# **Supporting Information**

# Sulfoximines Assisted Rh(III)-Catalyzed C-H Activation and Intramolecular Annulation for the Synthesis of Fused Isochromeno-1,2-Benzothiazines Scaffolds under Room Temperature

Bao Wang <sup>1, 2, 3</sup>, Xu Han <sup>1, 2</sup>, Jian Li <sup>1</sup>, Chunpu Li <sup>1, 2,\*</sup> and Hong Liu <sup>1, 2, 3,\*</sup>

<sup>1</sup>State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China

<sup>2</sup>University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China <sup>3</sup>School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China

Correspondence: lichunpu@simm.ac.cn (C.L.) and hliu@simm.ac.cn (H.L.)

## **Table of Contents**

| 1. | X-ray crystallography data of 3aa | S3  |
|----|-----------------------------------|-----|
| 2. | Conversion of stereoisomer 1a     | S5  |
| 3. | Mechanistic investigations        | S7  |
| 4. | NMR spectra data                  | S10 |

#### 1. X-ray Crystallographic Data of 3aa







**Sample preparation:** To a solution of compound **3aa** (10 mg) dissolved in EtOAc (1.0 mL) was filtered through a nylon-membrane syringe filter (13 mm\*0.22  $\mu$ m, purchased from ANPEL Laboratory Tech. Shanghai, Inc.) and transferred into a clean 2 mL vial. The vial was sealed with a thin layer of parafilm on top of which 3-5 holes was made with a capillary (0.3 mm) to allow the solvent slowly evaporated at room temperature to afford the single crystal **3aa** in 48 hours.

**Single crystal structure of 3aa**: X-ray crystal structure of **3aa** was determined at 170 K with the ellipsoid contour at 50% probability levels.



# Table 1 Crystal data and structure refinement for 220191140\_0m (3aa).

| Identification code                   | 220191140_0m                                           |
|---------------------------------------|--------------------------------------------------------|
| Empirical formula                     | $C_{16}H_{13}NO_2S$                                    |
| Formula weight                        | 283.33                                                 |
| Temperature/K                         | 170.0                                                  |
| Crystal system                        | monoclinic                                             |
| Space group                           | Cc                                                     |
| a/Å                                   | 14.3267(7)                                             |
| b/Å                                   | 10.2239(6)                                             |
| c/Å                                   | 9.2727(4)                                              |
| α/°                                   | 90                                                     |
| β/°                                   | 106.242(2)                                             |
| $\gamma/^{\circ}$                     | 90                                                     |
| Volume/Å <sup>3</sup>                 | 1304.01(12)                                            |
| Z                                     | 4                                                      |
| $\rho_{calc}g/cm^3$                   | 1.443                                                  |
| µ/mm <sup>-1</sup>                    | 0.248                                                  |
| F(000)                                | 592.0                                                  |
| Crystal size/mm <sup>3</sup>          | $0.18 \times 0.11 \times 0.08$                         |
| Radiation                             | MoKa ( $\lambda = 0.71073$ )                           |
| $2\Theta$ range for data collection/° | 4.964 to 54.998                                        |
| Index ranges                          | $-18 \le h \le 18, -12 \le k \le 13, -12 \le l \le 11$ |
| Reflections collected                 | 6706                                                   |
| Independent reflections               | 2590 [ $R_{int} = 0.0413$ , $R_{sigma} = 0.0517$ ]     |
| Data/restraints/parameters            | 2590/2/182                                             |
| Goodness-of-fit on F <sup>2</sup>     | 1.066                                                  |
| Final R indexes [I>= $2\sigma$ (I)]   | $R_1 = 0.0344,  wR_2 = 0.0804$                         |
| Final R indexes [all data]            | $R_1 = 0.0382, wR_2 = 0.0837$                          |

Largest diff. peak/hole / e Å<sup>-3</sup> 0.25/-0.28

Flack parameter -0.01(6)

#### Crystal structure determination of [220191140\_0m] (3aa)

**Crystal Data** for C<sub>16</sub>H<sub>13</sub>NO<sub>2</sub>S (M = 283.33 g/mol): monoclinic, space group Cc (no. 9), a = 14.3267(7) Å, b = 10.2239(6) Å, c = 9.2727(4) Å,  $\beta = 106.242(2)^{\circ}$ , V = 1304.01(12) Å<sup>3</sup>, Z = 4, T = 170.0 K,  $\mu$ (MoK $\alpha$ ) = 0.248 mm<sup>-1</sup>, *Dcalc* = 1.443 g/cm<sup>3</sup>, 6706 reflections measured (4.964°  $\leq 2\Theta \leq 54.998^{\circ}$ ), 2590 unique ( $R_{int} = 0.0413$ ,  $R_{sigma} = 0.0517$ ) which were used in all calculations. The final  $R_1$  was 0.0344 (I > 2 $\sigma$ (I)) and  $wR_2$  was 0.0837 (all data).

#### 2. Conversion of stereoisomer 1a



5-methyl-8H-5λ<sup>4</sup>-isochromeno[3,4-c][1,2]benzothiazine 5-oxide (3aa). (*R*)-3aa Yellow-green solid, yield 93% (39.4 mg), 99:1 e.r. was determined by chiral HPLC (Chiralcel AD-H, *n*-hexane/*i*-PrOH = 70/30, 0.8 mL/min, 254 nm, 25 °C):  $t_R$  (major) = 13.2 min,  $t_R$ (minor) = 17.6 min; (*S*)-3aa, Yellow-green solid, yield 91% (38.6 mg), 2:98 e.r. was determined by chiral HPLC (Chiralcel AD-H, *n*-hexane/*i*-PrOH = 70/30, 0.8 mL/min, 254 nm, 25 °C):  $t_R$  (minor) = 12.0 min,  $t_R$  (major) = 17.4 min; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): δ 8.07 (d, *J* = 9.6 Hz, 1H), 7.78 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.62 – 7.54 (m, 2H), 7.38 – 7.26 (m, 2H), 7.21 – 7.11 (m, 2H), 5.20 – 4.99 (m, 2H), 3.49 (s, 3H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>): δ 157.3, 135.0, 132.9, 131.3, 128.8, 128.2, 125.0, 124.8, 124.5, 124.4, 123.2, 122.2, 120.0, 91.9, 70.3, 43.0;



LRMS (ESI): m/z 284.1 [M + H]<sup>+</sup>; HRMS (ESI): calculated for C<sub>16</sub>H<sub>14</sub>NO<sub>2</sub>S [M + H]<sup>+</sup>: 284.0740, found: 284.0745.

12,010

12.5

15.0

17.5

20.0

22.5

25.0

min

25

0

0.0

5.0

7.5

10.0

2.5

#### PeakTable

| Detector A Ch2 254nm |       |           |         |        |         |          |  |  |  |  |
|----------------------|-------|-----------|---------|--------|---------|----------|--|--|--|--|
|                      | Peak# | Ret. Time | Area    | Height | Area %  | Height % |  |  |  |  |
|                      | 1     | 12.010    | 61014   | 1919   | 1.297   | 2.022    |  |  |  |  |
|                      | 2     | 17.358    | 4644479 | 92999  | 98.703  | 97.978   |  |  |  |  |
|                      | Total |           | 4705493 | 94918  | 100.000 | 100.000  |  |  |  |  |

## 3. Mechanistic Investigations

## 3.1 Kinetic isotope effect (KIE) experiment



<sup>1</sup>H NMR spectrum (400 MHz, CDCl<sub>3</sub>) of  $d^{l}$ -1a



## 3.2 H/D exchange experiment







4. NMR Data



 $^{13}$ C NMR spectrum of **1d** 















































<sup>13</sup>C NMR spectrum of **3ja** 

















# >2800 (7,7,55) (7,7,55) (7,7,55) (7,7,55) (7,7,75) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) (7,7,73) <



<sup>13</sup>C NMR spectrum of a mixture of **30a** and **30a'** 







<sup>13</sup>C NMR spectrum of **3qa** 



















28,88,00 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,175 17,1



<sup>13</sup>C NMR spectrum of **3va** 



























<sup>13</sup>C NMR spectrum of **3ah** 







