Supporting Information

New morphiceptin peptidomimetic incorporating (1*S*,2*R*,3*S*,4*S*,5*R*)-2-amino-3,4,5trihydroxycyclopentane-1-carboxylic acid: synthesis and structural study

Raquel Soengas¹, Marcos Lorca^{1,3}, Begoña Pampín¹, Víctor M. Sánchez-Pedregal², Ramón J, Estévez¹, Juan C. Estévez^{1,*}

¹ Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Campus Vida, Universidade de Santiago de Compostela, 15782, Santiago de Compostela ² Departamento de Química Orgánica, Campus Vida, Universidade de Santiago de Compostela, 15782, Santiago de Compostela

³ Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Valparaíso 2360102, Chile.

Contents

NMR spectra of the synthetic intermediates
Figure S1. NMR spectra of 9.
Figure S2. NMR spectra of 12.
Figure S3. NMR spectra of 3b.
Figure S4. NMR spectra of 18a.
NMR spectra of the morphiceptin peptidomimetic
Figure S5. ¹ H NMR spectrum of 5a.
Figure S6. ¹³ C NMR spectrum of 5a.
Figure S7. ¹ H, ¹ H COSY NMR spectrum of 5a.
Figure S8. ¹ H, ¹³ C HSQC NMR spectrum of 5a.
Figure S9. ¹ H, ¹³ C HMBC NMR spectrum of 5a.
Figure S10. ¹ H, ¹ H TOCSY NMR spectrum of 5a.
Figure S11. ¹ H, ¹ H ROESY NMR spectrum of 5a.
Table S1. NMR assignment of peptidomimetic 5a.
Table S2. Distance restraints of peptidomimetic 5a derived from the 2D ROESY spectrum.
Figure S12. Summary of NOE contacts detected in the ROESY spectrum of compound 5a.

Figure S1. NMR spectra of 9.

(3*S*,5*R*,6*S*,7*R*)-6,7-Dibenzyloxy-3-methoxy-5-nitro-2-oxabicycle[2.2.1]heptane (12)

Figure S2. NMR spectra of 12.

Figure S3. NMR spectra of 3b.

Methyl (1*S*,2*R*,3*S*,4*S*,5*R*)-5-(*N*-*tert*-butoxycarbonyl-*O*-benzyloxycarbonyl-Ltyrosylamino)-2,4-dibenzyloxy-3-hydroxy-cyclopentanoate (18a)

Figure S4. NMR spectra of 18a.

Figure S5. ¹H NMR spectrum of 5a (DMSO-d6, 500 MHz, 298 K).

Figure S6. ¹³C NMR spectrum of 5a (DMSO-d6, 500 MHz, 298 K).

Figure S8. ¹³C-¹H HSQC NMR spectrum of 5a (DMSO-d6, 500 MHz, 298 K).

Figure S9. HMBC NMR spectrum of 5a (DMSO-d6, 500 MHz, 298 K).

Figure S10. TOCSY NMR spectrum of **5a**, mixing time 50 ms (DMSO-d6, 500 MHz, 298 K).

Figure S11. ROESY NMR spectrum of **5a**, mixing time 500 ms (DMSO-d6, 500 MHz, 298 K).

residue	C atom	δ _c / ppm	H atom	δ _H / ppm
Tyr 1	N	-	HN	-
	C(0)	169.23	-	-
	CA	54.12	HA	3.75
	CB	37.45	HB1, HB2	2.45, 2.87
	CG	125.99	-	-
	CD	130.42	HD1, HD2	7.04
	CE	115.40	HE1, HE2	6.71
	CZ	156.46	-	-
	OH	-	HH	9.45
Pcp 2	N	-	HN	8.20
	C(0)	171.20	-	-
	CA	51.42	HA	2.88
	CB	52.39	HB	4.15
	CG	78.29	HG2	3.68
	CD	81.46	HD1	3.46
	CE	76.42	HE2	3.84
	OG	-	HOG	5.10
	OD	-	HOD	5.16
	OE	-	HOE	5.19
Phe 3	N	-	HN	8.46
	C(0)	169.70	-	-
	CA	52.64	HA	4.55
	CB	37.22	HB1, HB2	2.73, 3.00
	CG	137.43	-	-
	CD	129.11	HD1, HD2	7.12-7.17
	CE	128.16	HE1, HE2	7.12-7.17
	CZ	126.40	HZ	7.12-7.17
Pro 4	N	-	-	-
	C(0)	173.33	-	-
	CA	59.67	HA	4.20
	CB	29.03	HB1	1.93
			HB2	1.76
	CG	24.38	HG2	1.79
			HG1	1.73
	CD	46.67	HD1	3.57
			HD2	3.14
C-ter	Ν		HN1, HN2	6.86-7.21

Table S1. NMR assignment of peptidomimetic 5a (DMSO-d6, 500 MHz, 298 K).

Table S2. Distance restraints of peptidomimetic **5a** derived from the 2D ROESY spectrum (t-mix 500 ms, DMSO-d6, 500 MHz, 298 K). Cross-peaks intensities were classified as *S* strong, *M* medium, *W* weak. Distance boundaries were set to 1.8-2.5 Å (S), 2.5-3.5 Å (M) and 3.5-5.0 Å (W).¹

	atom 1	atom 2	class
Inter-residue	PCP:HA	PHE:HN	М
	PCP:HE2	PHE:HB2	М
	PHE:HA	PRO:HD1	S
	PHE:HA	PRO:HD2	М
Tyr 1	TYR:HD1 or HD2	TYR:HB1	М
	TYR:HD1 or HD2	TYR:HB2	М
Pcp 2	PCP:HA	PCP:HB	S
	PCP:HA	PCP:HD1	М
	PCP:HB	PCP:HD1	М
	PCP:HB	PCP:HG2	М
	PCP:HE2	PCP:HA	М
	PCP:HE2	PCP:HG2	М
	PCP:HE2	PCP:HD1	М
Phe 3	PHE:HN	PHE:HA	М
	PHE:HN	PHE:HB1	W
	PHE:HN	PHE:HB2	М
	PHE:HA	PHE:HB1	М
	PHE:HA	PHE:HB2	М
	PHE:HD1 or HD2	PHE:HA	М
	PHE:HD1 or HD2	PHE:HB1	М
	PHE:HD1 or HD2	PHE:HB2	М
Pro 4	PRO:HA	PRO:HB1	S
	PRO:HA	PRO:HB2	М
	PRO:HD1	PRO:HG1	S
	PRO:HD1	PRO:HB1	М
	PRO:HD2	PRO:HG1	М

¹ Markley J L, Bax A, Arata Y, Hilbers C W, Kaptein R, Sykes B D, Wright P E, Wüthrich. K. Recommendations for the presentation of NMR structures of proteins and nucleic acids. J Mol Biol. 1998;280: 933–952. DOI:10.1006/jmbi.1998.1852.

Figure S11. Summary of NOE contacts detected in the ROESY spectrum of compound **5a**. Distance class is encoded with colours.