Supporting Information

Clerodane Diterpenoids from *Callicarpa hypoleucophylla* and Their Anti-Inflammatory Activity

Yu-Chi Lin, Jue-Jun Lin, Shu-Rong Chen, Tsong-Long Hwang, Shu-Yen Fang, Michal Korinek, Ching-Yeu Chen, Yun-Sheng Lin, Tung-Ying Wu, Ming-Hong Yen, Chih-Hsin Wang*, and Yuan-Bin Cheng*

Table of Contents

Figure S1 ¹ H NMR spectrum of callihypolin A (1) (CDCl ₃ , 600 MHz)	2
Figure S2 ¹³ C NMR and DEPT spectrum of callihypolin A (1) (CDCl ₃ , 150 MHz)	3
Figure S3 COSY spectrum of callihypolin A (1)	4
Figure S4 HSQC spectrum of callihypolin A (1)	5
Figure S5 HMBC spectrum of callihypolin A (1)	6
Figure S6 NOESY spectrum of callihypolin A (1)	7
Figure S7 ¹ H NMR spectrum of callihypolin B (2) (CDCl ₃ ,400 MHz)	8
Figure S8 ¹³ C NMR and DEPT spectrum of callihypolin B (2) (CDCl ₃ , 100 MHz)	9
Figure S9 COSY spectrum of callihypolin B (2)	10
Figure S10 HSQC spectrum of callihypolin B (2)	11
Figure S11 HMBC spectrum of callihypolin B (2)	12
Figure S12 NOESY spectrum of callihypolin B (2)	13
Figure S13 HRESIMS spectrum of callihypolin A (1)	14
Figure S14 HRESIMS spectrum of callihypolin B (2)	15
Figure S15 Representative traces of superoxide anion generation for compounds 2–4	16
Figure S16 Representative traces of elastase release for compounds 2–4	17

Figure S1 ¹H NMR spectrum of callihypolin A (1) (CDCl₃, 600 MHz)

Figure S2 ¹³C NMR and DEPT spectrum of callihypolin A (1) (CDCl₃, 150 MHz).

Figure S4 HSQC spectrum of callihypolin A (1)

Figure S7 ¹H NMR spectrum of callihypolin B (2) (CDCl₃,400 MHz)

Figure S8 ¹³C NMR and DEPT spectrum of callihypolin B (2) (CDCl₃, 100 MHz)

Figure S9 COSY spectrum of callihypolin B (2)

Figure S10 HSQC spectrum of callihypolin B (2)

Figure S11 HMBC spectrum of callihypolin B (2)

12

Figure S12 NOESY spectrum of callihypolin B (2)

Figure S13 HRESIMS spectrum of callihypolin A (1)

Figure S14 HRESIMS spectrum of callihypolin B (2)

 Meas. m/z
 #
 Formula
 Score
 m/z
 err [mDa]
 err [ppm]
 mSigma
 rdb
 e⁻ Conf
 N-Rule

 399.21419
 1
 C 22 H 32 Na O 5
 100.00
 399.21420
 0.01
 0.02
 14.0
 6.5
 even
 ok

Figure S15 Representative traces of superoxide anion generation for compounds **2**–**4**

Representative traces are shown for superoxide anion generation. Compounds: 10 microM

Representative traces are shown for elastase release. Compounds: 10 microM