	SiO ₂ -TETA	0.006 ± 0.002	0.4885	0.006 ± 0.003	0.4280		
Salicylic Acid			(0.066)		(0.039)		
Sancyne Acia	SiO ₂ -TREN	0.006 ± 0.004	0.3611	0.003 ± 0.002	0.3416		
			(0.032)	0.000 ± 0.002	(0.071)		
	SiO2-TRLOXA	0.005 ± 0.003	0.3809	0.005 ± 0.003	0.3374		
	5102-TRI-OAA		(0.069)		(0.056)		
	SiO2-ED A	0.004 ± 0.001	0.6156	0.004 ± 0.001	0.5821		
	0102 1011	0.001 ± 0.001	(0.013)	0.001 ± 0.001	(0.043)		
	SiO2-TETA	0.004 ± 0.001	0.5863	0.006 ± 0.002	0.5729		
Nicotinic Acid	5102 1111		(0.045)	0.000 ± 0.002	(0.032)		
	SiO2-TRFN	0.004 ± 0.002	0.5655	0.001 ± 0.002	0.0592		
	0102-11\LIN		(0.011)	0.001 ± 0.002	(0.156)		
	SiO2-TRI-OXA	0.008 ± 0.004	0.4099	0.008 ± 0.005	0.3438		
	5102-11XI-0AA		(0.159)	0.000 ± 0.000	(0.235)		

Table S2. The drug release parameters calculated for the fitting of experimental data tothe zero-order and the Hixson-Crowell release models.