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Abstract: Organophosphorus compounds occupy a significant position among the plethora of
organic compounds, but a limited number of paramagnetic phosphorus compounds have been
reported, including paramagnetic phosphonates. This paper describes the syntheses and further
transformations of pyrroline and piperidine nitroxide phosphonates by well-established methods,
such as the Pudovik, Arbuzov and Horner-Wadsworth-Emmons (HWE) reactions. The reaction of
paramagnetic α-bromoketone produced a vinylphosphonate in the Perkow reaction. Paramagnetic
α-hydroxyphosphonates could be subjected to oxidation, elimination and substitution reactions
to produce various paramagnetic phosphonates. The synthesized paramagnetic phosphonates
proved to be useful synthetic building blocks for carbon-carbon bond-forming reactions in the
Horner-Wadsworth-Emmons olefination reactions. The unsaturated compounds achieved could
be transformed into various substituted pyrroline nitroxides, proxyl nitroxides and paramagnetic
polyaromatics. The Trolox® equivalent antioxidant capacity (TEAC) of new phosphonates was also
screened, and tertiary α-hydroxyphosphonatate nitroxides exhibited remarkable antioxidant activity.

Keywords: antioxidant activity; Horner-Wadsworth-Emmons olefination; nitroxides; phosphonates

1. Introduction

Functionalized phosphonates are fascinating organophosphorus compounds used in biology,
pharmacology, agriculture and organic chemistry [1–3]. The main interest in preparation of these
compounds originated from their application in the Horner-Wadsworth-Emmons (HWE) olefination
reaction to produce various unsaturated compounds [4]. Despite the simplicity of the syntheses
of phosphonates or α-hydroxyphosphonates or trialkylphosphates by the Arbuzov [5], Pudovik [6]
or Perkow reactions [7], these reactions were applied limitedly to access paramagnetic phosphorus
compounds, although many phosphorus containing nitroxides have been published [8–11]. Remarkable
part of these materials are mainly 2-substituted β- or γ-phosphorylated five-membered nitroxides
exhibiting a second notably large hyperfine splitting with the one-half spin nucleus of the phosphorus
atom [12–16] (Figure 1). However, no further transformations of these paramagnetic phosphonates
were reported beyond phosphonate hydrolysis [8] or transesterification [16]. In this paper, we report the
syntheses of new pyrroline and piperidine nitroxide phosphonates starting from nitroxide halogenides,
acetylenes, aldehydes and ketones. Our purpose was to evaluate the scope and limitations of the
reactions of the newly synthesized paramagnetic phosphonates or α-hydroxyphosphonates as potential
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paramagnetic building blocks for spin labeling or construction of more complex paramagnetic scaffolds.
Although paramagnetic phosphonium salts and their use in C=C bond-forming reactions have been
published [17], considering the advantages of use of phosphonates [18] over phosphonium ylides (e.g.,
avoiding the formation of non-water-soluble triphenylphosphine oxide), paramagnetic phosphonates
can be more appropriate building blocks for synthetic chemists working in this field.
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Figure 1. Previously reported paramagnetic phosphonates.

2. Results and Discussion

2.1. Use of Arbusov Reaction

Treatment of five- and six-membered allylic bromides 1a–c [19–21] with triethyl phosphite at
120 ◦C with stirring in an open vessel resulted in the formation of phosphonates 2a–c in 65–81%
yield (monitored by thin layer chromatography). As expected in the case of compound 1b, only the
more reactive allylic bromide was converted to a phosphonate, and the vinyl bromine atom was
not substituted. Under these conditions, we did not observe the reduction of nitroxide function.
The same reaction could be performed with dibromo compound 3 [22] to furnish bisphosphonate
ester 4 (Scheme 1).
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2.2. Use of HWE and Perkow Reaction

Because the synthesis of compound 1c is a long multistep procedure from the readily
available 4-oxo-TEMPO (1-oxyl-4-oxo-2,2,6,6-tetramethyplpiperidine radical) (5b) [21,23,24], we
are pleased to report a simpler and more direct method that heats the sodium salt of tetraethyl



Molecules 2020, 25, 2430 3 of 16

methylenediphosphonate with compound 5b in toluene at reflux temperature to produce compound
2c in a HWE reaction, although at a slightly lower 58% yield. It is well known that upon heating,
α-bromoketones with trialkylphosphites furnish dialkyl vinylphosphates [7]. The same reaction was
observed with 3-bromo-1-oxyl-4-oxo-2,2,6,6-tetramethylpiperidine radical 6 [25], which upon heating
with triethylphosphite at 120 ◦C furnished the paramagnetic vinylphosphate ester 7 in 34% yield
(Scheme 2).
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Perkow reaction from 4-oxo-TEMPO (5b).

The formation of ketophosphonate in an Arbusov reaction can be excluded because the appearance
of the vinyl proton at 5.43 ppm and the 31P-NMR shift at −6.22 ppm verify the formation of diethylvinyl
phosphate 7. The latter 31P-NMR data show good correlation with the reported values [26].

2.3. Pudovik Hydroxyphosphonate Synthesis and Transformations

The above results drove our decision to study the reactions of paramagnetic aldehydes and ketones
with diethyl phosphite to produce α-hydroxyphosphonates because these derivatives have biological
importance, i.e., herbicidal, antibacterial, antifungal and antioxidant effects, to mention but a few [27–29].
To access paramagnetic α-hydroxyphosphonates among the possible reaction conditions [30,31] tested,
we choose the methodology of Kulkarni et al. [32], e.g., solvent-free conditions in the presence of
0.05 eq. K3PO4. Therefore, treatment of ketones 5a [33] or 5b [23] or five- or six-membered nitroxide
aldehydes 9a [34], 9b [20], or 9c [21] with diethyl phosphite in the presence of 0.05 eq. K3PO4 offered
the α-hydroxyphosphonates 8a or 8b or 10a or 10b or 10c, respectively, in 78–92% yield (Scheme 3).
The structure of these compounds is proven by the appearance of hydroxyl band of OH groups at
~3200 cm−1 compared with compounds 2a–c. We attributed the conversion of α-hydroxyphosphonates
8a or 8b to the corresponding vinyl phosphonate by water elimination. By treatment of compound 8a
or 8b with POCl3 in anhydr. pyridine [23] after 48 h at room temperature, 11 vinylphosphonate could
be isolated from 8b in 29% yield, but the expected five-membered vinylphosphonate was not formed
under these conditions. The structure of vinylphosphonate 11 is proven by the split vinyl proton at
6.62 ppm with J = 21.5 Hz and the upfield shift of the 31P-NMR signal at 19.3 ppm compared with that of
the compound 2c 31P signal at 27.1 ppm (see Supplementary Materials). Further attempts to eliminate
the water from compound 8a with sulfuric acid [35] or FeCl3/silica gel microwave heating [36] did not
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produce the required vinyl phosphonate. Our efforts to substitute the tertiary alcohols 8a or 8b with
various nucleophiles via mesylate did not succeed, similar to the same experiments with the secondary
alcohols 10a–c. For further possible transformations, we focused on compound 10a conversions,
which could be smoothly oxidized to α-ketophosphonate 12 with 3.0 eq. Dess–Martin periodinane
(1,1,1-tris(acetyloxy)-1,1-dihydro-1,2-benziodoxol-3-(1H)-one) [37] in CH2Cl2 at room temperature.
With the reaction of compound 10a with DEAD (diethyl azodicarboxylate) and PPh3 in the presence of
HN3 under Mitsonubu reaction conditions [38], we created paramagnetic α-azidophosphonate 13.
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Scheme 3. Synthesis of α-hydroxyphosphonates.

Under similar conditions and using methyl iodide as a source for the I− nucleophile [39], we
obtained iodo compound 14, which was rather inert for attempts at further nucleophilic substitution
conditions (Scheme 4). The limited success of these transformations is attributed to the sterically
hindered allylic position, which is surrounded by a bulky phosphonate group and a densely substituted
pyrroline nitroxide ring.
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2.4. Phosphonate Synthesis with Lithiation

To obtain the five-membered vinylphosphonate, we attempted heating of compound 15 [40]
with diethylphosphite in the presence of a catalytic amount of NiCl2 [41], but no conversion was
observed. Our efforts to construct a P-C bond with diethylphospite via the Pd–catalyzed Hirao
reaction with the conventional or microwave-assisted method [42] also failed. As a result, we
finally decided to lithiate [43] the O-methyl derivative 16, as achieved via Fenton reaction in a
dimethylsulfoxide/H2O2/Fe2+ system [44], followed by treatment with 1.0 eq. BuLi (buthyl lithium)
and addition of diethylchlorophosphate to produce the diamagnetic vinyl phosphonate, which was not
isolated but the crude product was treated with meta-chloroperoxybenzoic acid [45]. Thus we obtained
compound 17, fortunately without epoxidation of the double bond. The paramagnetic acetylene
phosphonate can be prepared by deprotonating acetylene 18 [46] at a terminal acetylene carbon with
lithium hexamethyldisilazane (LiHMDS) followed by treatment with diethylchlorophosphate to give
compound 19 (Scheme 5). The formation of acetylenephosphonate is proven by the shielded 31P signal
at −6.4 ppm (see Supplementary Materials).

Molecules 2020, 25, x FOR PEER REVIEW 5 of 16 

 

2.4. Phosphonate Synthesis with Lithiation 

To obtain the five-membered vinylphosphonate, we attempted heating of compound 15 [40] 

with diethylphosphite in the presence of a catalytic amount of NiCl2 [41], but no conversion was 

observed. Our efforts to construct a P-C bond with diethylphospite via the Pd–catalyzed Hirao 

reaction with the conventional or microwave-assisted method [42] also failed. As a result, we finally 

decided to lithiate [43] the O-methyl derivative 16, as achieved via Fenton reaction in a 

dimethylsulfoxide/H2O2/Fe2+ system [44], followed by treatment with 1.0 eq. BuLi (buthyl lithium) 

and addition of diethylchlorophosphate to produce the diamagnetic vinyl phosphonate, which was 

not isolated but the crude product was treated with meta-chloroperoxybenzoic acid [45]. Thus we 

obtained compound 17, fortunately without epoxidation of the double bond. The paramagnetic 

acetylene phosphonate can be prepared by deprotonating acetylene 18 [46] at a terminal acetylene 

carbon with lithium hexamethyldisilazane (LiHMDS) followed by treatment with 

diethylchlorophosphate to give compound 19 (Scheme 5). The formation of acetylenephosphonate is 

proven by the shielded 31P signal at −6.4 ppm (see Supplementary Materials). 

 

Scheme 5. Synthesis of paramagnetic phosphonate esters by lithiation. 

2.5. Horner-Wathsworth-Emmons (HWE) Reactions of Synthesized Paramagnetic Phosphonates 

Deprotonation of compound 2a with sodium hydride in toluene followed by treatment with 

aliphatic, aromatic or heteroaromatic aldehydes offered E paramagnetic alkenes 20a–d, as proven by 

the ~16 Hz coupling of the newly formed double bond protons. Saturation of compound 20a with 

hydrogen in a continuous flow hydrogenation system (H-Cube Mini Plus) by 10% Pd/C catalyst 

offered the fully saturated N-hydroxylamine, which could be oxidized back to a R,S racemic mixture 

of 1-oxyl-3-phenethyl-2,2,5,5-tetramethylpyrrolidine radical 21 by a catalytic amount of MnO2. 

Double deprotonation of bisphosphonate witH-NaH followed by addition of an excess of 

benzaldehyde produced triene, which upon heating spontaneously was cyclized by 6–

electrocyclization to cis-5,6-diphenyl-2-oxyl-1,1,3,3-tetramethyl-5,6-dihydro-1H-isoindole radical, 

which partially oxidized to the 5,6-diphenyl-2-oxyl-1,1,3,3-tetramethylisoindoline radical. To 

complete the oxidation, the worked-up crude product was subjected to oxidation with 2,3-dichloro-

5,6-dicyano-1,4-benzoquinone (DDQ) in refluxing benzene to yield 22 isoindoline radical (Scheme 6). 

2.6. Antioxidant Activity of Nitroxide Phosphonate Esters 

The antioxidant (proton and electron donating) activities of phosphonates 2a, 2c and -

hydroxyphosphonates 8a, 8b, 10a, 10c were tested [47] in terms of trolox (±)-6-hydroxy-2,5,7,8-

tetramethylchromane-2-carboxylic acid equivalent capacity (TEAC). This method is based on 

reduction of the green-colored 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical (ABTS· +), 

which is detected at 734 nm. Our results suggest (Table 1) that both the piperidine ring unit (2c versus 

Scheme 5. Synthesis of paramagnetic phosphonate esters by lithiation.

2.5. Horner-Wathsworth-Emmons (HWE) Reactions of Synthesized Paramagnetic Phosphonates

Deprotonation of compound 2a with sodium hydride in toluene followed by treatment with
aliphatic, aromatic or heteroaromatic aldehydes offered E paramagnetic alkenes 20a–d, as proven
by the ~16 Hz coupling of the newly formed double bond protons. Saturation of compound 20a
with hydrogen in a continuous flow hydrogenation system (H-Cube Mini Plus) by 10% Pd/C catalyst
offered the fully saturated N-hydroxylamine, which could be oxidized back to a R,S racemic mixture of
1-oxyl-3-phenethyl-2,2,5,5-tetramethylpyrrolidine radical 21 by a catalytic amount of MnO2. Double
deprotonation of bisphosphonate witH-NaH followed by addition of an excess of benzaldehyde
produced triene, which upon heating spontaneously was cyclized by 6π–electrocyclization to
cis-5,6-diphenyl-2-oxyl-1,1,3,3-tetramethyl-5,6-dihydro-1H-isoindole radical, which partially oxidized
to the 5,6-diphenyl-2-oxyl-1,1,3,3-tetramethylisoindoline radical. To complete the oxidation, the
worked-up crude product was subjected to oxidation with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone
(DDQ) in refluxing benzene to yield 22 isoindoline radical (Scheme 6).
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2.6. Antioxidant Activity of Nitroxide Phosphonate Esters

The antioxidant (proton and electron donating) activities of phosphonates 2a, 2c and
α-hydroxyphosphonates 8a, 8b, 10a, 10c were tested [47] in terms of trolox (±)-6-hydroxy-2,5,7,8-
tetramethylchromane-2-carboxylic acid equivalent capacity (TEAC). This method is based on reduction
of the green-colored 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical (ABTS· +), which
is detected at 734 nm. Our results suggest (Table 1) that both the piperidine ring unit (2c versus
2a or 10c versus 10a) and hydroxyl group presence (compare 2a with 10a) increase the antioxidant
activity. The TEAC values of tertiary α-hydroxyphosphonate nitroxides 8a (0.96) and 8b (0.93)
are almost the same as the trolox activity (1.0) but do not reach the antioxididant activity of
4-hydroxy-1-oxyl-2,2,6,6-tetramethylpiperidin radical (TEMPOL) [48].

Table 1. TEAC activity of phosphonates.

Compound 2a 2c 8a 8b 10a 10c TEMPOL

TEAC 1 0.13 ± 0.01 0.55 ± 0.03 0.96 ± 0.05 0.93 ± 0.04 0.35 ± 0.01 0.51 ± 0.02 1.27 ± 0.04
1 Based on n = 3 parallel measurements.

3. Materials and Methods

3.1. General Methods and Reagents

Mass spectra were recorded with a Thermoquest Automass Multi system (ThermoQuest, CE,
Instruments, Milan, Italy), a GCMS-2020 (Shimadzu, Tokyo, Japan) both operated in EI mode (70 eV)
and a Thermo Q-Exactive HPLC/MS/MS (Thermo Scientific, Waltham, MA, USA) with ESI(+) ionization.
Elemental analyses were obtained with a Fisons EA 1110 CHNS elemental analyzer (Fisons Instruments,
Milan, Italy). The melting points were determined with a Boetius micromelting point apparatus
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(Franz Küstner Nachf. K. G., Dresden, Germany). The 1H-NMR spectra were recorded with a Bruker
Avance 3 Ascend 500 system (Bruker BioSpin Corp., Karslruhe, Germany) operated at 500 MHz,
and the 13C-NMR spectra were obtained at 125 MHz and 31P-NMR 202 MHz in CDCl3 or DMSO-d6

at 298 K. The “in situ” reduction of the nitroxides was achieved by addition of five equivalents of
hydrazobenzene ((PhNH)2/radical). The O-acetyl derivative of compound 22 for NMR measurement
was prepared as described previously [49]. The EPR (electron paramagnetic resonance) spectra
were recorded on MiniScope MS 200 (Magnettech GMBH, Berlin, Germany) instrument in CHCl3
solution, and the concentrations were 1.0 × 10−4 M. All radicals gave a 3-line spectra characteristic
of monoradicals, aN = 14.4–15.6 G, radical concentration was > 98% in each case and referred
for TEMPO (1-oxyl-2,2,6,6-tetramethylpiperidine. The IR spectra were obtained using a Bruker
Alpha FT-IR instrument (Bruker Optics, Ettlingen, Germany) with ATR support on a diamond plate.
Spectrophotometric measurements were performed on a Specord 40 UV/VIS Spectrophotometer
(Specord, Jena, Germany) at 732 nm in a 1 × 1 cm quartz cuvette. Hydrogenation was performed
with an H-Cube Mini Plus, ThalesNano, Budapest, Hungary) instrument with a 10%Pd/C cartridge
at 5 bar hydrogen pressure, 35 ◦C, and a flow rate of 1 mL/min. Flash column chromatography was
performed on a Kieselgel 60 (0.040–0.063 mm) column (Merck, Darmstadt, Germany). Qualitative
TLC was performed on commercially available plates (20 cm × 20 cm × 0.02 cm) coated with Merck
Kieselgel GF254. Compounds 1a [19], 1b [20], 1c [21], 3 [22], 5a [33], 5b [23], 6 [25], 9a [34], 9b [20],
9c [21], 15 [40], 18 [46], TEMPO [23] and TEMPOL [23] were synthesized as previously described.
The reagents LiHMDS, Trolox®, m-CPBA, diethylphosphite, triphenyl-phosphine, triethylphosphite,
DEAD, FeCl3, MnO2, NaH, NaN3, DDQ, POCl3, ABTS, Dess–Martin periodinane, benzaldehyde,
2-thiophencarbaldehyde, undecanal, 3-pyridinecarbaldehyde, NiCl2, diethyl chlorophosphate, BuLi,
DMSO-d6, CDCl3, hydrazobenzene were purchased from Sigma Aldrich (St. Louis, MO, USA) and
hexane, DCM, CHCl3, methanol (MeOH), methyliodide (MeI), ethyl acetatate (EtOAc), toluene, benzene,
THF, MgSO4, FeSO4

.7H2O, NaCl, Na2HPO4, KH2PO4 from Molar Chemicals (Halásztelek, Hungary).

3.2. General Procedure for Arbusov Reactions (2a–c, 4)

In a well-ventilated hood, a mixture of compound 1a or 1b or 1c or 3 (10.0 mmol) and
triethylphosphite (2.5 g, 15.0 mmol, or 5.0 g, 30.0 mmol, for compound 3) was stirred in an open vessel
at 120 ◦C in an oil bath. The ethylbromide byproduct was allowed to escape. The reaction mixture was
monitored by TLC, and after consumption of the starting material (~2 h), the mixture was allowed to
cool spontaneously with stirring. After cooling, the resulting mixture was purified by flash column
chromatography to give the allylic phosphonates.

3.2.1. Diethyl ((1-oxyl-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-3-yl)methyl)phosphonate Radical (2a)

Purified by flash column chromatography (eluent: hexane/EtOAc, 1:1) to produce an orange oil
(1.88 g, 65%); TLC (CHCl3/Et2O, 2:1): Rf = 0.33. 31P-NMR (CDCl3 + (PhNH)2) δ:26.9. 13C-NMR (CDCl3
+ (PhNH)2) δ: 16.6 (d, J = 6.0 Hz, 2C), 24.2 (2C), 24.3 (d, J = 143.0 Hz, 1C), 25.8 (2C), 62.2 (d, J = 6.6 Hz,
2C), 68.2 (d, J = 1.1 Hz, 1C) 71.6 (d, J = 9 Hz, 1C), 132.6 (d, J = 8.0 Hz, 1C), 134.0 (d, J = 8.0 Hz, 1C).
1H-NMR (CDCl3 + (PhNH)2) δ: 1.32 (s, 6H), 1.36 (s, 6H), 1.39 (t, J = 6.9 Hz, 6H), 2.56 (d, J = 22 Hz, 2H),
4.19 (quint, J = 1.2 Hz, 4H), 5.86 (s, 1H). IR: 2976, 2931, 1650 cm−1. MS (EI): m/z (%): 290 (M+, 13) 260
(70), 245 (15), 138 (22), 122 (100).

3.2.2. Diethyl ((4-bromo-1-oxyl-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-3-yl)methyl)phosphonate
Radical (2b)

Purified by flash column chromatography (eluent: hexane/EtOAc, 1:1) to afford an orange oil
(2.83 g, 77%); TLC (CHCl3/Et2O, 2:1): Rf =0.48. 31P-NMR (CDCl3 + (PhNH)2) δ:26.9. 13C-NMR (CDCl3
+ (PhNH)2) δ: 16.5 (d, J = 6.0 Hz, 2C), 24.1 (d, J = 143.0 Hz, 1C), 24.2 (2C), 25.8 (2C), 62.1 (d, J = 6.7 Hz,
2C), 68.0 (d, J = 2.1 Hz, 1C) 71.4 (d, J = 8.8 Hz, 1C), 132.6 (d, J = 8.1 Hz, 1C), 133.9 (d, J = 11.1 Hz, 1C).
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1H-NMR (CDCl3 + (PhNH)2) δ: 1.35 (s, 6H), 1.37 s (6H), 1.45 (bs, 6H)., 2.58 (d, J = 21.5 Hz, 2H), 4.25
(bs, 4H). IR: 2979, 2932, 1644 cm−1. MS (EI): m/z (%): 370/368 (M+, 44), 340/338 (4/4), 259(35), 121 (100).

3.2.3. Diethyl ((1-oxyl-2,2,6,6-tetramethyl-1,2,3,6-tetrahydropyridin-4-yl)methyl)phosphonate
Radical (2c)

Obtained by method A: Purified by flash column chromatography (eluent: hexane/EtOAc, 1:1) to
afford a red oil (2.46 g, 81%); TLC (CHCl3/Et2O, 2:1): Rf = 0.35. 31P-NMR (CDCl3 + (PhNH)2) δ: 27.1.
13C-NMR (CDCl3 + (PhNH)2) δ: 16.5 (d, J = 6.1 Hz, 2C),25.0 (1C), 26.3 (bs, 1C), 34.3 (d, J = 38.1 Hz, 2C),
44.0 (d, J = 2.3 Hz, 1C), 57.7 (1C), 59.0 (d, J = 2.3 Hz, 1C), 61.9 (d, J = 6.8 Hz, 2C), 122.5 (d, J = 11.0 Hz,
1C), 134.1 (d, J = 12.0 Hz, 1C). 1H-NMR (CDCl3 + (PhNH)2) δ: 1.28 (s, 6H), 1.32 (s, 6H), 1.38 (t, J = 7 Hz,
6H), 2.29 (d, J = 3.5 Hz, 2H), 2.55 (d, J = 21.5 Hz, 2H), 4.13–4.20 (m, 4H), 5,43 (d, J = 5.3 Hz, 1H). IR:
2977, 2932, 1645 cm−1. MS (EI): m/z (%): 304 (M+, 27) 274 (100), 259 (27), 152 (16), 81 (60).

3.2.4. Diethyl ((1-oxyl-2,2,6,6-tetramethyl-1,2,3,6-tetrahydropyridin-4-yl)methyl)phosphonate
Radical (2c)

Obtained by method B: To a stirred suspension of NaH (240 mg, 10.0 mmol) in toluene (10 mL),
a solution of tetraethyl methylenediphosphonate (2.88 mg, 10.0 mmol) in toluene (10 mL) was added
dropwise at 0 ◦C under N2. After 30 min, a solution of compound 5b (1.7 g, 10.0 mmol) in toluene
(10 mL) was added dropwise at 0 ◦C. The mixture was refluxed for 3 hours. After cooling, the
solvent was evaporated, and the residue was partitioned between water (30 mL) and EtOAc (50 mL).
The organic phase was separated, dried (MgSO4), filtered, and evaporated, and the residue was
purified by flash column chromatography (eluent: hexane/EtOAc, 1:1) to give a red oil (1.77 g, 58%),
TLC (CHCl3/Et2O 2:1): Rf = 0.35. IR: 2977, 2932, 1645 cm−1, and all other spectral data were identical to
those of one of the compounds obtained with method A.

3.2.5. Tetraethyl ((1-oxyl-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrole-3,4-diyl)bis(methylene))
bisphosphonate Radical (4)

Purified by flash column chromatography (eluent: CHCl3/Et2O, 2:1) to give a brownish powder
(3.1 g, 70%); mp 85–87 ◦C; TLC (CHCl3/MeOH 29:1): Rf = 0.33. 31P-NMR (DMSO-d6 + (PhNH)2) δ:27.4.
13C-NMR ((DMSO-d6 + (PhNH)2) δ: 16.7 (4C), 23.6 (d, J = 133.0 Hz, 2C), 24.7 (4C), 61.7 (4C), 69.4 (2C),
132.7 (2C). 1H-NMR (DMSO-d6 + (PhNH)2) δ: 1.11 (s, 12H), 1.23 (t, J = 6.8 Hz, 12H), 2.92 (d, J = 20.0 Hz,
4H), 4.01 (quint, J = 6.5 Hz, 8H). IR: 2982, 2933, 2920 cm−1. MS (EI): m/z (%): 440 (M+, 10), 410 (38),
395 (28), 273 (77), 152 (8), 135 (100)

3.3. Diethyl (1-oxyl-2,2,6,6-tetramethyl-1,2,3,6-tetrahydropyridin-4-yl)phosphate Radical (7)

In a well-ventilated hood, a mixture of compound 6 (2.49 g, 10.0 mmol) and triethylphosphite
(2.5 g, 15.0 mmol) was stirred in an open vessel at 60 ◦C in an oil bath. The ethylbromide byproduct
was allowed to escape. The reaction mixture was monitored by TLC, and after ~ 2 h, the temperature
was increased to 100 ◦C for ~ 1 h. The mixture was allowed to cool spontaneously with stirring.
After cooling, the resulted mixture was purified by flash column chromatography to give the Perkow
product, which was purified by flash column chromatography (hexane/EtOAc, 1:1) to give a red oil
(1.05 g, 34%); TLC (CHCl3/Et2O, 2:1): Rf = 0.50. 31P-NMR (CDCl3 + (PhNH)2) δ: −6.2. 13C-NMR
((CDCl3 + (PhNH)2) δ: 16.2 (d, J = 6.5 Hz, 2C), 25.3 (2C), 26.7 (2C), 42.1 (d, J = 3.8 Hz, 1C), 58.4 (1C),
59.1 (1C), 64.3 (d, J = 6.1 Hz, 2C), 118.0 (d, J = 5.4 Hz, 1C), 142.3 (d, J = 8.8 Hz, 1C). 1H-NMR (DMSO-d6

+ (PhNH)2) δ: 1.30 (s, 6H), 1.35 (s, 6H), 1.43 (t, J = 7.1 Hz, 6H), 2.38 (s, 2H), 4.23 (quint, J = 7.1 Hz, 2H),
5.43 (d, J = 1.8 Hz, 1H). IR: 2980, 2935, 2911, 1696 cm−1. MS (EI): m/z (%): 306 (M+, 8), 276(10), 155 (70)
107 (100).
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3.4. General Procedure for Pudovik α-hydroxyphosphonate Synthesis from Paramagnetic Aldehydes and
Ketones 8a, 8b, 10a–c

To a stirred mixture of compound 5a or 5b or 9a or 9b or 9c and diethyl phosphite (1.38 g,
10.0 mmol), K3PO4 (106 mg, 0.5 mmol) was added, and the stirring continued at room temperature
for 1 h. Subsequently, 10% aq. Na2CO3 (50 mL) was added, followed by extraction with EtOAc
(2 × 50 mL). The combined organic phases were dried (MgSO4), filtered, and evaporated, and
the residue was purified by flash column chromatography (eluent: hexane/EtOAc, 1:1) to give the
α-hydroxy-phosphonate products.

3.4.1. Diethyl (3-hydroxy-1-oxyl-2,2,5,5-tetramethylpyrrolidin-3-yl)phosphonate Radical (8a)

Purified by flash column chromatography (eluent: CHCl3/Et2O, 2:1) to give a yellow powder
(2.7 g, 92%); mp 100–103 ◦C; TLC (CHCl3/MeOH, 56:4): Rf = 0.51. 31P-NMR (DMSO-d6 (PhNH)2)
δ: 23.2. 13C-NMR ((DMSO-d6 + (PhNH)2) δ: 17.0 (d, J = 5.2 Hz, 2C), 20.0 (1C), 22.1 (1C), 27.0 (1C),
31.1 (1C), 46.5 (d, J = 4.0 Hz, 1C), 61.9 (d, J = 8.2 Hz, 1C), 62.6 (d, J = 5.6 Hz, 1C), 77.8 (1C), 79.1 (1C).
1H-NMR (DMSO-d6 + (PhNH)2) δ: 1.11–1.25 (m, 18H), 1.85 (d, J = 13.4 Hz, 1H), 2.35 (t, J = 11.9 Hz,
1H), 4.04–4.11 (m, 4H). IR: 3258, 2982, 2938, 2910 cm−1. MS (EI): m/z (%): 294 (M+, 12), 264(2), 249 (5)
180 (100), 138 (78).

3.4.2. Diethyl (4-hydroxy-1-oxyl-2,2,6,6-tetramethylpiperidin-4-yl)phosphonate Radical (8b)

Purified by flash column chromatography (eluent: CHCl3/Et2O, 2:1) to give red crystals (2.77 g,
90%); mp 115–117 ◦C; TLC (CHCl3/MeOH, 56:4): Rf = 0.53. 31P-NMR (CDCl3 (PhNH)2) δ: 24.4.
13C-NMR ((CDCl3 + (PhNH)2) δ: 16.6 (d, J = 5.1 Hz, 2C), 21.0 (4 C), 33.3 (2C), 43.1 (2C), 57.9 (d,
J = 14.5 Hz, 1C), 63.1 (d, J = 7.5 Hz), 71.3 (1C), 72.6 (1C). 1H-NMR (CDCl3 + (PhNH)2) δ: 1.28 (s, 6H),
1.40 (t, J = 7 Hz, 6H), 1.48 (s, 6H), 2.02 (d, J = 4.01 Hz, 4H), 3.11 (bs, 1H), 4.23 (quint, J = 7.1 Hz, 4H),
4.69 (bs, 1H). IR: 3198, 2993, 2973, 2929 cm−1. MS (EI): m/z (%): 308 (M+, 13), 259(10), 222 (38), 194 (16),
156 (18), 138 (100).

3.4.3. Diethyl (hydroxy(1-oxyl-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-3-yl)methyl)phosphonate
Radical (10a)

Purified by flash column chromatography (eluent: hexane/EtOAc, 1:1) to give an orange oil (2.61 g,
85%); TLC (CHCl3/MeOH, 58:2): Rf = 0.33. 31P-NMR (CDCl3 (PhNH)2) δ: 21.8. 13C-NMR ((CDCl3
+ (PhNH)2) δ: 16.5 (t, J = 5.1 Hz, 2C), 24.5. (1C), 24.9 (1C), 25.4 (1C), 25.5 (1C), 63.1 (d, J = 185.0 Hz,
1C), 63.9 (d, J = 164.0 Hz, 2C), 68.0 (1C), 71.2 (d, J = 9.4 Hz, 1C), 135.1 (d, J = 6.2 Hz, 1C), 140.3 (1C).
1H-NMR (CDCl3 + (PhNH)2) δ: 1.34–1.42 (m, 18H), 4.26 (q, J = 7.0 Hz, 4H), 4.35 (d, J = 10.8 Hz, 1H),
6.13 (s, 1H). IR: 3286, 2977, 2931, 1645 cm−1. MS (EI): m/z (%): 306 (M+, 7), 276 (9), 154 (26), 138 (100).

3.4.4. Diethyl (hydroxyl(4-bromo-1-oxyl-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-3-yl)methyl)
phosphonate Radical (10b)

Purified by flash column chromatography (eluent: hexane/EtOAc, 1:1) to give an orange powder
(2.98 g, 78%); mp 107–109 ◦C; TLC (CHCl3/MeOH, 58:2): Rf = 0.34. 31P-NMR (CDCl3 (PhNH)2) δ:
20.7. 13C-NMR ((CDCl3 + (PhNH)2) δ: 16.5 (d, J = 5.7 Hz, 2C), 23.7 (1C), 24.5 (1C) 24.9 (1C), 25.1 (1C),
63.0 (d, J = 7.2 Hz, 1C) 63.6 (d, J = 7.2 Hz, 1C), 67.5 (d, J = 162.1 Hz, 1C), 70.8 (1C), 71.5 (1C), 127.1 (d,
J = 12.6 Hz, 1C), 137.5 (1C). 1H-NMR (CDCl3 + (PhNH)2) δ: 1.33–1.47 (m, 18H), 4.18-4.30 (m, 4H), 4.94
(d, J = 16.7 Hz, 1H). IR: 3263, 2980, 2934, 2908, 1631 cm−1. MS (EI): m/z (%): 386/384 (M+, 16/16), 356/354
(4/4), 275 (38), 138 (100).

3.4.5. Diethyl (hydroxy(1-oxyl-2,2,6,6-tetramethyl-1,2,3,6-tetrahydropyridin-4-yl)methyl)-phosphonate
Radical (10c)

Purified by flash column chromatography (eluent: hexane/EtOAc, 1:1) to give a red oil (2.56 g,
80%); TLC (CHCl3/MeOH, 58:2): Rf = 0.38. 31P-NMR (CDCl3 (PhNH)2) δ: 22.0. 13C-NMR ((CDCl3 +
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(PhNH)2) δ: 16.5 (d, J = 5.7 Hz, 2C), 39.8. (1 C), 57.7 (1C), 59.8 (1C), 62.8 (d, J = 7.4 Hz, 1C) 63.1 (d,
J = 7 Hz, 1C), 71.3 (d, J = 158.1 Hz, 1C), 127.4 (d, J = 4.3 Hz, 1C), 132.8 (d, J = 11.5 Hz, 1C). 1H-NMR
(CDCl3 + (PhNH)2) δ: 1.27 (s, 6H), 1.33 (s, 6H), 1.34 (s, 6H), 1.38 (t, J = 7 Hz, 3H), 2.30 (dq, J1= 2.5 Hz,
J2=9.9 Hz, 2H), 4.18–4.27 (m, 4H), 4.38 (d, J = 10 Hz, 1H), 5.67 (d, J = 4.6 Hz, 1H). IR: 3290, 2978, 2933,
1649 cm−1. MS (EI): m/z (%): 320 (M+, 5), 290 (7), 272 (8), 182 (10), 152 (100).

3.5. Diethyl (1-oxyl-2,2,6,6-tetramethyl-1,2,3,6-tetrahydropyridin-4-yl)phosphonate Radical (11)

To a solution of compound 8b (1.54 g, 5.0 mmol) in anhydrous pyridine (10 mL), POCl3 (1.0 mL,
10.6 mmol) was added dropwise at 0 ◦C, and the mixture was allowed to remain at r.t for 48 h.
The mixture was poured onto 100 g crushed ice, extracted with CH2Cl2 (3 × 15 mL), and the combined
organic phase was washed with aq. 1N HCl (2 × 40 mL). The organic phase was dried (MgSO4), filtered,
and evaporated, and the residue was purified by flash column chromatography (eluent: hexane/EtOAc,
2:1) to give a red powder (420 mg, 29%); mp 53–55 ◦C; TLC (CHCl3/Et2O, 2:1): Rf = 0.44. 31P-NMR
(CDCl3 (PhNH)2) δ: 19.3. 13C-NMR ((CDCl3 + (PhNH)2) δ: 16.4 (d, J = 6.1 Hz, 2C), 24.6 (2C), 25.5 (2C),
39.1. (d, J = 7.3 Hz, 1C), 57.3 (d, J = 4.9 Hz, 1C), 60.5 (d, J = 17.8 Hz, 1C), 61.7 (d, J = 5.4 Hz, 1C), 120.5 (d,
J = 182.6 Hz, 1C), 149.3 (d, J = 7.6 Hz, 1C). 1H-NMR (CDCl3 + (PhNH)2) δ: 1.27 (s, 6H), 1.38–1.41 (m,
12H), 2.31 (d, J = 6.1 Hz, 2H), 4.10-4.2 (m, 4H), 6.6 (d, J = 21.5 Hz, 1H). IR: 2979, 2932, 2903, 1658 cm−1.
MS (EI): m/z (%): 320 (M+, 5), 290 (7), 272 (8), 182 (10), 152 (100).

3.6. Diethyl (1-oxyl-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrole-3-carbonyl)phosphonate Radical (12)

To a stirred solution of compound 10a (1.53 g, 5.0 mmol) in anhydr. CH2Cl2 (DCM) (10 mL),
Dess–Martin periodinane (6.36 g, 15.0 mmol, 3 eq.) was added in 3 portions at 0 ◦C over a period
of 10 min. The stirring was continued for 1 h at r.t. The resulting mixture was filtered on a sintered
glass funnel. The filtrate was diluted with DCM (25 mL) and washed with 10% aq NaHCO3 solution
(25 mL) and 10% aq Na2S2O3 (25 mL). The organic phase was separated, dried (MgSO4), filtered, and
evaporated, and the residue was purified by flash column chromatography (eluent: hexane/EtOAc,
1:1) to give a red powder (950 mg, 62%); mp 35–37 ◦C; TLC (CHCl3/Et2O, 2:1): Rf = 0.56, 31P-NMR
(CDCl3 (PhNH)2) δ: −2.9. 13C-NMR ((CDCl3 + (PhNH)2) δ: 16.4 (d, J = 5.7 Hz, 2C), 24.3. (2 C), 24.7
(2C) 63.9 (d, J = 7.3 Hz, 2C), 69.0 (1C), 70.3 (d, J = 10.8 Hz, 1C), 143.2 (d, J = 64.0 Hz, 1C), 155.2 (1C), 196
(d, J = 174.0 Hz, 1C). 1H-NMR (CDCl3 + (PhNH)2) δ: 1.42-1.46 (m, 18H), 4.28 (quint, J = 7.24 Hz, 4H).
IR: 3067, 2976, 2931, 1637, 1601 cm−1. MS (EI): m/z (%): 304 (M+, 4), 274 (6), 246 (3), 137 (49), 109 (100).

3.7. Diethyl (azido (1-oxyl-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-3-yl)methyl)phosphonate Radical (13)

To a stirred suspension of Ph3P (3.14 g, 12 mmol) in anhydrous DCM (10 mL), a solution of DEAD
5.2 mL (2.09 g, 12.0 mmol in 40% toluene) diluted anhydr. DCM (5 mL) was added dropwise at −78 ◦C
under N2. A 1.85 M solution of HN3 (6.7 mL, 12.5 mmol) in benzene was added dropwise, and the
stirring was continued for 5 min at 0 ◦C followed by dropwise addition of a solution of compound
10a (3.06 g, 10.0 mmol) in anhydr. DCM (10 mL). After the addition was completed, the mixture was
held for 30 min at 0 ◦C, and stirring was continued for 24 h at r.t. The resulted mixture was filtered
on a sintered glass funnel, and solvents were evaporated. The residue was purified by flash column
chromatography (eluent: hexane/EtOAc, 2:1) to give a yellow powder (1.97 g, 60%); mp 50–52 ◦C; TLC
(CHCl3/Et2O, 2:1): Rf = 0.60, 31P-NMR (CDCl3 (PhNH)2) δ: 15.6. 13C-NMR ((CDCl3 + (PhNH)2) δ: 16.4
(t, J = 5.7 Hz, 2C), 19.7 (1 C), 22.4 (1C) 25.0 (1C), 30.9 (1C), 61.7 (d, J = 5.6 Hz, 1C), 62.0 (d, J = 5.6 Hz, 1C),
66.1 (1C), 66.3 (1C), 66.5 (d, J = 6.4 Hz, 1c), 114.1 (d, J = 191 Hz, 1C), 167.0 (d, J = 5.4 Hz, 1C). 1H-NMR
(CDCl3 + (PhNH)2) δ: 1.38–1.43 (m, 18H), 4.12–4.28 (m, 4H), 4.98 (s, 1H), 5.81 (d, J = 13.1 Hz). IR: 2981,
2935, 2096, 1635 cm−1. HRMS (ESI) m/z [M+H]+ calc. for C13H25N4O4P: 332.1613; found: 332.1609.

3.8. Diethyl ((1-oxl-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-3-yl)iodomethyl)phosphonate Radical (14)

To a stirred suspension of compound 10a (3.06 g, 10.0 mmol) and Ph3P (3.14 g, 12.0 mmol) in
benzene (20 mL), a solution of DEAD (2.09 g, 12.0 mmol in 40% toluene) diluted with benzene (5 mL)
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was added dropwise at 0 ◦C under N2. After 10 min to complete the addition, a solution of CH3I
(0.7 mL, 12.0 mmol) in benzene (5 mL) was added dropwise. After the addition was completed, the
mixture was held for 30 min at 0 ◦C, and stirring was continued for 24 h at r.t. The solvent was
evaporated, and the residue was partitioned between water (20 mL) and EtOAc (50 mL). The organic
phase was separated, dried (MgSO4), filtered, and evaporated, and the crude was purified by flash
column chromatography (eluent: hexane/EtOAc, 1:1) to give a yellow semi-solid (2.0 g, 48%); TLC
(CHCl3/Et2O, 2:1): Rf = 0.40, IR: 3040, 2990 1528. HRMS (ESI) m/z [M]+ calc. for C13H25INO4P: 417.0566;
found: 417.1311; [M-HI]+ calc. for C13H24NO4P: 289.1443; found 289.1434.

3.9. 3-Bromo-1-methoxy-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrole (16)

To a stirred solution of 15 (1.1 g, 5.0 mmol) and FeSO4·7H2O (6.9 g, 25.0 mmol) in DMSO (30 mL)
at 0 ◦C, 30% aq H2O2 (5 mL) was added dropwise over 2 h. The reaction was monitored by TLC. Upon
consumption of the starting material, distilled H2O (50 mL) was added, and the aqueous solution
was extracted with Et2O (3 × 30 mL). The combined organic phases were dried (MgSO4), filtered, and
evaporated, and the crude product was purified by flash column chromatography (hexane–Et2O, 2:1)
to give a colorless oil (700 mg, 60%); TLC (hexane/Et2O, 9:1): Rf = 0.42. 13C-NMR (CDCl3) δ: 22.3 (2C)
28.6 (2C), 65.0 (1C) 68.9 (1C), 71.7 (1C), 125.6 (1C), 134.0 (1C). 1H-NMR (CDCl3) δ: 1.27 (s, 6H), 1.29 (s,
6H), 3.69 (s, 3H), 5.69 (s, 1H). IR: 2921, 2852, 1642. MS (EI): m/z (%): 235/233 (M+, 3/3), 220/218 (33/33),
139 (100), 108 (25).

3.10. Diethyl (1-oxyl-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-3-yl)phosphonate Radical (17)

To a stirred solution of compound 16 (470 mg, 2.0 mmol) in anhydrous THF (10 mL), n-BuLi
solution in hexane (0.8 mL, 2.0 mmol, 2.5 M) diluted with anhydr. THF (10 mL) was added dropwise
at −78 ◦C under N2.. After the addition was completed, the mixture was continuously stirred for 1 h at
−78 ◦C. A solution of diethylchlorophosphate (345 mg, 2.0 mmol) in anhydr. THF (10 mL) was added
dropwise. After stirring at this temperature for 30 min, the reaction mixture was allowed to warm to
r.t. with continuous stirring for 2 h. A sat. aq. NH4Cl solution (5 mL) was added, the mixture was
extracted with CH2Cl2 (2 × 10 mL), and the combined organic phase was dried (MgSO4), filtered and
evaporated. The crude residue (480 mg, 1.65 mmol) was dissolved in anhydr. DCM (10 mL), and
3-chloroperbenzoic acid (~60%, 1.18 g, 4.1 mmol, 2.5 eq) was added in 2–3 portions at 0 ◦C over a
period of 10 min. Stirring was continued for an additional 1 h at ambient temperature. The solution
was washed with 10% aq. Na2CO3 solution (2 × 20 mL), and the organic phase was separated, dried
(MgSO4), filtered and evaporated. The residue was purified by flash column (eluent: hexane/EtOAc,
1:1) to give a yellow powder (140 mg, 50%); mp 60–62 ◦C; TLC (CHCl3/MeOH, 2:1): Rf = 0.50. 31P-NMR
(CDCl3 (PhNH)2) δ: 14.6. 13C-NMR ((CDCl3 + (PhNH)2) δ: 16.3 (d, J = 6.3 Hz, 2C), 25.0 (2C), 25.3 (2C),
61.9 (d, J = 5.6 Hz, 2C), 68.7 (d, J = 15.6 Hz, 1C), 71.3 (d, J = 15.6 Hz, 1C), 133.8 (d, J = 4.0 Hz, 1C), 150.6
(d, J = 8.1 Hz, 1C). 1H-NMR (CDCl3 + (PhNH)2) δ: 1.33 (s, 6H), 1.40 (t, J = 7.5 Hz, 6H), 1.44 (s, 6H)
4.13–4.21 (m, 4H), 6.57 (d, J = 13.5 Hz, 1H). IR: 3079, 2977, 2931, 2866, 1609 cm−1. MS (EI): m/z (%): 276
(M+, 15), 246 (65), 231 (100), 203 (5), 175 (44), 107 (78).

3.11. Diethyl ((1-oxyl-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-3-yl)ethynyl)phosphonate Radical (19)

To a stirred solution of compound 18 (492 mg, 3.0 mmol) in anhydr. THF (10 mL), LiHMDS
(3.0 mL 3.0 mmol, 1 M THF solution) was added dropwise at −78 ◦C under N2.. After the addition was
completed, the mixture was stirred for 1 h at −78 ◦C. A solution of diethylchlorophosphate (517 mg,
3.0 mmol) in anhydr. THF (10 mL) was added dropwise, and the temperature was allowed to warm
to r.t. spontaneously with stirring for 2 h. The reaction mixture was quenched with sat. NH4Cl
solution (5 mL). The mixture was diluted with EtOAc (20 mL), the organic phase was separated, the
aq. phase was extracted with EtOAc (10 mL), and the combined phases were dried (MgSO4), filtered
and evaporated. The residue was subjected to flash column chromatography purification (eluent:
hexane/EtOAc, 1:1) to offer a yellow solid (470 mg, 52%); mp 50–52 ◦C; TLC (CHCl3/Et2O, 2:1): Rf = 0.43.
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31P-NMR (CDCl3 (PhNH)2) δ: –6.4. 13C-NMR ((CDCl3 + (PhNH)2) δ: 16.1 (d, J = 6.9 Hz, 2C), 24.9 (2C),
25.2 (2C), 63.2 (d, J = 5.5 Hz, 2C), 69.2 (1C), 71.3 (1C), 81.7 (d, J = 297.8 Hz, 1C), 93.8 (d, J = 52.7 Hz, 1C),
125.6 (d, J = 3.6 Hz, 1C), 146.2 (d, J = 3.0 Hz, 1C). 1H-NMR (CDCl3 + (PhNH)2) δ: 1.32 (s, 6H), 1.38 (s,
6H) 1.45 (t, J = 7.1 Hz, 6H), 4.22–4.28 (m, 4H), 6.22 (d, J = 0.7 Hz, 1H). IR: 3073, 2976, 2931, 2908, 2866,
2171, 1612 cm−1. MS (EI): m/z (%): 300 (M+, 14), 285 (33), 270 (20), 241 (7), 132 (100), 117 (52).

3.12. General Procedure for HWE Olefination with 2a Nitroxide Phosphonate: Compounds 20a–d

To a stirred suspension of oil-free NaH (120 mg, 5.0 mmol) in anhydr. toluene (10 mL), a solution
of compound 2a (1.45 g, 5.0 mmol) in anhydr. toluene (5 mL) was added dropwise at 0 ◦C under N2.
After 30 min, a solution of the appropriate aldehyde (5.0 mmol) in anhydr. toluene (10 mL) was added
dropwise at 0 ◦C. The mixture was refluxed for 3 h and allowed to stand overnight at r.t. The solvent
was evaporated, and the residue was partitioned between sat. aq. NH4Cl solution (25 mL) and EtOAc
(50 mL). The organic phase was separated, dried (MgSO4), filtered, and evaporated, and the crude
product was purified by flash column chromatography to yield the olefinated nitroxides.

3.12.1. (E)-3-(Dodec-1-en-1-yl)-1-oxyl-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrole Radical (20a)

Purified by flash column chromatography (eluent: hexane/Et2O, 2:1) to give a brown oil (950 mg,
62%); TLC (hexane/Et2O, 5:1): Rf = 0.56. 13C-NMR ((CDCl3 + (PhNH)2) δ: 24.9 (2C), 25.0 (2C) 25.7 (1C),
29.0 (1C), 29.1 (1C), 29.2 (1C), 29.3 (1C)29.4 (1C), 29.5 (1C), 33.3 (1C), 33.8 (1C), 65.4 (1C), 67.4 (1C), 114.2
(1C), 130.8 (1C), 131.25 (1C), 139.1 (1C). 139.2 (1C). 1H-NMR (CDCl3 + (PhNH)2) δ: 1.33–1.37 (m, 33H),
2.13 (d, J = 6.1 Hz, 2H) 5.02 (d, J =10.0 Hz, 1H), 5.08 (d, J = 17 Hz, 1H), 5.88–5.95 (m, 1H). IR: 3075, 2975,
2924, 2853, 1640 cm−1. MS (EI): m/z (%): 306 (M+, 2), 281 (7), 207 (28), 149 (25), 55 (100).

3.12.2. (E)-1-Oxyl-3-styryl-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrole Radical (20b)

Purified by flash column chromatography (eluent: hexane/Et2O, 2:1) to give a to give an orange
powder; mp 67–70 ◦C (730 mg, 60%); TLC (hexane/Et2O, 2:1): Rf = 0.53. 13C-NMR ((CDCl3 + (PhNH)2)
δ: 25.4 (2C), 26.0 (2C), 67.6 (1C), 70.3 (1C), 122.4 (1C), 126.4 (2C), 127.7 (1C), 128.8 (2C), 129.9 (1C), 131.9
(1C), 137.4 (1C), 142.7 (1C). 1H-NMR (CDCl3 + (PhNH)2) δ: 1.45 (s, 6H), 1.56 (s, 6H) 5.86 (s, 1H), 6.7 (d,
J = 16.5 Hz, 1H), 7.36-7.47 (m, 3H). 3H are overlapped with peaks of diphenyl hydrazine. IR: 3023,
2972, 2927, 2865, 1634, 1596 cm−1. MS (EI): m/z (%): 242 (M+, 12), 227 (22), 212 (100), 197 (71), 91 (28).

3.12.3. (E)-1-Oxyl-3-(2-(pyridin-3-yl)vinyl)-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrole Radical (20c)

Purified by flash column chromatography (eluent: hexane/Et2O, 2:1) to give an orange powder;
mp 90–93 ◦C (680 mg, 56%); TLC (CHCl3/Et2O, 2:1): Rf = 0.33. 13C-NMR ((CDCl3 + (PhNH)2) δ: 25.2
(2C), 25.7 (2C), 67.5 (1C), 70.0 (1C), 123.5 (1C), 124.5 (1C), 126.0 (1C), 132.5 (1C), 133.0 (1C), 133.3 (1C),
142.4 (1C), 148.4 (1C), 148.5 (1C). 1H-NMR (CDCl3 + (PhNH)2) δ: 1.37 (s, 6H), 1.48 (s, 6H) 5.86 (s, 1H),
6.68 (d, J = 16.5 Hz, 1H), 6.82 (d, J = 16.5 Hz, 1H), 7.76 (d, J = 7.8 Hz, 1H), 8.54 (d, J = 4.4 Hz, 1H),
8.71 (s, 1H). 1H is overlapped with diphenyl hydrazine peaks. IR: 3042, 3017, 2974, 2928, 2868, 1633,
1566 cm−1. MS (EI): m/z (%): 243 (M+, 20), 228 (42), 213 (100), 198 (75), 125 (37), 93 (61).

3.12.4. (E)-(1-Oxyl-2,2,5,5-tetramethyl-3-(2-(thiophen-2-yl)vinyl)-2,5-dihydro-1H-pyrrol Radical (20d)

Purified by flash column chromatography (eluent: hexane/Et2O, 2:1) to give brown crystals; mp
75–77 ◦C (635 mg, 51%); TLC (CHCl3/Et2O, 2:1): Rf = 0.5. 13C-NMR ((CDCl3 + (PhNH)2) δ: 25.3 (2C),
25.9 (2C), 67.5 (1C), 70.0 (1C), 122.1 (1C), 124.4 (1C), 125.9 (1C), 127.6 (1C), 132.1 (1C), 142.4 (1C), 143.0
(1C). 1H-NMR (CDCl3 + (PhNH)2) δ: 1.40 (s, 6H), 1.51 (s, 6H) 5.81 (s, 1H), 6.52 (d, J = 16.2 Hz, 1H), 7.03
(d, J = 16.2 Hz, 1H), 7.08–7.26 (m, 3H). IR: 3101, 3059, 3037, 2979, 2930, 2862. 1624 cm−1. MS (EI): m/z
(%): 248 (M+, 16), 233 (24), 218 (100), 203 (59), 175 (48), 44 (73).
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3.13. (R,S)-1-Oxyl-3-phenethyl-2,2,5,5-tetramethylpyrrolidine Radical (21)

A solution of compound 20b (485 mg, 2.0 mmol) in anhydr. EtOH (75 mL) was subjected to
continuous flow hydrogenation by a H-Cube Mini Plus apparatus with a 10% Pd/C catalyst cartridge.
After consumption of the starting material (monitored by TLC and the content of the receiving flask),
the solvent was evaporated, the residue was dissolved in CHCl3 (25 mL), MnO2 (17.4 mg, 0.2 mmol)
was added, and the mixture was bubbled with O2 for 30 min., followed by filtration through a Celite
pad. After rinsing the pad with CHCl3 (10 mL), the filtrate was evaporated and the crude product was
purified by flash column chromatography (eluent: hexane/Et2O, 2:1) to give an orange powder; mp
60–62 ◦C (367 mg, 74%); TLC (hexane/Et2O, 2:1): Rf = 0.35. 13C-NMR ((CDCl3 + (PhNH)2) δ: 17.2 (1C),
26.6 (1C), 27.2 (1C), 29.9 (1C), 32.4(1C), 34.7(1C), 43.0 (1C), 43.1 (1C), 61.4 (1C), 66.5(1C), 125.9 (1C),
128.4 (2C), 128.5 (2C), 142.6 (1C). 1H-NMR (CDCl3 + (PhNH)2) δ: 1.10 (s, 3H), 1.29 (s, 3H), 1.33 (s, 3H),
1.36 (s, 3H), 1.54–1.59 (m, 2H), 1.86–1.89 m (2H), 1.98–2.02 (m 1H), 2.61–2.67 (m, 1H), 2.77–2.82 (m, 1H),
7.42–7.45 (m, 3H). 2H are overlapped with peaks of with diphenyl hydrazine. IR: 3066, 3025, 2965,
2917, 2879, 2857, 1602 cm−1. MS (EI): m/z (%): 246 (M+, 43), 216 (26), 117 (19), 91 (100).

3.14. 6-Diphenyl-2-Oxyl-1,1,3,3-tetramethylisoindoline Radical (22)

To a suspension of oil-free NaH (144 mg, 6.0 mmol) in anhydrous toluene (10 mL), a solution of
compound 4 (1.32 g, 3.0 mmol) in anhydrous toluene (10 mL) was added dropwise at 0 ◦C under N2.
After 30 min, a solution of freshly distilled benzaldehyde (848 mg, 8.0 mmol) in toluene (10 mL) was
added dropwise at 0 ◦C. The mixture was refluxed for 3 h. After cooling, sat. aq. NH4Cl solution
(5 mL) and Et2O (30 mL) were added to the mixture and stirred for 10 min. The organic phase was
separated, dried (MgSO4), filtered, and evaporated. The residue was dissolved in toluene (20 mL),
followed by the addition of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ, 681 mg, 3.0 mmol), and
the mixture was refluxed with stirring for 2 h. After cooling, the solvent was evaporated, and the
residue was partitioned between 10% aq. Na2CO3 solution (25 mL) and EtOAc (50 mL). The organic
phase was separated, dried (MgSO4), filtered, and evaporated, and the crude product was purified
by flash column chromatography (eluent: hexane/Et2O, 2:1) to give a beige powder; mp 213–216 ◦C
(500 mg, 48%); TLC (hexane/Et2O, 2:1): Rf = 0.40. 13C-NMR of O-acetyl ((CDCl3 + (PhNH)2) δ: 19.3
(1C), 25.3 (1C), 28.9 (4C), 68.3 (2C), 123.7 (2C), 126.5 (2C) 127.8 (4C), 129.9 (2C), 140.4 (2C), 141.6 (2C),
143.3 (2C), 171.7 (2C). 1H-NMR of O-acetyl (CDCl3 + (PhNH)2) δ: 1.53 (s, 6H), 1.59 (s, 6H) 2.28 (s, 3H),
7.17–7.28 (m, 12H). IR: 3057, 3026, 2979, 2925, 2853, 1601 cm−1. MS (EI): m/z (%): 342 (M+, 1), 312 (100),
297 (21), 141 (10).

3.15. ABTS Scavenging Assay

The measurements were collected on a Specord 40 instrument. ABTS was dissolved in PBS buffer
(0.136 M NaCl, 0.0027 M KCl, 0.01 M Na2HPO4, 0.00176 M KH2PO4) to a 7.0 mM concentration. ABTS
radical cations (ABTS•+) were produced by reacting the ABTS stock solution with potassium persulfate
at a final concentration of 2.45 mM and allowing the mixture to stand in the dark at room temperature
for 16 h before use. For study of the compounds, the ABTS•+ solution was diluted with water to an
absorbance of 0.70(±0.02) at 734 nm and equilibrated at 37 ◦C. Stock solutions of new compounds and
Trolox in dimethylsulfoxide (DMSO) were added to the diluted ABTS•+solution in final concentrations
of 12.5, 10, 7.5, and 2.5 µM. After addition, the mixtures were incubated for 6 min at 37 ◦C before
measuring their absorbance at 734 nm. All determinations were repeated three times. The percentage
inhibition of absorbance at 734 nm is calculated with the usual formula: (A0—Aantioxidant)/A0, where
A0 is the absorbance of the diluted ABTS•+ solution. The concentration–response curves of new
compounds were compared with the curve of Trolox.
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4. Conclusions

In conclusion, the Arbusov, Pudovik, Perkow and HWE reactions were adopted to access
paramagnetic allylic-, vinyl-, acetylene- and α-hydroxyphosphonates or vinyl phosphates, giving the
desired products with moderate to good yields. α-hydroxyphosphonates could be further transformed
by oxidation, substitution or elimination reactions. We demonstrated that allylic phosphonates are
good building blocks in olefination reactions for the introduction of pyrroline nitroxide rings in
various scaffolds. Additionally, paramagnetic saturated α-hydroxyphosphonates exhibited remarkable
antioxidant (proton and electron donor) activity against the ABTS•+ radical. Further synthetic,
biological and biophysical applications of the newly synthesized nitroxide phosphonates are in progress.

Supplementary Materials: The following are available online, 31P-NMR, 1H-NMR and 13C-NMR spectra of
reduced in situ compounds 2a, 2b, 2c, 4, 7, 8a, 8b, 8c, 10a, 10b, 10c, 11, 12, 13, 16, 17, 19, 20a, 20b, 20c, 20d, 21, 22
and structure of tempol and trolox.
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