Deboronation-Induced Ratiometric Emission Variations of Terphenyl-

Based Closo-o-Carboranyl Compounds: Applications to Fluoride-Sensing

Hyunhee So,^{1,†} Min Sik Mun,^{1,†} Mingi Kim,^{1,†} Jea ho Kim,¹ Ji Hye Lee,¹ Hyonseok Hwang,¹ Duk Keun An,^{1,*} and Kang Mun Lee^{1,*}

¹ Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea; dkan@kangwon.ac.kr (D. K. A.); kangmunlee@kangwon.ac.kr (K.M.L.)

 \dagger The first, second and third authors contributed equally to this work.

Figure S1. ¹H (top) and ¹³C (bottom) NMR spectra of DT2 in CD_2Cl_2 (* from residual CH_2Cl_2 in CD_2Cl_2).

Figure S2. ¹H (top) and ¹³C (bottom) NMR spectra of PT2 in CD_2Cl_2 (* from residual CH_2Cl_2 in CD_2Cl_2).

Figure S3. ¹H (top) and ¹³C (bottom) NMR spectra of DT3 in CD_2Cl_2 (* from residual CH_2Cl_2 in CD_2Cl_2).

Figure S4. ¹H (top) and ¹³C (bottom) NMR spectra of PT3 in CD_2Cl_2 (* from residual CH_2Cl_2 in CD_2Cl_2).

Figure S5. ¹H{¹¹B} (top) and ¹³C (bottom) NMR spectra of *closo*-**DT** in THF- d_8 (* from residual THF in THF- d_8).

Figure S6. ¹¹B $\{^{1}H\}$ NMR spectra of *closo*-DT in THF-*d*₈.

Figure S7. ¹H{¹¹B} (top) and ¹³C (bottom) NMR spectra of *closo*-**PT** in THF- d_8 (* from residual THF in THF- d_8).

Figure S8. ¹¹B $\{^{1}H\}$ NMR spectra of PT in THF- d_8 .

Figure S9. ¹H{¹¹B} (top) and ¹³C (bottom) NMR spectra of *nido*-**DT** = (*nido*-type of *closo*-**DT**)·(NBu₄)₂ in CD₂Cl₂ (* from residual CH₂Cl₂ in CD₂Cl₂).

Figure S10. ¹¹B $\{^{1}H\}$ NMR spectra of *nido*-DT in CD₂Cl₂.

Figure S11. ${}^{1}H{}^{11}B{}$ (top) and ${}^{13}C$ (bottom) NMR spectra of *nido*-PT = (*nido*-type of *closo*-PT)·(NBu₄)₂ in CD₂Cl₂ (* from residual CH₂Cl₂ in CD₂Cl₂).

Figure S12. ¹¹B $\{^{1}H\}$ NMR spectra of *nido*-PT in CD₂Cl₂.

Figure S13. Excitation graphs in THF (30 µM) of *closo*-DT and *closo*-PT.

Figure S14. PL spectra of (a) *closo*-**DT** and (b) *closo*-**PT** in various organic solvents (30 μ M, $\lambda_{ex} = 292$ nm for *closo*-**DT** and 345 nm for *closo*-**PT**).

Figure S15. The selected frontier orbitals of *closo*-**DT** from B3LYP calculations (Isovalue = 0.04 a.u.) at the ground state (S₀) and first singlet excited state (S₁) optimized geometries in THF.

state	λ_{calc} (/nm)	$f_{ ext{calc}}$	Major contribution						
			S_0						
1	285.70	1.2315	HOMO \rightarrow LUMO (98.0%)						
2	274.14	0.1986	HOMO-1 \rightarrow LUMO (85.6%)						
			HOMO \rightarrow LUMO+5 (8.5%)						
3	264.19	0.0000	HOMO \rightarrow LUMO+1 (96.3%)						
4	255.75	0.0000	HOMO-3 \rightarrow LUMO (23.1%)						
			HOMO \rightarrow LUMO+3 (64.0%)						
5	255.56	0.0052	HOMO-4 \rightarrow LUMO (23.2%)						
			HOMO \rightarrow LUMO+2 (61.4%)						
			S ₁						
1	509.37	0.5920	HOMO \rightarrow LUMO (99.6%)						
2	426.04	0.0568	HOMO-1 \rightarrow LUMO (99.1%)						
3	383.52	0.0196	HOMO-3 \rightarrow LUMO (88.5%)						
			HOMO-2 \rightarrow LUMO (8.0%)						
4	359.14	0.2721	HOMO-4 \rightarrow LUMO (8.1%)						
			HOMO \rightarrow LUMO+1 (87.7%)						
5	343.53	0.0004	HOMO-5 \rightarrow LUMO (96.2%)						

Table S1. Computed absorption wavelengths (λ_{calc} in nm) and oscillator strengths ($f_{calc.}$) for *closo*-**DT** from TD-B3LYP calculations using the B3LYP geometries at the ground state (S₀) and first singlet excited state (S₁) optimized geometries in THF

	-	· · · ·					
	E (eV)	carborane	terphenyl				
		S ₀					
LUMO+3	-0.64	12.8	87.2				
LUMO+2	-0.65	12.1	87.9				
LUMO+1	-1.02	37.7	62.3				
LUMO	-1.48	17.0	83.0				
НОМО	-6.22	3.0	97.0				
HOMO-1	-6.66	0.7	99.3				
HOMO-2	-7.11	10.4	89.6				
HOMO-3	-7.28	0.9	99.1				
		\mathbf{S}_1					
LUMO+3	-0.63	11.4	88.6				
LUMO+2	-0.75	31.9	68.1				
LUMO+1	-1.62	13.7	86.3				
LUMO	-3.48	82.8	17.2				
HOMO	-6.03	5.7	94.3				
HOMO-1	-6.78	0.8	99.2				
HOMO-2	-7.12	13.7	86.3				
HOMO-3	-7.33	0.9	99.1				

Table S2. Molecular orbital energies (in eV) and molecular orbital distributions (in %) of *closo*-**DT** at the ground state (S_0) and first singlet excited state (S_1) optimized geometries in THF

Figure S16. The selected frontier orbitals of *closo*-**PT** from B3LYP calculations (Isovalue = 0.04 a.u.) at the ground state (S₀) and first singlet excited state (S₁) optimized geometries in THF.

state	λ_{calc} (/nm)	f_{calc}	Major	contribution
			S_0	
1	348.17	1.7222	НОМО —	→ LUMO (98.8%)
2	289.43	0.0320	номо-з –	→ LUMO (7.3%)
			НОМО-1 —	→ LUMO (41.4%)
			НОМО —	→ LUMO+2 (43.9%)
3	278.75	0.0000	номо-2 –	→ LUMO (25.6%)
			НОМО —	→ LUMO+1 (54.3%)
			НОМО —	→ LUMO+3 (16.0%)
4	278.47	0.0386	номо-з –	→ LUMO (16.8%)
			НОМО-1 —	→ LUMO (41.3%)
			НОМО —	→ LUMO+2 (29.4%)
5	271.81	0.0000	НОМО-4 —	→ LUMO (12.5%)
			номо-2 –	→ LUMO (14.2%)
			НОМО —	→ LUMO+1 (38.9%)
			НОМО —	→ LUMO+3 (29.0%)
			\mathbf{S}_1	
1	554.44	0.9435	НОМО –	→ LUMO (99.7%)
2	395.36	0.0163	НОМО-4 –	→ LUMO (16.1%)
			номо-з –	→ LUMO (7.1%)
			номо-2 –	→ LUMO (14.0%)
			НОМО-1 –	→ LUMO (61.7%)
3	381.97	0.0031	НОМО-4 –	→ LUMO (28.4%)
			номо-2 –	→ LUMO (28.9%)
			НОМО-1 —	→ LUMO (36.7%)
4	371.34	0.4002	НОМО-4 —	→ LUMO (7.2%)
			номо-з –	→ LUMO (7.4%)
			НОМО —	→ LUMO+1 (78.9%)
5	352.54	0.0002	НОМО-5 –	→ LUMO (97.7%)

Table S3. Computed absorption wavelengths (λ_{calc} in nm) and oscillator strengths ($f_{calc.}$) for *closo*-**PT** from TD-B3LYP calculations using the B3LYP geometries at the ground state (S₀) and first singlet excited state (S₁) optimized geometries in THF

	E (eV)	carborane	terphenyl							
	S_0									
LUMO+3	-0.53	12.4	87.6							
LUMO+2	-0.75	7.1	92.9							
LUMO+1	-0.88	33.8	66.2							
LUMO	-1.83	16.1	83.9							
НОМО	-5.83	3.8	96.2							
HOMO-1	-6.84	0.1	99.9							
HOMO-2	-7.06	2.3	97.7							
HOMO-3	-7.13	1.0	99.0							
		S_1								
LUMO+3	-0.64	28.9	71.1							
LUMO+2	-0.80	11.6	88.4							
LUMO+1	-1.77	14.0	86.0							
LUMO	-3.17	80.2	19.8							
НОМО	-5.74	8.0	92.0							
HOMO-1	-6.96	0.2	99.8							
HOMO-2	-7.07	9.8	90.2							
HOMO-3	-7.22	4.2	95.8							

Table S4. Molecular orbital energies (in eV) and molecular orbital distributions (in %) of *closo*-**PT** at the ground state (S_0) and first singlet excited state (S_1) optimized geometries in THF.

			-		• •	• •					·
Atom	Х	У	Z	С	-5.032202	0.841077	0.975132	Н	7.356907	-0.143201	-2.466919
С	-8.023338	-1.268662	-0.509786	H	-2.289377	1.413955	1.723776	В	9.619575	-0.853265	-1.210643
Н	-10.145290	1.488057	-2.063366	Н	-7.381091	-2.077511	-0.831315	В	9.466764	0.915078	-1.329206
Н	-7.357125	0.143366	-2.466986	С	-2.900741	0.129407	0.030659	Н	7.593218	-2.468329	-0.584053
Н	-9.767760	-1.596815	-2.247668	С	-3.616901	-0.627627	-0.910190	В	9.712810	-1.267586	0.523844
Н	-11.692112	-0.326012	-0.128903	Н	-3.077616	-1.195093	-1.661881	Н	7.634589	-1.345927	2.171486
Н	-7.593454	2.468360	-0.583949	С	-1.411008	0.109248	0.036261	В	8.040646	0.977366	1.176674
Н	-9.773424	-2.720121	0.491396	С	-0.764267	-1.135730	0.022171	В	9.618964	0.247298	1.470745
Н	-10.311893	2.213974	0.916024	С	-0.625567	1.283162	0.029496	Н	10.145033	-1.488116	-2.063621
Н	-7.345356	-1.637402	1.863402	С	0.625545	-1.283056	0.029498	В	10.512654	0.206124	-0.079173
Н	-7.634531	1.345816	2.171509	Н	-1.376884	-2.033520	0.014168	С	8.023403	1.268657	-0.509698
Н	-10.143679	-0.385283	2.525425	С	0.764248	1.135837	0.022279	Н	9.767712	1.596759	-2.247713
В	-8.042273	0.128041	-1.508281	С	1.410989	-0.109140	0.036370	В	9.472515	1.589288	0.318493
В	-9.619717	0.853169	-1.210486	Н	1.376873	2.033623	0.014354	Н	10.311796	-2.214261	0.915716
В	-9.466780	-0.915150	-1.329159	С	2.900732	-0.129299	0.030840	Н	7.345603	1.637288	1.863564
В	-8.182584	1.468753	-0.355674	С	3.616892	0.627750	-0.909999	Н	10.143889	0.384946	2.525303
В	-10.512638	-0.206352	-0.078996	С	3.639948	-0.862963	0.971416	Н	11.692134	0.325723	-0.129109
В	-9.472364	-1.589458	0.318491	С	5.008907	0.646293	-0.916155	Н	7.381208	2.077579	-0.831144
В	-9.712859	1.267379	0.524032	Н	3.077595	1.195246	-1.661657	Н	9.773653	2.719928	0.491412
В	-8.040488	-0.977464	1.176616	С	5.032201	-0.840968	0.975282	С	-1.214285	2.676407	-0.001744
В	-8.185377	0.787477	1.288989	Н	3.124054	-1.443062	1.728756	Н	-2.131056	2.719768	-0.595260
В	-9.618835	-0.247549	1.470837	С	5.738971	-0.084706	0.031080	Н	-1.463232	3.038239	1.002760
С	-5.738968	0.084775	0.030961	Н	5.513849	1.225354	-1.681368	Н	-0.497462	3.383080	-0.428516
С	-3.639949	0.863084	0.971234	Н	5.564938	-1.413826	1.723941	С	1.214262	-2.676299	-0.001726
С	-5.008915	-0.646180	-0.916320	С	7.249742	-0.078874	0.036868	Н	2.130962	-2.719692	-0.595355
Н	-3.124035	1.443204	1.728545	В	8.042159	-0.128004	-1.508291	Н	1.463342	-3.038065	1.002766
Н	-5.513877	-1.225195	-1.681557	В	8.182458	-1.468791	-0.355762	Н	0.497390	-3.383000	-0.428367
С	-7.249732	0.078882	0.036808	В	8.185423	-0.787611	1.288946				

Table S5. Cartesian coordinates of the ground state (S₀) fully optimized geometry in THF of *closo*-DT from B3LYP calculations (in Å)

					· · ·	-	•				
Atom	х	У	Z	С	-5.028100	1.025231	0.746504	Н	7.467351	2.315475	-0.718417
С	-8.088288	-1.294836	-0.299219	Н	-5.541162	1.755267	1.358758	В	9.581040	0.782094	-1.244878
Н	-10.186412	1.364047	-2.043533	Н	-7.486413	-2.154336	-0.559732	В	9.794184	1.589030	0.315997
Н	-7.441031	-0.100619	-2.399569	С	-2.925375	0.104666	-0.076874	Н	7.532647	-0.215001	-2.467763
Н	-9.898239	-1.737899	-1.939981	С	-3.673921	-0.868231	-0.780384	В	9.613211	-0.997200	-0.999173
Н	-11.714220	-0.213940	0.105475	Н	-3.163762	-1.592625	-1.404733	Н	7.551713	-2.483960	-0.195952
Н	-7.560216	2.401674	-0.744351	С	-1.462150	0.078516	-0.121016	В	8.083269	-0.364056	1.370434
Н	-9.834958	-2.592853	0.892132	С	-0.817884	-1.180518	-0.109028	В	9.599703	-1.243986	0.780040
Н	-10.235856	2.374070	0.855388	С	-0.645938	1.266535	-0.201939	Н	10.038872	1.294421	-2.217645
Н	-7.334348	-1.454498	2.076990	С	0.555859	-1.341572	-0.096734	В	10.611888	0.030321	0.019198
Н	-7.533318	1.546388	2.105846	Н	-1.435726	-2.070917	-0.069819	С	8.533206	1.268441	1.279648
Н	-10.079403	-0.064660	2.703804	С	0.728201	1.102244	-0.220603	Н	10.303125	2.661047	0.388474
В	-8.104879	-0.002173	-1.430478	С	1.374743	-0.152193	-0.135437	В	9.807468	0.317911	1.586158
В	-9.650176	0.796748	-1.151408	Н	1.348684	1.989842	-0.276747	Н	10.105529	-1.762146	-1.769062
В	-9.550015	-0.979166	-1.102866	С	2.843000	-0.180727	-0.127795	Н	7.496991	-0.739044	2.333741
В	-8.171710	1.449133	-0.402956	С	3.569646	0.689714	-0.972471	Н	10.070999	-2.213242	1.286777
В	-10.531693	-0.123682	0.106284	С	3.580554	-1.022654	0.733511	Н	11.800571	-0.022599	-0.045373
В	-9.513504	-1.492728	0.602111	С	4.956752	0.699510	-0.971053	Н	8.125605	1.975057	1.990516
В	-9.675697	1.377295	0.539656	Н	3.037772	1.332734	-1.666247	Н	10.326494	0.394495	2.653052
В	-8.038861	-0.843744	1.355436	С	4.967404	-0.988327	0.753624	С	-1.209307	2.658521	-0.324268
В	-8.137785	0.929319	1.300982	Н	3.063998	-1.673398	1.428686	Н	-2.128828	2.681722	-0.912196
В	-9.587996	-0.042525	1.625284	С	5.691234	-0.130083	-0.099503	Н	-1.434762	3.088599	0.658721
С	-5.761278	0.062461	0.033435	Н	5.484323	1.359302	-1.650232	Н	-0.477932	3.315917	-0.798852
С	-3.643341	1.054691	0.683608	Н	5.503969	-1.631733	1.441219	С	1.126846	-2.734098	-0.093894
С	-5.059224	-0.875448	-0.742219	С	7.172190	-0.107594	-0.088103	Н	2.018007	-2.808459	-0.720613
Н	-3.113547	1.790709	1.273696	В	8.066261	1.357246	-0.350107	Н	1.413263	-3.050195	0.915916
Н	-5.584464	-1.610676	-1.339590	В	8.098348	-0.156715	-1.423574	Н	0.382330	-3.446981	-0.454738
С	-7.267889	0.075317	0.091877	В	8.109086	-1.434797	-0.144950				

Table S6. Cartesian coordinates of the first excited state (S1) fully optimized geometry in THF of *closo*-DT from B3LYP calculations (in Å)

			-			• •					•	<i>,</i>
Atom	Х	у	Z	Ē	ł	1.627065	-3.391361	-1.227232	Н	-3.389227	3.167824	1.335156
С	7.943384	0.485214	-1.347734	- E	ł	2.353597	-2.045872	-2.125378	С	-2.428093	2.645506	-1.213699
Н	9.626059	-2.625519	0.064097	C	2	2.433101	-2.635008	1.317445	Н	-2.353597	2.045874	-2.125376
Н	6.993910	-1.813610	-1.395069	H	ł	1.632441	-3.381046	1.339804	Н	-3.383673	3.179411	-1.230053
Н	9.578270	-0.947790	-2.551135	H	ł	3.389227	-3.167825	1.335152	Н	-1.627065	3.391363	-1.227228
Н	11.508341	-0.207458	-0.198511	H	ł	2.361535	-2.027623	2.224074	С	-7.064084	-0.242337	0.054386
Н	7.128498	-1.688888	1.625996	C	2	4.941562	1.646731	0.048255	В	-7.734442	1.116230	-0.800896
Н	9.905578	1.923694	-1.840920	H	ł	5.543968	2.545407	0.065126	В	-7.822070	0.991640	0.970149
Н	9.952129	-0.674333	2.408231	C	2	3.372033	-0.650441	0.042761	В	-8.054167	-1.658770	-0.112138
Н	7.542908	2.704848	-0.281369	C	2	1.030072	-0.940065	0.048135	В	-8.018073	-0.725454	1.396856
Н	7.448110	1.176802	2.329460	C	2	2.320959	-1.759615	0.048316	С	-7.943384	-0.485212	-1.347732
Н	10.179163	2.158648	1.240780	C	2	1.309505	0.445491	0.047706	Н	-6.993910	1.813613	-1.395065
В	7.734441	-1.116228	-0.800899	C	2	0.282408	1.397837	0.048321	В	-9.240943	1.504129	0.029436
В	9.240942	-1.504129	0.029431	H	I	0.508240	2.460837	0.048762	В	-9.278912	0.557447	-1.475405
В	9.278912	-0.557445	-1.475408	C	2	-0.282408	-1.397837	0.048320	Н	-7.128498	1.688885	1.626001
В	7.822070	-0.991641	0.970145	H	I	-0.508240	-2.460837	0.048759	В	-9.428502	0.360249	1.390337
В	10.329797	-0.091971	-0.121348	C	2	-1.030072	0.940065	0.048136	Н	-7.542907	-2.704848	-0.281371
В	9.473267	1.155204	-1.052542	C	2	-1.309505	-0.445491	0.047705	В	-9.473268	-1.155202	-1.052542
В	9.428502	-0.360252	1.390334	C	2	-2.764191	-0.620481	0.045412	В	-9.563685	-1.288683	0.719954
В	8.054167	1.658770	-0.112137	C	2	-3.552823	-1.771968	0.051021	Н	-7.448109	-1.176806	2.329460
В	8.018074	0.725452	1.396855	C	2	-3.372033	0.650441	0.042762	Н	-9.626059	2.625518	0.064103
В	9.563685	1.288681	0.719954	C	2	-4.941562	-1.646731	0.048255	В	-10.329797	0.091971	-0.121345
С	5.558760	0.384368	0.031730	H	ł	-3.103806	-2.760335	0.062479	Н	-9.578271	0.947794	-2.551131
С	3.552823	1.771968	0.051021	C	2	-4.753377	0.771038	0.036732	Н	-9.952129	0.674329	2.408235
С	4.753377	-0.771038	0.036731	C	2	-5.558760	-0.384368	0.031731	Н	-9.905579	-1.923692	-1.840921
С	2.764191	0.620481	0.045412	H	ł	-5.543968	-2.545407	0.065125	Н	-10.179162	-2.158651	1.240779
Н	3.103806	2.760335	0.062481	H	ł	-5.212366	1.752814	0.041535	Н	-11.508342	0.207457	-0.198508
Н	5.212366	-1.752814	0.041532	C	2	-2.320959	1.759615	0.048318	Н	-7.353330	-0.766797	-2.210561
С	7.064084	0.242337	0.054385	C	2	-2.433100	2.635007	1.317449	H	7.353330	0.766801	-2.210562
С	2.428093	-2.645504	-1.213702	H	ł	-2.361534	2.027621	2.224077				
Н	3.383672	-3.179409	-1.230057	H	I	-1.632440	3.381044	1.339808				

Table S7. Cartesian coordinates of the ground state (S₀) fully optimized geometry in THF of *closo*-PT from B3LYP calculations (in Å)

						-	•				
Atom	Х	У	Z	H	1.597564	3.451811	1.241392	Н	-3.291563	-3.194531	-1.386319
С	7.993327	-1.362407	-0.549977	H	2.322672	2.111135	2.149370	С	-2.373698	-2.651060	1.177567
Н	9.905569	-0.494389	2.628670	С	2.446866	2.710392	-1.294986	Н	-2.310723	-2.042934	2.084131
Н	7.283708	-1.963802	1.774101	Н	1.641220	3.449744	-1.323713	Н	-3.331762	-3.179376	1.184245
Н	9.843899	-2.698396	0.427485	Н	3.398741	3.249799	-1.294556	Н	-1.575834	-3.399447	1.206696
Н	11.527520	-0.084845	0.051581	Н	2.392928	2.105617	-2.204223	С	-6.987938	0.218548	-0.156847
Н	7.200375	0.995096	2.272761	С	4.961467	-1.567393	0.020548	В	-7.802877	-1.095919	0.628085
Н	9.821737	-1.390078	-2.227831	Н	5.570426	-2.462460	0.057045	В	-7.814548	-0.728857	-1.187499
Н	9.857078	2.224538	1.201762	С	3.383321	0.733001	-0.010146	В	-8.001337	1.341832	0.692545
Н	7.235319	0.100263	-2.427597	С	1.046324	1.000162	-0.048053	В	-7.961573	1.072777	-1.138902
Н	7.219357	2.320124	-0.392497	С	2.325838	1.832697	-0.027512	С	-8.377538	0.055513	1.738922
Н	9.864574	1.701898	-1.816494	С	1.352354	-0.400759	-0.046846	Н	-7.147134	-1.998414	1.035601
В	7.924944	-1.190596	1.157855	С	0.334640	-1.381352	-0.062470	В	-9.273917	-1.397135	-0.452227
В	9.405198	-0.328745	1.566761	Н	0.584537	-2.437679	-0.060836	В	-9.554587	-0.930622	1.232177
В	9.434165	-1.594902	0.316594	С	-0.261950	1.433756	-0.064044	Н	-7.176430	-1.361397	-1.965629
В	7.876144	0.570253	1.400611	Н	-0.511814	2.489864	-0.065028	В	-9.387703	0.058422	-1.496706
В	10.341545	-0.088541	0.060070	С	-0.971525	-0.949361	-0.076643	Н	-7.495778	2.314889	1.148733
В	9.422802	-0.806513	-1.280103	С	-1.279108	0.454863	-0.078655	В	-9.700388	0.863690	1.279945
В	9.374276	1.249634	0.728818	С	-2.713359	0.607773	-0.099835	В	-9.506621	1.457031	-0.377290
В	7.897937	0.093074	-1.452397	С	-3.514515	1.762994	-0.114341	Н	-7.437638	1.840988	-1.879278
В	7.867258	1.352331	-0.199923	С	-3.311283	-0.676933	-0.112633	Н	-9.645292	-2.468302	-0.815243
В	9.381997	0.951969	-1.035400	С	-4.893034	1.620888	-0.136316	В	-10.412617	-0.061899	-0.074279
С	5.566987	-0.290730	0.022880	Н	-3.068388	2.752566	-0.109217	Н	-10.021124	-1.698461	2.010250
С	3.583269	-1.708374	-0.006952	С	-4.691856	-0.809027	-0.134735	Н	-9.851933	0.049651	-2.593733
С	4.760856	0.863009	0.013493	С	-5.505924	0.341897	-0.137043	Н	-10.281244	1.504494	2.095146
С	2.782314	-0.552459	-0.023683	Н	-5.521518	2.503412	-0.150538	Н	-10.047651	2.471470	-0.685859
Н	3.139589	-2.697997	-0.007918	Н	-5.154753	-1.789326	-0.145403	Н	-11.595495	-0.155742	-0.179104
Н	5.218187	1.844083	0.026201	С	-2.253662	-1.778429	-0.093032	Н	-7.982065	0.061357	2.746189
С	7.068690	-0.145834	0.062536	С	-2.334892	-2.664561	-1.356837	Н	7.454826	-2.199868	-0.971952
С	2.404788	2.713546	1.240698	Н	-2.245808	-2.066278	-2.267694				
Н	3.355047	3.254802	1.269406	Н	-1.535968	-3.412457	-1.354134				

Table S8. Cartesian coordinates of the first excited state (S1) fully optimized geometry in THF of *closo*-PT from B3LYP calculations (in Å)