Leading Interaction Components in Structure and Reactivity of Noble Gases Compounds

Francesca Nunzi,^{a,b*} Giacomo Pannacci,^a Francesco Tarantelli,^{a,b} Leonardo Belpassi, ^b David Cappelletti, ^a Stefano Falcinelli, ^c Fernando Pirani^{a,b*}

^a Dipartimento di Chimica, Biologia e Biotecnologie, via Elce di Sotto 8, I-06123 Perugia, Italy

^b Istituto CNR di Scienze e Tecnologie Chimiche "Giulio Natta" (CNR-SCITEC), via Elce di Sotto, I-06123 Perugia, Italy

[°] Dipartimento di Ingegneria Civile ed Ambientale, Università degli Studi di Perugia, via G. Duranti 93, 06215 Perugia, Italy

Corresponding Author **E-mail: francesca.nunzi@unipg.it; fernando.pirani@unipg.it*

Supporting Information

system	R_m	D_m	<i>C</i> ₆
HeRn	4.09	3.03	14.2
NeRn	4.08	6.77	31.3
ArRn	4.21	18.35	101.5
KrRn	4.29	24.22	150.0
XeRn	4.41	30.35	222.1
RnRn	4.49	36.77	300.6

Table S1. Potential parameters (equilibrium distances, R_m , Å, potential well depth, D_m , meV, and long range dipole-dipole dispersion coefficient, C₆, eV·Å⁶) predicted for NgRn systems.

Figure S1. Potential energy curves for the ionic adducts HeBe⁺ and HeLi⁺ in the excited ${}^{2}\Sigma^{+}$ [Be⁺ $1s^{2}$ 2s] and ${}^{1}\Sigma^{+}$ [Li⁺ $1s^{2}$] electronic state, computed at FCI/AVTZ level of theory (solid lines) compared to the parametrized energy functions (dashed lines). The curves are shifted to a unique relative energy scale for an easy comparison of their character.

Figure S2. CDF curves (CCSD/AVTZ) for the ground and excited ${}^{1}\Sigma^{+}$ (Be 2s3s) states of Be–He at a separation of 1.5 Å. The function gives, at each point along the *z* axis joining the atoms, the amount of electronic charge *Q* that, upon formation of the adduct, shifts from left to right (if positive) or from right to left (if negative) across a perpendicular plane through *z*. Dots correspond to the nuclei position projection on the *z* axis. 3D contour plot of the electron density difference between the adduct and its fragments is also shown (cutoff = $\pm 2 \times 10^{-4}$ e/bohr³, with grey/red colors corresponding to positive/negative isodensity values).

Figure S3. CDF curves (CCSD/AVQZ) for the $(X^{1}\Sigma_{g})$ Kr-Cl₂ (top) and Xe-Cl₂ (bottom) in the linear configuration. Dots correspond to the nuclei position projection on the *z* axis. 3D contour plot of the electron density difference between the adduct and its fragments is also shown (cutoff = $\pm 8 \times 10^{-5}$ e/bohr³, with blue/red colors corresponding to positive/negative isodensity values).