Supplementary materials

Ketoprofen-based ionic liquids: synthesis and interactions with bovine serum albumin

Paula Ossowicz¹, Proletina Kardaleva², Maya Guncheva^{2,*}, Joanna Klebeko¹, Ewelina Świątek¹, Ewa Janus¹, Denitsa Yancheva², Ivan Angelov²

¹ West Pomeranian University of Technology, Faculty of Chemical Technology and Engineering, Department of Chemical Organic Technology and Polymeric Materials, Piastów Ave. 42, 71-065 Szczecin, Poland

²Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl. 9, 1113 Sofia, Bulgaria

* corresponding author: <u>maiag@orgchm.bas.bg</u> (M. Guncheva)

CHARACTERIZATION OF KETOPROFEN AMINO ACID ESTER DERIVATIVES

Table of Contents:

1.	NMR spectra of ketoprofen and its derivatives	S2
2.	FT IR spectra of ketoprofen and its derivatives	S16
3.	Thermogravimetric analysis of ketoprofen and its derivatives	S22
4.	DSC analysis of ketoprofen and its derivatives	S28
5.	The plot of log (Fo-F)/F vs log. [Q] at 25°C of ketoprofen and its derivatives	S34
6.	The original, second derivative and deconvoluted ATR-FTIR spectra in Amide I and Amide	
	II region of native BSA, native BSA-ketoprofen and its derivatives	S36

[L-LeuOEt][KETO], [L-ValOEt][KETO], [L-ValOEt][KETO], [L-ValOiPr][KETO], [L-ValOBu][KETO] and [KETO]

Fig.S3. ¹H NMR spectra of L-leucine ethyl ester ketoprofenate

Fig. S4. ¹³C NMR spectra of L-leucine ethyl ester ketoprofenate.

Fig.S5. 1H NMR spectra of L-valine ethyl ester ketoprofenate

Fig. S6. ¹³C NMR spectra of L-valine ethyl ester ketoprofenate

Fig. S7. ¹H NMR spectra of L-valine isopropyl ester ketoprofenate

Fig. S8. ¹³C NMR spectra of L-valine isopropyl ester ketoprofenate

Fig. S9. 1H NMR spectra of L-valine propyl ester ketoprofenate

Fig. S10. ¹³C NMR spectra of L-valine propyl ester ketoprofenate

Fig. S11. ¹H NMR spectra of L-valine butyl ester ketoprofenate

Fig. 12. ¹³C NMR spectra of L-valine butyl ester ketoprofenate

Fig.S13. ¹H NMR spectra of ketoprofen

Fig. S15. FT-IR spectra of [L-LeuOEt][KETO]

Fig. S16. FT-IR spectra of [L-ValOEt][KETO]

Fig. S17. FT-IR spectra of [L-ValOiPr][KETO]

Fig. S18. FT-IR spectra of [L-ValOPr][KETO]

Fig. S19. FT-IR spectra of [L-ValOBu][KETO]

Fig. S20. FT-IR spectra of [KETO]

Fig. S21. The TG and DTG curves of [L-LeuOEt][KETO]

Fig. S22. The TG and DTG curves of [L-ValOEt][KETO]

Fig. S23. The TG and DTG curves of [L-ValOiPr][KETO]

S24

Fig. S24. The TG and DTG curves of [L-ValOPr][KETO]

Fig. S25. The TG and DTG and curves of [L-ValOBu][KETO]

Figure S27. The DSC curves of [L-LeuOEt][KETO]

Figure S28. The DSC curves of [L-ValOEt][KETO]

Figure S29. The DSC curves of [L-ValOiPr][KETO]

Figure S30. The DSC curves of [L-ValOPr][KETO]

Figure S31. The DSC curves of [L-ValOBu][KETO]

Figure S32. The DSC curves of [KETO]

Fig. S33. The plot of log (Fo-F)/F vs log. [Q] at 25°C, where Q is ketoprofen (A); [L-LeuOEt][KETO] (B); [L-ValOEt][KETO] (C); [L-ValOir][KETO] (D) [L-ValOPr][KETO] (E) and [L-ValOBu][KETO] (F).

Fig. S34. The original (a), second derivative and deconvoluted ATR-FTIR spectra in Amide I region of native BSA in PBS buffer (pH 7.4, 50 mM) at concentration of 20 mg/mL.

Fig. S35. The original (a), second derivative and deconvoluted ATR-FTIR spectra in Amide I and Amide II region of native BSA-ketoprofen (1:1) in PBS buffer (pH 7.4, 50 mM).

Fig. S36. The original (a), second derivative and deconvoluted ATR-FTIR spectra in Amide I and Amide II region of native BSA-[L-LeuOEt][KETO] (1:1) in PBS buffer (pH 7.4, 50 mM).

Fig. S37. The original (a), second derivative and deconvoluted ATR-FTIR spectra in Amide I and Amide II region of native BSA-[L-ValOEt][KETO] (1:1) in PBS buffer (pH 7.4, 50 mM).

Fig. S38. The original (a), second derivative and deconvoluted ATR-FTIR spectra in Amide I and Amide II region of native BSA-[L-ValOiPr][KETO] (1:1) in PBS buffer (pH 7.4, 50 mM).

Fig. S39. The original (a), second derivative and deconvoluted ATR-FTIR spectra in Amide I and Amide II region of native BSA-[L-ValOPr][KETO] (1:1) in PBS buffer (pH 7.4, 50 mM).

Fig. S40. The original (a), second derivative and deconvoluted ATR-FTIR spectra in Amide I and Amide II region of native BSA-[L-ValOBu][KETO] (1:1) in PBS buffer (pH 7.4, 50 mM).