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Abstract: In this work, we reported a formaldehyde (HCHO) gas sensor with highly sensitive
and selective gas-sensing performance at low operating temperature based on graphene oxide
(GO)@SnO2 nanofiber/nanosheets (NF/NSs) nanocomposites. Hierarchical SnO2 NF/NSs coated
with GO nanosheets showed enhanced sensing performance for HCHO gas, especially at low
operating temperature. A series of characterization methods, including X-ray diffraction (XRD),
Field emission scanning electron microscopy (FE-SEM), Transmission electron microscope (TEM),
X-ray photoelectron spectroscopy (XPS) and Brunauer–Emmett–Teller (BET) were used to characterize
their microstructures, morphologies, compositions, surface areas and so on. The sensing performance
of GO@SnO2 NF/NSs nanocomposites was optimized by adjusting the loading amount of GO ranging
from 0.25% to 1.25%. The results showed the optimum loading amount of 1% GO in GO@SnO2

NF/NSs nanocomposites not only exhibited the highest sensitivity value (Ra/Rg = 280 to 100 ppm
HCHO gas) but also lowered the optimum operation temperature from 120 ◦C to 60 ◦C. The response
value was about 4.5 times higher than that of pure hierarchical SnO2 NF/NSs (Ra/Rg = 64 to 100 ppm).
GO@SnO2 NF/NSs nanocomposites showed lower detection limit down to 0.25 ppm HCHO and
excellent selectivity against interfering gases (ethanol (C2H5OH), acetone (CH3COCH3), methanol
(CH3OH), ammonia (NH3), methylbenzene (C7H8), benzene (C6H6) and water (H2O)). The enhanced
sensing performance for HCHO was mainly ascribed to the high specific surface area, suitable electron
transfer channels and the synergistic effect of the SnO2 NF/NSs and GO nanosheets network.

Keywords: GO@SnO2 NF/NSs; nanocomposites; formaldehyde gas sensors; three-dimensional
nanostructure

1. Introduction

HCHO is a colorless gas with pungent smell, which was considered as one of the most serious
indoor air pollutants [1]. As a critical raw material, HCHO has been widely applied for various areas of
industry, such as construction materials, daily products and so on [2]. Simultaneously, when people are
exposed to the certain concentration of HCHO, a series of reactions may be caused due to its high toxicity,
such as corrosion of the gastrointestinal tract; inflammation of the mouth, eye or nose; throat irritant
reaction and so on. Especially, nose and throat cancer are more easily caused than what is expected [3,4].
In order to detect HCHO effectively, various techniques and metal oxide semiconductors (MOSs) based
gas sensors have recently developed, including SnO2 [5–7], Co3O4-ZnO core-shell NFs [8], ultrathin
In2O3 nanosheets [9], reduced graphene oxide (rGO)/TiO2 [10] and Cr-doped WO3 nanosheets [11].
Due to their stable sensitivity and low-cost production, metal oxide semiconductors are widely
studied. However, these gas sensors based on MOSs have many disadvantages, including low
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sensitivity, poor selectivity and/or relatively high optimum operation temperature. Hence, designing
and developing gas sensors with high sensibility, excellent selectivity and lower optimum operation
temperature is urgent and important.

Graphene is a typical two-dimensional (2D) sheet of sp2 bonded carbon with excellent electronic
applications. Due to its unique physical and chemical properties, many efforts have been carried
out on the application of graphene as sensing elements [12]. These advantages, including its high
conductivity, large surface area and low electrical noise, make it a promising platform for preparing new
sensors [13–15]. In order to prepare a new gas sensor with high sensing performance, low operation
temperature and excellent selectivity, the combination of graphene and metal oxide semiconductors is a
new strategy to enhance sensing performance compared to pure sensing materials [16]. Gaikwad et al.
have reported a NH3 gas sensor based on Polyaniline/Graphene Oxide (PANI/GO) by nanoemulsion
method [17]. Sun et al. have synthesized rGO/ZnSnO3 composites as a sensing material for detecting
HCHO gas by a facile solution-based self-assembly synthesis method [18]. Rong et al. have prepared
microstructures of SnO2@rGO nanocomposites for HCHO detection by facile thermal treatment [5].
Feng et al. have reported excellent ammonia sensors based on rGO/Co3O4 nanofibers by simple
electrospinning [19]. Guo et al. have demonstrated excellent acetone sensors by using the electrospun
rGO/Fe2O3 NFs as a sensing material [20]. However, these sensors based on nanocomposites showed
low sensitivity, higher operation temperature and poor selectivity. Naturally, preparing a HCHO gas
sensor with excellent sensing performance at low operation temperature is urgent and essential.

In this work, we reported an excellent HCHO gas sensor based on 3D hierarchical SnO2 NF/NSs
coated by the GO nanosheets. The hierarchical SnO2 NF/NSs was prepared by facile electrospinning
and further hydrothermal methods, and then, GO was impregnated as the sensitizer. The structure and
morphology of nanocomposites were studied by a series of characterizations, including X-ray diffraction
(XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscope (TEM),
X-ray photoelectron spectroscopy (XPS) and Brunauer–Emmett–Teller (BET). Gas sensor evaluating
system was used to investigate the sensing performance of GO@SnO2 NF/NSs sensors, including
the response value, the optimum operation temperature, dynamic response/recovery process and
selectivity. Furthermore, to confirm the optimal loading ratio of GO, the sensing performance of SnO2

NF/NSs with different loading ratios of GO was also investigated. Finally, the sensing mechanism of
GO@SnO2 NF/NSs and the role of GO were also discussed.

2. Results and Discussions

2.1. Characterization of Sensing Materials

The XRD patterns of pristine SnO2 NF/NSs, GO@SnO2 NF/NSs nanocomposites and GO were
presented in Figure 1. The diffraction peaks of SnO2 are not changed after introducing GO nanosheets.
The main diffraction peaks observed at 2θ = 26.6◦, 33.8◦, 37.9◦ and 51.7◦ correspond to (110), (101),
(200) and (211) peaks of SnO2 with a tetragonal rutile structure (PDF#70-4177), respectively. In addition,
the GO@SnO2 NF/NSs has similar diffraction peaks to pristine SnO2. The diffraction peak centered at
2θ = 10.6◦ in the XRD spectra was signed as (002) of GO [21]. However, the diffraction peak of (002) was
not obvious in the XRD spectra of GO@SnO2 NF/NSs nanocomposites, which due to the low loading
ratio the weak peak intensity of GO [22–24]. In addition, the absence of XRD characteristic peaks of
GO further indicated their good dispersity in nanocomposites. It is worth noting that the diffraction
peak intensities of GO@SnO2 NF/NSs nanocomposites gradually weaken compared with pristine
SnO2, which is attributed to the destroyed orderliness during stacking of GO/SnO2 nanocomposite
networks [6,21]. No other diffraction peak of impurity was observed in the XRD spectra of all products.
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Figure 1. XRD patterns of (a) GO, (b) SnO2 NF/NSs and (c–g) GO@SnO2 NF/NSs nanocomposites with 
different GO content. 

Raman spectra with 633 nm laser was employed to testify the presence of GO in GO@SnO2 
NF/NSs nanocomposites. Figure 2 showed the Raman spectra of SnO2 NF/NSs, 1% GO@SnO2 NF/NSs 
and GO. Compared with pure SnO2 NF/NSs, two strong peaks were observed at 1327 and 1590 cm−1, 
which match the D and G bands of GO, respectively. The observed G peak contains information 
regarding the sp2 hybridization within the carbon materials, and the D peak is used to measure 
disordered degree and the induced defect of GO due to the presence of functional groups [25,26]. The 
intensity ratio of D band and G band suggests the disorder degree and the average size of the sp2 
dominating in graphite [27]. This suggests the presence of GO in GO@SnO2 NF/NSs nanocomposites. 
What is more, the ratio of D and G intensity in 1% GO@SnO2 NF/NSs is higher than GO, which 
responds to the reported study [28,29]. The measured result showed that the interaction between GO 
and SnO2 NF/NSs leads to the increase of defects in GO nanosheets, and the process can be acted as 
a slight reduction from GO to rGO [29–31]. 

 
Figure 2. Raman spectra of pure SnO2 NF/NSs, 1% GO@SnO2 NF/NSs and pure GO nanosheets. 

SEM was conducted to investigate the morphologies of pristine SnO2 NF/NSs, 1% GO@SnO2 
NF/NSs and GO nanosheets. As observed in Figure 3a,d, the diameter and length of hierarchical SnO2 
NF/NSs are about 700 nm and tens of micrometers, respectively. Furthermore, SnO2 nanosheet arrays 
vertically grew and were uniformly distributed on the surface of SnO2 nanofibers with high length–
diameter ratio. The special orientation and open structure expose the whole surface to the gas 
atmosphere, which can enhance surface active sites and improve the absorption ability to target gas 
molecules. As can be seen in Figure 3c,f, GO showed gossamery nanosheet structure with slight and 

Figure 1. XRD patterns of (a) GO, (b) SnO2 NF/NSs and (c–g) GO@SnO2 NF/NSs nanocomposites with
different GO content.

Raman spectra with 633 nm laser was employed to testify the presence of GO in GO@SnO2

NF/NSs nanocomposites. Figure 2 showed the Raman spectra of SnO2 NF/NSs, 1% GO@SnO2 NF/NSs
and GO. Compared with pure SnO2 NF/NSs, two strong peaks were observed at 1327 and 1590 cm−1,
which match the D and G bands of GO, respectively. The observed G peak contains information
regarding the sp2 hybridization within the carbon materials, and the D peak is used to measure
disordered degree and the induced defect of GO due to the presence of functional groups [25,26].
The intensity ratio of D band and G band suggests the disorder degree and the average size of the sp2

dominating in graphite [27]. This suggests the presence of GO in GO@SnO2 NF/NSs nanocomposites.
What is more, the ratio of D and G intensity in 1% GO@SnO2 NF/NSs is higher than GO, which responds
to the reported study [28,29]. The measured result showed that the interaction between GO and SnO2

NF/NSs leads to the increase of defects in GO nanosheets, and the process can be acted as a slight
reduction from GO to rGO [29–31].
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Figure 2. Raman spectra of pure SnO2 NF/NSs, 1% GO@SnO2 NF/NSs and pure GO nanosheets.

SEM was conducted to investigate the morphologies of pristine SnO2 NF/NSs, 1% GO@SnO2

NF/NSs and GO nanosheets. As observed in Figure 3a,d, the diameter and length of hierarchical
SnO2 NF/NSs are about 700 nm and tens of micrometers, respectively. Furthermore, SnO2 nanosheet
arrays vertically grew and were uniformly distributed on the surface of SnO2 nanofibers with high
length–diameter ratio. The special orientation and open structure expose the whole surface to the gas
atmosphere, which can enhance surface active sites and improve the absorption ability to target gas
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molecules. As can be seen in Figure 3c,f, GO showed gossamery nanosheet structure with slight and
disordered wrinkles, which makes it produce a large specific surface area [24]. Figure 3b,e displayed
the SEM images of 1% GO@SnO2 NF/NSs. Obviously, hierarchical SnO2 NF/NSs were coated by GO
nanosheets, and a few of GO nanosheets were embedded into interspace among these SnO2 NF/NSs.
It is noteworthy that GO nanosheets showed a crumpled, rippled morphology and adhered to the
surface of pure SnO2 NF/NSs tightly. In addition, GO nanosheets evenly distributed in hierarchical
SnO2 NF/NSs and formed network. Compared with pure hierarchical SnO2 NF/NSs, the intersecting
bonding and good contacts between SnO2 NF/NSs and GO nanosheets can generate more electrical
connection paths, which can significantly improve the electron transfer in gas sensing test [21].
Moreover, these special structures constructed by hierarchical SnO2 NF/NSs and GO nanosheets
can make the diffusion and adsorption of gas molecules more effective than that of the pure SnO2

NF/NSs, which can contribute to the improvement of gas-sensing performance [32]. To further study
the microstructure of GO@SnO2 NF/NSs nanocomposites, TEM and high-resolution TEM (HRTEM)
were carried out and shown in Figure 3g–i. Figure 3g showed the TEM image of GO@SnO2 NF/NSs
nanocomposites, which demonstrated that GO nanosheets had successfully been loaded on the surface
of hierarchical SnO2 with a diameter of about 700 nm. As can be seen in Figure 3g,h, thin and
wrinkled GO nanosheets adhered to the surface of SnO2 nanosheet arrays. There is a good contact and
intersecting bonding between hierarchical SnO2 NF/NSs and GO nanosheets, which corresponds to the
observed SEM result of the GO@SnO2 NF/NSs from Figure 3b,e. The lattice space of 0.26 nm measured
in Figure 3i matches well with the (101) planes of tetragonal rutile SnO2. No other impure lattice was
observed, which was consistent with the XRD analysis.
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Figure 3. SEM images of the as-prepared (a) and (d) SnO2 NF/NSs, (b) and (e) 1% GO@SnO2 NF/NSs
and (c) and (f) GO; (g) low magnification TEM image; (h) low magnification TEM image, (i) HRTEM
image of the 1% GO@SnO2 NF/NSs nanocomposites.

In order to investigate the chemical composition and oxidation state of the sensitive materials,
XPS was conducted. As shown in Figure 4a, the spectrum of GO@SnO2 NF/NSs indicated that the
main constituent elements were C, Sn and O in the GO@SnO2 NF/NSs nanocomposites. Figure S1
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showed that the two peaks centered at the binding energy of 486.3 eV and 494.7 eV corresponded
to Sn 3d5/2 and Sn 3d3/2 in pure SnO2 NF/NSs, respectively, which implies the existence of Sn4+ [33].
The strong peaks located at the binding energy of 486.5 eV and 494.9 eV are attributed to Sn 3d5/2

and Sn 3d3/2 in GO@SnO2 NF/NSs nanocomposites, respectively. Figure 4b shows C 1s spectrum of
GO@SnO2 NF/NSs with four peaks at 284.8 eV, 286.4 eV, 287.7 eV and 288.9 eV, which are ascribed to
the C-C, C-OH, C=O and O=C-OH, respectively [34]. Gas adsorption ability of sensing material is
crucial for sensing performance. To further demonstrate the oxygen species of the obtained sensing
materials, the O 1s spectrum of sensing materials was analyzed. The O 1s spectrum of pure SnO2

NF/NSs and 1% GO@SnO2 NF/NSs were shown in Figure 4c,d, respectively. The O 1s XPS spectra of
pure SnO2 NF/NSs and 1% GO@SnO2 NF/NSs could be fitted into two peaks, which correspond to
lattice oxygen (Olat) and adsorbed oxygen (Oads). The latter peaks centered at the binding energy of
530.2 ± 0.1 eV could be ascribed to lattice oxygen, and the former peaks located at the binding energy
of 531.3 ± 0 eV belonged to chemisorbed oxygen species (O−, O2

− or O2−) on the surface of sensing
material. As shown in Table 1, the relative percentage of different oxygen species on the surface of
pure SnO2 NF/NSs and 1% GO@SnO2 NF/NSs have been summarized. The 1% GO@SnO2 NF/NSs
showed smaller Olat percentage (49.14%) than that of pure SnO2 NF/NSs (69.76%). However, compared
with pure SnO2 NF/NSs (30.24%), 1% GO@SnO2 NF/NSs showed larger Oads percentage (50.86%).
The chemisorbed oxygen species is crucial for the reaction with the target gas, which could significantly
contribute to the improvement of gas-sensing performance [35].
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GO@SnO2 NF/NSs nanocomposite, (b) C 1s of 1% GO@SnO2 NF/NSs nanocomposites, (c,d) O 1s of
pure SnO2 NF/NSs and 1% GO@SnO2 NF/NSs nanocomposites, respectively.
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Table 1. The XPS spectra results of pristine SnO2 NF/NSs and 1% GO/SnO2 NF/NSs.

Sensing
Materials Sn 3d Binding

Energy (eV)
Oxygen
Species

Relative
Percentage (%)

Binding
Energy (eV)

SnO2 NF/NSs Sn4+ 3d3/2 494.7 Olat 69.76 530.2
Sn4+ 3d5/2 486.3 Oads 30.24 531.3

1% GO@SnO2
NF/NSs

Sn4+ 3d3/2 494.9 Olat 49.14 530.3
Sn4+ 3d5/2 494.5 Oads 50.86 531.3

To study the porous structure and surface area of pure SnO2 NF/NSs and 1% GO@SnO2 NF/NSs,
the nitrogen adsorption–desorption measure was employed. As shown in Figure S1a, the corresponding
N2 desorption–desorption isotherm curve of pure SnO2 NF/NSs and 1% GO@SnO2 NF/NSs showed
a typical IV isotherm with a H3 hysteresis loop from 0.7 to 1 (P/P0), and the N2 adsorption quantity
augments with the increase of relative pressure, which indicated the presence of the mesoporous
structure in the as-prepared sensing materials. Detailed BET data are showed in Table S1. It is worth
noting that 1% GO@SnO2 NF/NSs showed a BET surface area of 18.0 m2/g, which is larger than that of
the pure SnO2 NF/NSs (16.1 m2/g). It demonstrated that BET surface area of the nanocomposites could
further increase after the introduction of GO nanosheets. The larger BET surface area of 1% GO@SnO2

NF/NSs could provide more active sites for the adsorption of gas molecules, which could facilitate the
improvement of gas-sensing performance [36,37]. With respect to the pore size distribution of these
sensing materials, as can be observed in Figure S2b, the GO@SnO2 nanocomposites have a smaller
pore size (25.7 nm) than that of pure SnO2 (37.8 nm), which may be ascribed to introduction and
wrapping of GO on hierarchical SnO2. The larger BET surface area and smaller mesoporous channels
can effectively promote diffusion and adsorption of gas molecules, improving gas-sensing performance
of gas sensors.

2.2. Gas Sensing Properties

The working temperature has a great influence on gas response by controlling reaction kinetics of
gas molecule and oxygen adsorbed on material surface [38]. To prove the influence of the operation
temperature on the prepared sensing materials, the gas sensors based on the obtained sensing materials
were prepared, and the gas-sensing performances of the pure SnO2 NF/NSs and GO@SnO2 NF/NSs
with five different GO loading ratio (0.25%, 0.5%, 0.75%, 1% and 1.25% GO) toward 100 ppm HCHO
were tested to confirm the optimal operation temperature. Many factors can influence the relationship
between the adsorbed target gases and surface reactions [39,40]. At the beginning, HCHO molecules
will react with the chemisorbed oxygen on the surface of sensing materials, and the redox reaction
will be significantly activated at higher temperature. When the operation temperature is too high,
the adsorption of HCHO molecules is likely to be suppressed, and the desorption may occur before
the redox reactions, which will influence gas-sensing performance. Therefore, the optimal operation
temperature is at an equilibrium point between adsorption and desorption processes. As shown in
Figure 5a, the gas response values of gas sensors based on the pure SnO2 NF/NSs and GO@SnO2

NF/NSs nanocomposites toward 100 ppm HCHO gas at the operation temperature range of 40 to 150 ◦C
were tested. The pure SnO2 NF/NSs sensor shows the highest response value of 51.76 at the operation
temperature of 120 ◦C. However, compared with pure SnO2 NF/NSs based gas sensor, the GO@SnO2

nanocomposites based gas sensors show the highest response at a lower operation temperature of
60 ◦C, and the gas response values of 0.25%, 0.5%, 0.75%, 1%, 1.25% GO@SnO2 NF/NSs based gas
sensors toward 100 ppm HCHO gas were 96.1, 162.1, 205.1, 286.2, and 107.7, respectively. The results
can better prove the effect of GO in gas-sensing performance. It is obvious that GO@SnO2 NF/NSs
nanocomposites with different GO doping amounts showed a lower optimal operation temperature
(60 ◦C) than that of pure SnO2 NF/NSs (120 ◦C) owing to the introduction of GO, which lowered the
activation energy in relation to the surface reaction. Hence, based on the above analysis, 1% GO was
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considered as the optimal doping amount in the GO@SnO2 NF/NSs nanocomposites at the optimal
operation temperature of 60 ◦C. By taking Figure 5a into consideration, it has been demonstrated that
appropriate GO loading amount in SnO2 NF/NSs not only enhanced the gas sensing performance
to HCHO gas but also lowered the optimal operation temperature. The enhanced sensitivity could
be ascribed to the loading of planar GO nanosheets, which constructed a 3D network and improved
interconnectivity among hierarchical SnO2 NF/NSs [6]. However, excess GO loading amount may
deteriorate the gas-sensing performance SnO2 NF/NSs to HCHO gas. The possible reason for it is
that the excess GO nanosheets may cause a dramatic change of conductivity of sensing materials,
which causes decrease of base resistance and degradation of gas-sensing performance of gas sensors [41].
Therefore, 1% GO@SnO2 NF/NSs was selected to further study other gas-sensing performance.

Selectivity is considered as a crucial part of gas-sensing performances. To further investigate
the influence of GO in the selectivity of SnO2 NF/NSs, the gas responses of sensors based on 0.25%
GO@SnO2 NF/NSs, 0.5% GO@SnO2 NF/NSs, 0.75% GO@SnO2 NF/NSs, 1% GO@SnO2 NF/NSs,
1.25% GO@SnO2 NF/NSs and the pure SnO2 NF/NSs toward 100 ppm of various gases were tested at
different gas atmospheres, including ethanol (C2H5OH), acetone (CH3COCH3), methanol (CH3OH),
ammonia (NH3), methylbenzene (C7H8), benzene (C6H6) and water (H2O). As exhibited in Figure 5b,
these sensors showed a higher gas response for HCHO gas against other interfering gases. Especially,
1% GO@SnO2 NF/NSs nanocomposite sensor showed the highest response values of 286.2 to 100 ppm
HCHO gas, which is nearly 50 to 100 times higher than other interfering gases, but it is only about
10 to 20 times for the pure SnO2 NF/NSs based sensors. Based on the analysis, the loading of GO
in SnO2 NF/NSs can significantly enhance the selectivity of gas sensor to HCHO gas, and the 1%
GO@SnO2 NF/NSs based gas sensor exhibited the best selectivity to HCHO gas in contrast with other
GO@SnO2 NF/NSs nanocomposites and pure SnO2 NF/NSs. Many reasons can be argued to explain
the enhancement of selectivity for GO@SnO2 NF/NSs nanocomposite-based sensors [42]. (i) The
excellent selectivity of GO@SnO2 NF/NSs nanocomposites for HCHO gas detection could be ascribed
to higher HCHO adsorption interaction between sensing materials. The sensing performance depends
on many parameters between sensing materials and gas molecules, including absorption energy,
distance of analysts above material surface, and charge transfer between the molecules and sensing
materials. (ii) GO nanosheets generate more defects and functional groups, which acted as active sites
for adsorption of gas molecules and could facilitate enhancement of the gas-sensing performance [43].
(iii) GO as a planar nanosheets can improve the degree of interconnection between SnO2 NF/NSs.
Figure S3 exhibited the response/recovery curve of 1% GO@SnO2 NF/NSs toward 50 ppm HCHO gas.
When the gas sensor based on 1% GO@SnO2 NF/NSs was tested in HCHO gas atmosphere of 50 ppm,
the response and recovery times of gas sensor were 8.1 min and 3.0 min, respectively. Long response
and recovery time can be ascribed to the low operation temperature that makes kinetic of the adsorption
and desorption of oxygen and target gas on the surface of the lower sensing material, which causes a
slow response and recovery process [44]. To investigate the relationship of HCHO gas concentration
and response value of gas sensors, these gas sensors based on pure SnO2 NF/NSs and SnO2 NF/NSs
with different GO loading amounts were tested in various HCHO gas concentrations. As shown in
Figure S4, with increasing HCHO gas concentration from 0.25 to 100 ppm, the response value gradually
increased. There are good relationships between HCHO gas concentration and response value of gas
sensors. The dynamic responses of gas sensors based on pure SnO2 NF/NSs to 0.25–100 ppm HCHO
gas at 60 ◦C were shown in Figure S5a. The gas sensor showed enhanced sensitivity as the HCHO
concentration increased from 0.25 to 100 ppm. The response values of gas sensor were 2.1, 4.9, 6.7,
12.8, 17.0, 44.2, 60.8 and 157.5 for the sensors based on SnO2 NFs/NSs when tested in 0.25, 0.5, 1, 5, 10,
50 and 100 ppm HCHO gas. As shown in Figure S5b, with the increase of HCHO gas concentration,
the sensor showed a linear relationship with R2 = 0.79 to HCHO gas concentration ranging from 0.25
to 100 ppm. Figure 5c showed dynamic responses of 1% GO@SnO2 NF/NSs based sensor 0.25 to
100 ppm HCHO gas at 60 ◦C. However, compared with pure SnO2 NF/NSs, 1% GO@SnO2 NF/NSs
based sensor showed higher sensitivity to HCHO gas detection. The gas sensor showed enhanced
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sensitivity as the HCHO concentration increased from 0.25 to 100 ppm. The responses were 6.3, 13.9,
21.9, 29.2, 50.8, 149.7 and 287.6 for the sensors based on 1% GO@SnO2 NF/NSs when tested in 0.25,
0.5, 1, 5, 10, 50 and 100 ppm HCHO gas. To further analyze the relationship between the sensitivity
and different concentrations of HCHO gas, the correlation lines between concentrations of HCHO gas
and sensitivity of gas sensors based on 1% GO@SnO2 NF/NSs were fitted, as displayed in Figure 5d.
Obviously, the gas response of gas sensor augment with the increase of HCHO gas concentrations in a
linear relationship with R2 = 0.958 to HCHO gas concentration ranging from 0.25 to 100 ppm, and it
showed an excellent linear relationship between HCHO gas concentration and sensitivity from low to
high concentration of HCHO gas. It suggested that the response values gradually increased along
with the augment of HCHO gas concentration, and the gas sensors based on the GO@SnO2 NF/NSs
showed more significant improvement than the pristine SnO2 NF/NSs based sensor. Furthermore,
the gas sensors based on these gas sensing materials revealed an excellent linear detection ranging
from 0.25 ppm to 100 ppm.
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Figure 5. (a) The responses of gas sensors toward 100 ppm formaldehyde at different operation
temperatures. (b) Responses of the gas sensors to different test gases at their respective optimal
operating temperatures. (c) Response of 1% GO@SnO2 NF/NSs nanocomposites toward HCHO gas in
concentration ranges of 0.25–100 ppm at 60 ◦C. (d) Linear approximation of the detection limit with 1%
GO@SnO2 NF/NSs nanocomposite.

The gas-sensing performance of SnO2 NF/NSs can be improved by introduction of GO nanosheets,
so many studies based on GO and SnO2 have been reported. The recently reported HCHO gas sensors
based on GO and SnO2 have been summarized. As can be seen in Table 2, the GO@SnO2 NF/NSs
based sensor showed better gas-sensing performance, which has a lower operation temperature and a
higher gas response. The gas sensors based on GO@SnO2 NF/NSs nanocomposites show better sensing
performance, which provides an effective and facile method for the development of HCHO gas sensor
with high response and excellent selectivity at a lower operation temperature.
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Table 2. Sensing performance of recently reported SMO-based gas sensors to HCHO gas.

Sensing Materials T (◦C) LOD (ppm) Concentration
(ppm)

Response
(Ra/Rg) References

GO/SnO2 120 0.25 100 32 [6]
Flower-like SnO2 240 1 100 24.8 [45]

GO-SnO2 150 10 200 90 [46]
Porous PtO2/SnO2 100 0.1 100 70 [47]
SnO2@graphene 120 1 100 45 [48]
Graphene/ZnO 200 2 100 12 [49]

In2O3/SnO2 275 0.5 10 8.7 [50]
In2O3@rGO 225 5 100 1.8 [51]

VG/SnO2 160 0.02 100 138 [5]
GO@SnO2 NF/NSs 60 0.25 100 280 This work

2.3. Gas Sensing Mechanism

The sensing process of the nanocomposites is mainly based on the chemical reaction between
the sensing materials and different gas molecules. As shown in Figure 6a, when the gas sensors were
exposed to air atmosphere, oxide molecules chemisorbed on the active surface of sensing materials
were changed into various oxide species (O2

−, O−, or O2−) [52]. The chemisorbed oxygen species
depended on their working temperature. The continual transport of electrons from conduction band
of the sensing materials to the as-chemisorbed oxide molecules leads to augment of electron depletion
layer on the surface of sensing materials and increase of resistance. The relative reaction process
between the sensing materials and oxide molecules can be represented as the following Equations (1)
to (4).

O2 (gas)→ O2 (ads) (1)

O2 (ads) + e−→ O2
− (ads) (Top < 100 ◦C) (2)

O2
− (ads) + e−→ 2O− (ads) (100 ◦C < Top < 300 ◦C) (3)

O− (ads) + e−→ O2− (ads) (300 ◦C < Top) (4)

Based on the analysis in Figure 5a, the gas-sensing performance of these gas sensors was studied
under the operation temperature of 60 ◦C. Therefore, the oxide molecules chemisorbed on the surface
of sensing materials were ionized into O2

−. When the HCHO gas was introduced, the HCHO gases
would react with the chemisorbed oxide ions on the surface of sensing materials, and the trapped
electrons would be released back to the conduction band of sensing materials. The relative reaction
process can be represented as the following Equation (5) [7,53,54].

HCHO (ads) + 2O− (ads)→ CO2 (gas) + H2O (gas) + 2e− (5)

Compared with the pure hierarchical SnO2 NF/NSs, the gas sensors based on GO@SnO2 NF/NSs
nanocomposites exhibited better gas-sensing performance. The enhanced sensing performance is
attributed to the following reasons.

(i) Enhanced specific surface area played a critical role in the improvement of gas-sensing
performance toward HCHO gas. As discussed about the BET surface area in Figure S2 and Table S1,
GO@SnO2 NF/NSs produced a larger specific surface area (18.0 m2/g) than that of pure SnO2 NF/NSs
(16.1 m2/g), which indicated that more active adsorption sites existed on the surface of GO@SnO2

NF/NSs. The improved surface activity can make more oxide molecules adsorbed and ionized on
the surface of sensing materials. Therefore, larger specific surface area of GO@SnO2 NF/NSs is all
beneficial to facilitate the improvement of the sensing properties for HCHO gas [52].

(ii) The introduction of GO can act as an active site for the absorption of gas molecules and
influence the transfer of electrons between the GO and SnO2. The existence of GO can provide more
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active sites for the reaction with target gas molecules. Strong gas adsorption capacity of GO nanosheets
can effectively facilitate the chemical reaction, which can improve the sensing performance of gas
sensors. Moreover, due to the different work functions of GO and SnO2, when the GO and SnO2 are
in contact, the electrons will be transferred from the SnO2 with lower work functions of 4.55 eV to
the GO with higher work functions of 5.3 eV until an equalization of the Fermi levels, which causes
the band bend of p-n heterojunction between the GO and SnO2 [55]. Schematic illustration of HCHO
gas sensing mechanism was shown in Figure 6b. Transfer of a large number of electrons results in
the increase of electron depletion layer in SnO2 to some extent, which could lead to a higher initial
resistance. Therefore, when the gas sensors are exposed to HCHO gas atmosphere, it will cause huge
resistance changes [6,41,56].

(iii) The potential barrier at the interfaces between hierarchical SnO2 NF/NSs and GO was modified
because abundant oxygen-containing functional groups exist in GO, including carboxylic, hydroxyl,
and epoxy groups, and some chemical interactions between GO and hierarchical SnO2 NF/NSs would
increase the electrical conductibility of GO and influence the carrier concentration of hierarchical SnO2

NF/NSs [57,58].Molecules 2020, 25, x FOR PEER REVIEW 10 of 15 
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Figure 6. Schematic illustration of HCHO gas sensing mechanism for (a) pure SnO2 NF/NSs and
GO@SnO2 NF/NSs nanocomposite; (b) the energy band structures of GO@SnO2 NF/NSs nanocomposite
in different gas atmospheres.

3. Materials and Methods

3.1. Materials

Poly (vinyl pyrrolidone) (PVP, Mw = 1,300,000), N,N-dimethylformamide (DMF) and ethanol
(EtOH) (99.0%) were purchased from Shang Hai Aladdin Industrial Co. Ltd., China. Stannous chloride
(SnCl2·2H2O) and sodium citrate (Na3C6H5O7·2H2O) were obtained from Sinopharm Chemical
Reagent Co. Ltd., China. The above chemical reagents were analytical grade and used without
further purification.
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3.2. Preparation of Sensing Materials

GO@SnO2 NF/NSs nanocomposites were synthesized via electrospinning and further
hydrothermal method. In a typical synthesis, Scheme 1 showed the schematic diagram of the
preparation of SnO2 nanofiber/nanosheets materials. SnO2 NF/NSs was prepared according to our
previous work [57].

The preparation of GO@SnO2 NF/NSs nanocomposites: GO was prepared from graphite powder
by Hummers’ method [6]. GO (12 mg) was added into 40 mL ethanol under ultrasound for 1 h to obtain
uniform solution. Under ultrasonic, a certain amount of the as-prepared GO solution was dropwise
added into SnO2 NF/NSs under stirring with grass rob. The GO@SnO2 NF/NSs nanocomposites were
obtained by drying at 60 ◦C for 12 h. The nanocomposites with different loading amounts of GO to the
obtained sensing material (0.25%, 0.5%, 0.75%, 1% and 1.25%) were prepared, respectively.
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Scheme 1. A schematic demonstration of the preparation process of GO@SnO2 NF/NSs nanocomposites.

3.3. Characterization

To analyze the microstructures and morphologies of the prepared products, FE-SEM (FEI, Quanta
FEG 450, Hillsboro, OR, USA) and Tecnai G220S-Twin transmission electron microscope were used
at an accelerating voltage of 30 and 120 kV. XRD (Bruker, D8 Advance, Karlsruhe, Germany) with
Cu-Kα (λ = 0.15418 nm) radiation in the range of 10◦ to 70◦ at room temperature was conducted to
analyze the crystalline structures of the prepared products. X-ray photoelectron spectroscopy (XPS,
Thermo Scientific, ESCALAB 250, Waltham, UK) with Mg Kα radiation was used to analyze elemental
compositions and chemical states of the prepared products. QUADRASORB SI gas adsorption analyzer
(N2 as adsorbate and operation temperature: −196 ◦C) was used to measure the specific surface
area and porosity of the prepared products. Raman Microscopy (Horiba, LabRAM HR Evolution,
Villeneuve-d’Ascq, France) with an excitation wavelength of 633 nm was conducted to analyze the
Raman spectra.

3.4. Gas Sensor Fabrication and Measurement

A paste was obtained by mixing the prepared GO@SnO2 NF/NSs with a certain amount of water
at a ratio of 4:1, and a ceramic tube with a pair of gold electrodes was coated by the prepared sensing
material with a small brush. A Ni-Cr heating inserted into the ceramic tube was applied to provide a
certain operation temperature by a temperature controller. The general structure of gas sensor and the
test circuit were displayed in Figure 7a,b, respectively. For the reducing gases and n-type metal oxide
semiconductor, the response of gas sensors was defined as the ratio of Ra and Rg, where Ra and Rg are
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the resistance in air and target gas, respectively. The times taken by the resistance ranging from Ra to
Ra − 90% (Ra − Rg) and from Rg to Rg + 90% (Ra − Rg) are defined as the response and recovery times
when the sensor is exposed to the target gas and retrieved from the target gas, respectively.Molecules 2020, 25, x FOR PEER REVIEW 12 of 15 
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4. Conclusions

In summary, GO@SnO2 NF/NSs nanocomposites have been successfully prepared.
The microstructures, morphologies, compositions and surface areas of the obtained materials were
investigated by using a series of characterization methods. The obtained 3D hierarchical GO@SnO2

NF/NSs nanocomposites possess larger specific surface areas and rich SnO2-GO interfaces. Compared
with pristine SnO2 NF/NSs, GO@SnO2 NF/NSs nanocomposites showed higher response value
and better selectivity for HCHO, and the optimum loading ratio of GO in the GO@SnO2 NF/NSs
nanocomposites is 1 wt %. Especially, 1% GO@SnO2 NF/NSs nanocomposite showed the highest
response value for HCHO (Ra/Rg = 280 to 100 ppm) at a lower operation temperature of 60 ◦C.
The gas sensors for HCHO show a low detection limit of 0.25 ppm. The enhanced gas-sensing
performances are mainly ascribed to larger specific surface area, electric regulation effects of GO with
rich functional groups and the synergistic effects of hierarchical SnO2 NF/NSs and GO. These GO@SnO2

nanocomposites are promising for high-performance gas sensors applied in various fields such as
environmental protection.
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