Supporting Information

Sulfoximines Assisted Rh(III)-Catalyzed C-H Activation and Intramolecular Annulation for the Synthesis of Fused Isochromeno-1,2-Benzothiazines Scaffolds under Room Temperature

Bao Wang ${ }^{1,2,3}$, Xu Han ${ }^{\mathbf{1 , 2}}$, Jian Li ${ }^{\mathbf{1}}$, Chunpu Li ${ }^{1,2, *}$ and Hong Liu ${ }^{\mathbf{1 , 2 , 3 , *}}$
${ }^{1}$ State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
${ }^{2}$ University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
${ }^{3}$ School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
Correspondence: lichunpu@simm.ac.cn (C.L.) and hliu@simm.ac.cn (H.L.)

Table of Contents

1. X-ray crystallography data of 3aa S3
2. Conversion of stereoisomer 1 a S5
3. Mechanistic investigations S7
4. NMR spectra data S10

1. X-ray Crystallographic Data of 3aa

1.1 X-ray Single Crystal Diffraction Data of compound 3aa

3aa
Sample preparation: To a solution of compound 3aa (10 mg) dissolved in EtOAc (1.0 mL) was filtered through a nylon-membrane syringe filter ($13 \mathrm{~mm} * 0.22 \mu \mathrm{~m}$, purchased from ANPEL Laboratory Tech. Shanghai, Inc.) and transferred into a clean 2 mL vial. The vial was sealed with a thin layer of parafilm on top of which 3-5 holes was made with a capillary (0.3 mm) to allow the solvent slowly evaporated at room temperature to afford the single crystal 3aa in 48 hours.

Single crystal structure of 3aa: X-ray crystal structure of 3aa was determined at 170 K with the ellipsoid contour at 50% probability levels.

Table 1 Crystal data and structure refinement for 220191140_0m (3aa).

Identification code	220191140_0m
Empirical formula	$\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{~S}$
Formula weight	283.33
Temperature/K	170.0
Crystal system	monoclinic
Space group	Cc
$\mathrm{a} / \AA{ }^{\text {a }}$	14.3267(7)
b/Å	10.2239(6)
c/Å	9.2727(4)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	106.242(2)
$\gamma /{ }^{\circ}$	90
Volume/ \AA^{3}	1304.01(12)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.443
μ / mm^{-1}	0.248
$\mathrm{F}(000)$	592.0
Crystal size/ $/ \mathrm{mm}^{3}$	$0.18 \times 0.11 \times 0.08$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection $/{ }^{\circ}$	4.964 to 54.998
Index ranges	$-18 \leq \mathrm{h} \leq 18,-12 \leq \mathrm{k} \leq 13,-12 \leq 1 \leq 11$
Reflections collected	6706
Independent reflections	$2590\left[\mathrm{R}_{\mathrm{int}}=0.0413, \mathrm{R}_{\text {sigma }}=0.0517\right]$
Data/restraints/parameters	2590/2/182
Goodness-of-fit on F^{2}	1.066
Final R indexes [$\mathrm{I}>=2 \sigma(\mathrm{I})$]	$\mathrm{R}_{1}=0.0344, \mathrm{wR}_{2}=0.0804$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0382, \mathrm{wR}_{2}=0.0837$

Largest diff. peak/hole / e $\AA^{-3} \quad 0.25 /-0.28$

Flack parameter -0.01(6)

Crystal structure determination of [220191140_0m] (3aa)

Crystal Data for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{~S}(M=283.33 \mathrm{~g} / \mathrm{mol})$: monoclinic, space group Cc (no. 9), $a=$ $14.3267(7) \AA, b=10.2239(6) \AA, c=9.2727(4) \AA, \beta=106.242(2)^{\circ}, V=1304.01(12) \AA^{3}, Z=$ $4, T=170.0 \mathrm{~K}, \mu(\mathrm{MoK} \alpha)=0.248 \mathrm{~mm}^{-1}$, Dcalc $=1.443 \mathrm{~g} / \mathrm{cm}^{3}, 6706$ reflections measured $\left(4.964^{\circ} \leq 2 \Theta \leq 54.998^{\circ}\right), 2590$ unique $\left(R_{\text {int }}=0.0413, \mathrm{R}_{\text {sigma }}=0.0517\right)$ which were used in all calculations. The final R_{1} was $0.0344(\mathrm{I}>2 \sigma(\mathrm{I}))$ and $w R_{2}$ was 0.0837 (all data).

2. Conversion of stereoisomer 1a

5-methyl-8H-5 λ^{4}-isochromeno[3,4-c][1,2]benzothiazine 5-oxide (3aa). (R)-3aa
Yellow-green solid, yield 93% (39.4 mg), 99:1 e.r. was determined by chiral HPLC (Chiralcel AD-H, n-hexane $/ i-\mathrm{PrOH}=70 / 30,0.8 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, 25^{\circ} \mathrm{C}$): t_{R} (major) $=13.2 \mathrm{~min}, t_{R}$ (minor) $=17.6 \mathrm{~min}$; (S)-3aa, Yellow-green solid, yield $91 \%(38.6 \mathrm{mg}), 2: 98$ e.r. was determined by chiral HPLC (Chiralcel AD-H, n-hexane $/ i-\mathrm{PrOH}=70 / 30,0.8 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$, $\left.25{ }^{\circ} \mathrm{C}\right): t_{R}($ minor $)=12.0 \mathrm{~min}, t_{R}($ major $)=17.4 \mathrm{~min} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.07(\mathrm{~d}, J$ $=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{dd}, J=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.21-$ $7.11(\mathrm{~m}, 2 \mathrm{H}), 5.20-4.99(\mathrm{~m}, 2 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 157.3,135.0$, $132.9,131.3,128.8,128.2,125.0,124.8,124.5,124.4,123.2,122.2,120.0,91.9,70.3,43.0 ;$

LRMS (ESI): $m / z 284.1[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI): calculated for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 284.0740, found: 284.0745 .

PeakTable
Detector A Ch2 254nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	12.960	6107921	152959	51.401	58.021
2	17.695	5774872	110667	48.599	41.979
Total		11882793	263626	100.000	100.000

mV

PeakTable
Detector A Ch2 254nm

Peak\#	Ret. Time	Area	Height	Area \%	Height $\%$
1	13.156	3911997	101074	99.243	99.344
2	17.648	29834	668	0.757	0.656
Total		3941832	101742	100.000	100.000

Detector A Ch2 254nm

Peak\#	Ret. Time	Area	Height	Area \%	Height $\%$
1	12.010	61014	1919	1.297	2.022
2	17.358	4644479	92999	98.703	97.978
Total		4705493	94918	100.000	100.000

3. Mechanistic Investigations

3.1 Kinetic isotope effect (KIE) experiment

${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $d^{l} \mathbf{- 1 a}$

3.2 H/D exchange experiment

1a

${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $d^{2}-\mathbf{1} \mathbf{a}$
4. NMR Data

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 d}$

1d

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 d}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1} \mathbf{j}$

EtOOC

1j

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 j}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 k}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 k}$

3aa

${ }^{1} \mathrm{H}$ NMR spectrum of 3aa

3aa

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 a}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3} \mathbf{b a}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 b a}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 c a}$

| 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |
| 170 | | | | | | | | | | | | | | | | | |

${ }^{13} \mathrm{C}$ NMR spectrum of 3ca

${ }^{1} \mathrm{H}$ NMR spectrum of 3ea

	$\begin{gathered} \stackrel{n}{\infty} \\ \stackrel{\infty}{1} \\ \hline \end{gathered}$		$\begin{aligned} & \stackrel{\infty}{\infty} \\ & \stackrel{\infty}{\sigma} \\ & \stackrel{y}{\sigma} \end{aligned}$	$\stackrel{\stackrel{e}{0}}{\stackrel{1}{1}}$

3 ea

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 e a}$

3fa

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 f a}$

$\stackrel{\stackrel{\rightharpoonup}{\circ}}{\stackrel{+}{\circ}}$
$\stackrel{n}{n}$

3fa

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 f a}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 g a}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 g a}$

3ha

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 h a}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 h a}$

${ }^{1} \mathrm{H}$ NMR spectrum of 3ia

$3 i a$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 i a}$

3ka

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 k} \mathbf{k}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 k} \mathbf{k}$

3la

${ }^{1} \mathrm{H}$ NMR spectrum of 3la

3la

${ }^{13} \mathrm{C}$ NMR spectrum of 31a

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 m a}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 m a}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 n a}$

${ }^{1} \mathrm{H}$ NMR spectrum of a mixture of $\mathbf{3 o a}$ and $\mathbf{3 0 a}{ }^{\prime}$

${ }^{13} \mathrm{C}$ NMR spectrum of a mixture of 3oa and 3oa'

3qa

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 q a}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 q a}$

3ra

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3} \mathbf{r a}$

зга

| 170 | 1 | | | | | | | | | | | | | | | | |
| :--- |
| 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3} \mathbf{r a}$

3sa

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3} \mathbf{s a}$

${ }^{13} \mathrm{C}$ NMR spectrum of 3 sa

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 t a}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3}$ ta

3ua

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3} \mathbf{u a}$

${ }^{13} \mathrm{C}$ NMR spectrum of 3ua

${ }^{1} \mathrm{H}$ NMR spectrum of 3va

${ }^{13} \mathrm{C}$ NMR spectrum of 3va

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a d}$

$\begin{aligned} & \text { git } \\ & \text { in } \\ & i / \end{aligned}$			$\stackrel{\infty}{\underset{\sim}{\infty}}$	$\begin{aligned} & \text { İ } \\ & \text { í } \\ & \text { i } \end{aligned}$	芯

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 a d}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a e}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 a e}$

3af

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3} \mathbf{a f}$
$\begin{array}{lll}a & 8 & 2 \\ \vdots & 0 & \vdots \\ \vdots & 1 & \vdots\end{array}$

3af

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 a f}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a g}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 a g}$

3ai

${ }^{1} \mathrm{H}$ NMR spectrum of 3ai

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 a i}$

皮

3aj

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a j}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 a j}$

