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Abstract: Cryo-electron microscopy (cryo-EM) has now become a widely used technique for 
structure determination of macromolecular complexes. For modeling molecular structures from 
density maps of different resolutions, many algorithms have been developed. These algorithms can 
be categorized into rigid fitting, flexible fitting, and de novo modeling methods. It is also observed 
that machine learning (ML) techniques have been increasingly applied following the rapid progress 
of the ML field. Here, we review these different categories of macromolecule structure modeling 
methods and discuss their advances over time. 
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1. Introduction 

Cryo-electron microscopy (cryo-EM) has now become a widely used technique for determining 
biological macromolecular structures. Recent developments of microscopy instruments, as well as 
progress in image processing algorithms, have drastically improved the resolution that can be 
achieved by cryo-EM [1–3]. These advances in cryo-EM have led to the increase in the number of 
solved structures, particularly those which were obtained at near-atomic resolution [4–7]. According 
to the statistics of the Electron Microscopy Data Bank (EMDB), the public repository for electron 
microscopy maps, there have been 2234 maps deposited in 2019 at the time of writing, about 3.5 times 
the 640 maps deposited in 2015 [8]. Among these deposited maps, maps at 4 Å resolution or better 
increased more drastically, from 114 in 2015 to 1089 maps in 2019, which is a 9.6-fold increase. 

The advances in cryo-EM have certainly had a strong impact on the software developed to model 
molecular structures from cryo-EM maps. Structure modeling methods can be roughly classified into 
rigid-body fitting, flexible fitting, and de novo modeling methods. Among them, rigid fitting 
methods were the first to appear in literature (Figure 1). A rigid fitting method places a high-
resolution structure into a low resolution EM density map. As EM map resolutions have improved, 
flexible fitting algorithms have emerged, which aim to consider conformational changes of rigidly 
fitted structures in cryo-EM maps to improve the agreement of the structures and EM maps. Recently, 
with an increase of need partly due to the drastic improvement of map resolution revolution, de novo 
modeling algorithms have started trending. De novo modeling methods benefit from the higher level 
of details in density, which provide information to trace protein main chain in principle without the 
need for known structures. Figure 1 summarizes publications of these three categories of modeling 
methods. 

This review is intended to cover the developments of macromolecular modeling methods and 
the emergence of machine learning in cryo-EM analysis. The review is structured as follows: we first 
review the three categories of modeling methods, rigid fitting, flexible fitting, and de novo modeling 
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methods, in this order. Then, we discuss methods that use machine learning approaches, which are 
emerging in recent years in the cryo-EM structure modeling field. 

 
Figure 1. The number of rigid fitting, flexible fitting, and de novo modeling software published per 
year. The statistics are based on publication. The plot shows 28 rigid fitting methods [9–36], 33 flexible 
fitting methods [37–69], and 8 de novo modeling methods [70–77]. 

2. Rigid Fitting Methods 

In rigid body fitting, high resolution atomic models which are derived from X-ray 
crystallography, Nuclear Magnetic Resonance (NMR) spectroscopy, or protein prediction are fitted 
into a cryo-EM map. One of the earliest rigid fitting methods is EMfit developed by Rossmann et al. 
in 2001 [12]. In EMfit, a high-resolution structure is placed manually into a specific position in the 
EM map. Then, a 3-D rotational search is applied to find the best orientation. After that, EMfit 
optimizes the initial fitting by performing local rotational and translational steps. In general, rigid-
body fitting methods search for the best placement of an atomic model in a density map. Search 
algorithms that have been used for rigid fitting include Fast Fourier transform-based (FFT) [14,32,35], 
grid-threading Monte Carlo (GTMC) [16], spherical harmonic-based search [20], and geometric 
hashing [27]. FFT is a fast search scheme that accelerates the 3-D translational search [14]. HermiteFit 
speeds up the rotation step in the FFT by representing densities as three-dimensional orthogonal 
Hermite functions and performing rotation in the Hermite space [32]. Fast polar Fourier search is a 
variation of FFT, which is based on non-uniform SO(3) Fourier Transforms [35]. Its principal 
advantage is the ability to search efficiently and uniformly over a set of samples of the conformational 
space. GTMC combines grid search and Monte Carlo sampling [16]. GTMC divides the search space 
into grid points and uses Monte Carlo to find local maxima near the grid points to identify the global 
maximum. ADP_EM is a spherical harmonic-based (SH) method which applies exhaustive 
translational scanning and accelerates the rotational search by representing densities as SH functions 
[20]. Geometric hashing identifies a set of possible transformations which are stored in a fast-
searchable hash map [27]. Later, the set of transformations is searched to find the best fit. 

While the methods above exhaustively scan a density map for possible placements, there are 
methods that use other techniques to fit atomic models into density maps. One of these methods is 
gmfit, which converts atomic models and a 3-D density map to Gaussian mixture models (GMMs) 
[23,78]. Then, gmfit generates a random set of initial configurations and applies steepest-descent local 
searches using gradients and torques of the energy function for fitting. Pintilie et al. presented a rigid 
fitting protocol [25] which uses a map segmentation method, Segger [79]. Segger is based on the 
immersive watershed method, which sorts voxels of EM map in descending order based on their 
density values and assigns a voxel to a new region if it is not adjacent to another region, otherwise it 
is added to its adjacent region. After segmenting the EM map, Segger groups the segments using 
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scale-space filtering [80], which moves local maxima representing regions to local density maxima in 
the smoothed EM maps using steepest ascent and groups regions of points converging to the same 
local maximum. Then, atomic models are fitted into resulted regions [25]. EMLZerD docks protein 
components and generates a set of different conformations. Then, docking models are ranked based 
on the overall shape similarity with the cryo-EM map using 3-D Zernike descriptors [30]. γ-TEMPy 
uses vector quantization to identify feature points in a density map, which are centers of density 
clusters, using a neural gas clustering technique [33]. After identifying feature points which represent 
the positions where atomic models can fit, γ-TEMPy applies genetic algorithm to generate different 
conformations. 

Evaluating the quality of fitting atomic models into EM density maps can be done using different 
scoring functions. The scores include mutual information [33,81] and cross-correlation (CC) 
coefficient, which is the most widely used score. CC has been used in different forms such as density 
CC [25,27] which takes into account all density values, Laplacian-filtered CC [81,82], which considers 
only EM map contours that represent the surface of the structures, and core-weighted CC function 
[16] in which a core is the part where the density is least likely to be changed by other components. 
In addition to CC, evolutionary information such as interface conservation can be used to evaluate a 
set of fitted models based on the fact that interface residues are conserved higher than non-interface 
residue [83]. Also, surface-based scores such as normal vector score (NVA), which computes the 
difference in angle between the normal vectors of EM maps, and the chamfer distance score 
(CDAgdt), which calculates the average distance between closest surface points of two EM maps 
[81,82]. Another possible score is skeleton–secondary structure score that depends on matching the 
skeleton of detected secondary structures of the density map with the secondary structure units of 
the atomic model [35]. 

3. Flexible Fitting Methods 

In many cases, the available conformation of component biomolecules, e.g., proteins, could be 
different from what the map represents for various reasons such as different functional states of a 
complex. Thus, flexible fitting methods are applied to change the fitted structure to conform to the 
EM map. Flexible fitting approaches are categorized into five major categories. These categories are 
normal mode analysis-based methods, molecular dynamics-based methods, geometric simulation 
methods, methods using structural variability of protein superfamilies, and methods guided by α-
helix correspondences. 

Normal mode analysis was one of the first techniques used for flexible fitting. Normal mode 
analysis (NMA) is a technique used to explore the natural vibrational motion of a structure [84,85]. 
NMA has been applied in flexible fitting in various ways. NMFF-EM is one of the NMA methods 
which considers only low-frequency normal modes that represent collective low-energy global 
motions of the biological structure. It deforms the all-atom or Cα structure iteratively along low-
frequency normal modes and optimizes the overall cross-correlation between the deformed structure 
and the EM map [39,86]. Another NMA method, mENM, uses all normal modes, which allows it to 
capture both local and global structural changes, computed for a two-bead-per-residue protein 
representation [54]. iMODFIT uses NMA in internal coordinates (torsional space), which offers a 
reasonable and efficient way to search the conformational space [60]. 

In addition to NMA methods, molecular dynamics (MD)-based methods are well established in 
the field of flexible fitting. The strength of MD simulations is the use of well-established force fields, 
which preserves physical correctness during fitting. MDFF is an MD-based flexible fitting, which 
applies MD simulation that incorporates the EM density as an external potential to the molecular 
mechanics force field and derives the structure towards the target density [49]. There are different 
variations of MD-based fitting including adding biased potentials such as cross-correlation between 
the model and the density map [50] and symmetry information of structure [55] to enhance the fitting 
results. Another MD approach uses coarse-grained representation, particularly GO-model of the 
molecule instead of all atoms [53]. REMDFit runs MD with a number of fitting trials with different 
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force constants to obtain sufficient conformational sampling, which are shown to be valuable 
especially for lower resolution EM maps [62]. 

Besides MD, geometric simulation is also used for flexible fitting. Geometric simulation fitting 
approaches change the starting structure to conform to the density map while keeping rigid bodies 
such as secondary structures identified early, intact during the entire simulation which maintains 
valid local geometry and stereochemistry [47]. Another category of flexible fitting methods uses the 
structural variability of protein domains of a given superfamily, according to structural databases 
such as CATH, to guide the fitting [42,45]. The last category of flexible fitting is α-helix 
correspondence-based fitting which does not require initial rigid fitting. This fitting is instead guided 
by the correspondence between α-helices predicted in the density map and in the model, which 
reduces the fitting time [63]. Overall, these different flexible fitting approaches change the 
conformation of a fitted structure into an EM map to improve the fit to the map. These flexible fitting 
methods are aimed at not only small but also at substantial domain motions, that can have a large 
root–mean–square deviation (RMSD) of over 15 Å. 

Rigid fitting methods fit atomic structures into EM maps of intermediate to low resolution, while 
flexible fitting improves the quality of the fitting into intermediate resolution EM maps by 
performing conformational change to the atomic structure to align with the EM map structure [87,88]. 
The main advantage of fitting methods is that models can be built with relatively inexpensive 
computational cost. On the other hand, modeling is only possible when the structure is available. 

4. De Novo Modeling Methods 

Recent years have witnessed a drastic increase in the number of maps determined at a resolution 
of 3 to 5 Å. This is a frustrating resolution, where a part of structures can be observed in a map but 
difficult to build a structure model with conventional tools that are originally designed for X-ray 
crystallography. De novo modeling methods use maps in this resolution range, aimed at situations 
where known structures are not available for rigid or flexible fitting. De novo modeling tools build a 
full atom model or a main-chain trace without using a template structure. There are six tools that 
belong to this category, EM-Fold [70], Gorgon [71], Rosetta [73,89], Pathwalking [72,74], Phenix 
[75,77], and MAINMAST [76,90]. The methods discussed below are summarized in Table 1. 

Table 1. Strengths and limitations of de novo methods. 

Methods Strengths Limitations 
EM-Fold [70] • Able to build 3-D structure models of α-helical proteins 

in intermediate resolution up to 9 Å 
• One of the pioneers in de novo methods 

• Models only α-helical proteins 
• Density rods in density map are 
identified manually 
• Uses external software (Rosetta) 
for building loops and side chains 
• Code is not available 

Gorgon [71] • Interactive software with visualization 
• Tools for multiple steps for model structure building are 
provided 
• Intended to work on maps of resolution up to 10 Å 

• Generates Cα-only models 
• Human interaction is needed 
• Due to the intended resolution, 
no atom level refinement provided 

Rosetta [73] • Part of the Rosetta package, which has many tools for 
structure modeling 
• Good local structure quality 
• Able to handle both α-helices and β-strands 
• Generates full-atom models 

• Depends on fragments 
retrieved from a database 
• Has difficulty to model β-sheets 
• Model quality deteriorates for 
maps at 4.5–5 Å or worse 

Pathwalking 
[74] 

• Part of the EMAN2 cryo-EM modeling package 
• Able to trace the backbone of multi-subunit complexes 

• Does not assign sequence to the 
Cα backbone models 
• Generated models are not 
ranked 

Phenix [75] • Part of the Phenix structure modeling package 
• Models proteins, RNA, and DNA 
• Generates full-atom models 
• Tested on 476 EM maps in their paper 

• Model quality deteriorates for 
maps at 4.5–5 Å or worse 

MAINMAST 
[76] 

• Generates full-atom models • Uses external software (MDFF, 
Rosetta, Phenix) to refine models 
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• Does not depend on any reference structures or 
fragments 
• Provides many models with a confidence score 

• Model quality deteriorates for 
maps at 4.5–5 Å or worse 

EM-Fold is designed for predicting structures of α-helical proteins from intermediate resolution 
EM maps [70]. First, density rods in EM map are identified manually and different secondary 
structure prediction methods are used to detect α-helices from the protein sequence. Then, EM-Fold 
places consensus predicted α-helices into the density rods using a simulated annealing Monte Carlo 
Metropolis search algorithm, refines the placement, and ranks the generated models. Finally, side-
chains and loops are built for highest ranked models using Rosetta. Gorgon is an interactive 
visualization software which provides several computational tools for modeling near-atomic 
proteins, including tools for calculating density skeleton and matching secondary structure elements 
(SSE) predicted in sequence to SSE in a density map [71]. 

Rosetta is a software suite for modeling, predicting, and analyzing protein structures. Rosetta 
includes de novo modeling for cryo-EM, which consists of three main steps [73]. First, sliding a 9-
residue window on the sequence and collecting representative structural fragments from databases. 
Second, evaluating the fragments using a 4-term score function which includes density correlation, 
overlap, closability, and clash terms, then finding a set of fragments that optimizes the score function 
using Monte Carlo with simulated annealing. These two steps are run iteratively until 70% of the 
sequence is covered. RosettaES overcomes the 70% covering limitation by iteratively sampling 
individual missing segments and combining them using a Monte Carlo assembly method [89]. Last, 
density-guided sampling and all-atom refinement are used to complete the partial model. 

Another de novo tool, Pathwalking, is included in the EMAN package. The Pathwalking method 
builds a protein Cα model from an EM map using the travel salesman problem (TSP) in the following 
steps [74]. First, it places pseudo-atoms in the high-density regions in the density map and then 
applying the K-means clustering to their positions, where K is the number of amino acid residues. 
Next, an initial path in the EM maps is detected by a TSP solver. After that, a path refinement step is 
applied iteratively, identifying secondary structure elements, fixing them, and reseeding the pseudo-
atoms based on that. 

Phenix, a software suite for molecular structure modeling for X-ray crystallography, cryo-EM, 
and other methods, has a de novo modeling tool, phenix.map_to_model. Phenix.map_to_model is 
composed of four main steps [75]. It begins with sharpening density map to maximize its details 
using phenix.auto_sharpen [91]. Then, the density map is segmented to extract a unique set of 
connected density regions that are above an automatically determined density threshold. After that, 
a number of model building methods are applied to each type of macromolecule that is inferred using 
the phenix.guess_chain_types_from_sequences tool. Alternatively, the phenix.trace_and_build tool 
developed recently could be used for protein modeling [77]. Last, a model is assembled by combining 
structure fragments using phenix.combine_models tool, then refined using phenix.real_space_refine 
tool [92]. 

MAINMAST (MAINchin Model trAcing from Spanning Tree) is a de novo modeling method, 
which was recently developed by our group [76]. MAINMAST provides a set of models with their 
confidence score. The procedure is fully automated and does not require any external known 
structures. The MAINMAST algorithm consists of six steps as shown in Figure 2. The first step is 
identifying local points with high density in the EM map using the mean shift method, which 
performs local clustering of density points. Next, identified points are connected into a minimum 
spanning tree (MST). Then, the MST structure is refined using a tabu search, which generates a pool 
of alternative trees. After that, the protein sequence is mapped onto the longest path of each MST 
using the Smith–Waterman dynamic programming algorithm. MSTs are ranked based on a threading 
(sequence-structure matching) score, which evaluates the fit of the amino acid sequence of the protein 
to a path in a tree. The last two steps are constructing a full-atom model for the top few hundred trees 
using PULCHRA [93], then refining them using MDFF [49]. The models are finally evaluated and 
ranked by the MDFF score. The confidence score for each local region in a model is computed as the 
fraction of models that have the local structure. 
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In general, de novo modeling methods need further development and have room for 
improvement. One promising strategy could be to incorporate techniques developed for protein 
structure prediction methods. 

 

Figure 2. Schematic flow diagram of the MAINMAST algorithm. The cryo-EM density map shown 
on the right is of structural protein 5 of cytoplasmic polyhedrosis virus solved at a 2.9 Å resolution 
(EMD-6374). This figure was adapted from the MAINMAST paper [76]. 

5. Machine Learning Approaches 

In this section, we discuss emerging applications of ML in structure modeling for cryo-EM. ML 
has been actively used in many bioinformatics domains. Particularly, recently deep learning has been 
successfully applied to various tasks in protein sequence and structure analyses. Naturally, we have 
started to observe deep learning applied in software for cryo-EM, particularly in single particle 
picking and secondary structure prediction. 

A critical step for constructing a high resolution 3-D cryo-EM map is the picking of single-
particle two-dimensional (2-D) projections from thousands of 2-D micrographs. Many methods have 
been developed to automate the particle extraction process. ML methods applied include 
unsupervised clustering approaches, i.e., k-means, fuzzy c-means (FCM), and intensity-based 
clustering (IBC) that is used in AutoCryoPicker [94]. Recently, deep learning using convolutional 
neural networks (CNN) have been applied in DeepPicker [95], DeepEM [96], Deep Consensus [97], 
E2boxer.py procedure in the EMAN2 package [98,99], and PIXER [100]. 

Another task in cryo-EM where ML can be effectively applied is protein structure identification 
in medium to low resolution (5–10 Å) maps. At this range of the resolution, some fragments of 
secondary structure elements (SSE), α-helices and β-sheets are barely visible, but ML can significantly 
improve identification. RENNSH is a method which identifies α-helices in a density map by applying 
nested K-nearest neighbors (KNN) classifiers with spherical harmonic descriptors [102]. SSELearner, 
uses another classification method, support vector machines (SVM), to identify both α-helices and β-
sheets in EM maps [103]. In addition to conventional machine learning techniques, very recently deep 
learning has been used for secondary structure prediction in EM maps. Deep learning, in particular 
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3-D CNN, turned out to be very suitable for identifying secondary structures from cryo-EM maps 
[104]. 

Our group has developed Emap2sec, a deep learning-based method, which uses 3-D CNN for 
detecting secondary structures of a protein (α-helix, β-sheets, and other structures) in cryo-EM maps 
of 5 to 10 Å [101]. Emap2sec first scans a cryo-EM map with a voxel of size 11 Å. Emap2sec consists 
of a two-phase stacked network architecture. The first phase outputs probability values for an input 
voxel to have α-helix, β-sheets, and other structures, through a network with convolutional layers, a 
maximum-pooling layer, fully connected layers, and a softmax layer. The second phase network takes 
the probability values from the first phase as an input and outputs the final refined probabilities 
through five fully connected layers followed by a softmax layer. The purpose of the second phase is 
to smooth the predictions of the first phase by incorporating predictions of neighboring voxels. 
Emap2sec was tested on both simulated and experimental cryo-EM maps and shown to outperform 
existing methods. Examples of emap2sec results on two experimental maps are visualized in Figure 
3. The methods discussed above are summarized in Table 2. 

 
Figure 3. Emap2sec applied on two experimental maps. Density maps and their fitted protein 
structures are shown on the left and the secondary structure detection by Emap2sec is shown on the 
right. Spheres in magenta, yellow, and green show detected α-helices, β-strands, and other structures, 
respectively. (a) Archaeal 20S proteasome (EMD-1733 of resolution 6.8 Å; PDB 3C91). (b) Eschirichia 
coli replicative DNA polymerase complex (EMD-3201 of resolution 8.34 Å; PDB 5FKU). This figure 
was adapted from the EMap2sec paper [101]. 

Table 2. Strengths and limitations of SSE detection methods. 

Methods Strengths Limitations 
RENNSH [102] • Tested on simulated maps at 6, 8, and 10 Å, as well as 

experimental maps of resolutions 3.8, 6.8, and 8 Å 
• (Algorithm: nested K-nearest neighbors classifiers) 

• Detects only α-helices 
• Does not build an atomic 
model of predicted α-helices  
• Limited testing on 
experimental maps 

SSELearner [103] • Identifies both α-helices and β-strands 
• (Algorithm: Support Vector Machines)  
• Tested on simulated maps at 8 Å and experimental 
maps of resolutions (3.8–9 Å) 

• Does not place secondary 
structure elements in the density map 
• Does not detect loops 

CNN by Li. et 
al. [104] 

• Identifies both α-helices and β-strands 
• (Algorithm: pioneer in using CNN in SSE detection) 

• Not tested on experimental 
maps 
• Does not place SSE structures 
in the density map 

Emap2sec [101] • Identifies three structure classes: α-helices, β-strands, 
and loops 

• Does not place SSE structures 
in the density map 
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• (Algorithm: CNN) 
• Tested on both simulated and experimental maps of 
resolution up to 10 Å 
• Code is available 

5. Conclusions 

Cryo-electron microscopy is now a well-established technique for determining the structure of 
macromolecular complexes. At the beginning of cryo-electron microscopy, reconstructed EM images 
were limited to intermediate-to-low resolution, thus fitting methods of high-resolution structures 
into EM maps were developed. Over time, advances in cryo-electron technology enabled obtaining 
higher resolution EM maps, hence de novo modeling methods emerged which provided high 
resolution images without the need of extra resources. 

New software will be required as the cryo-EM field further progresses. Two areas are expected 
to make substantial progress in coming years. First, as the resolution of cryo-EM improves, the study 
of macromolecular conformational dynamics will become possible, which requires new development 
of the software that enables it [87]. Macromolecules may have discrete or continuous conformational 
states [105]. These different conformational states, which may exist in the same sample, will need 
new computational approaches to be classified and extracted from a series of 3-D maps [106,107]. 
Second, it is highly expected that cryo-electron tomography (cryo-ET), which can analyze biological 
assemblies in their native cellular environment, will become a focus of studies in structural biology 
[108]. Recent technical advances such as focused ion beam [109] allow producing higher resolution 
tomograms, which would accelerate the development of cryo-ET methods. 

Structural biology using cryo-EM/ET has entered an exciting era where many new experimental 
and computational methods are developed and synergize to produce unprecedented pictures and 
movies of molecules, cells, and tissues. 
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