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Abstract: The antileukemia cancer activity of organic compounds analogous to ellipticine 

representes a critical endpoint in the understanding of this dramatic disease. A molecular modeling 

simulation on a dataset of 23 compounds, all of which comply with Lipinski’s rules and have a 

structure analogous to ellipticine, was performed using the quantitative structure activity 

relationship (QSAR) technique, followed by a detailed docking study on three different proteins 

significantly involved in this disease (PDB IDs: SYK, PI3K and BTK). As a result, a model with only 

four descriptors (HOMO, softness, AC1RABAMBID, and TS1KFABMID) was found to be robust 

enough for prediction of the antileukemia activity of the compounds studied in this work, with an 

R2 of 0.899 and Q2 of 0.730. A favorable interaction between the compounds and their target proteins 

was found in all cases; in particular, compounds 9 and 22 showed high activity and binding free 

energy values of around −10 kcal/mol. Theses compounds were evaluated in detail based on their 

molecular structure, and some modifications are suggested herein to enhance their biological 

activity. In particular, compounds 22_1, 22_2, 9_1, and 9_2 are indicated as possible new, potent 

ellipticine derivatives to be synthesized and biologically tested. 

Keywords: cancer; leukemia; molecular modeling; QSAR; molecular descriptors. 

 

1. Introduction 

Cancer disease represents one of the most significant health problems in the world, being the 

second most common cause of death around the planet [1,2]. It is estimated that by 2030, the number 

of cancer cases in the world will have increased by approximately 23.6 million [2]. The situation in 

the Latin American population is even more dramatic; according to the World Health Organization 

(WHO) data, 37% of cancer cases are reported in this region, and are associated with the limited 

development of technology and industry related to the treatment of this disease in these countries 
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[3]. Childhood cancer is considered a rare disease, with between 0.5% and 3% of the malign 

neoplasms reported around the world found in children. Nevertheless, this cancer type represents a 

significant public health problem due to the high probability of death in children, which generates a 

tremendous social impact on the families [4]. 

In this respect, leukemia is the principal childhood cancer. For children under 15, this type of 

cancer has a 30% rate of morbidity. Moreover, it seems that this kind of cancer affects more children 

living in poorer countries. In Latin America, the statistics is alarming: in Colombia, leukemia is 

responsible for around 49% of cancer deaths, while in Mexico, this kind of cancer is responsible for 

22% of childhood deaths [5]. In contrast, in industrially and technologically developed countries, the 

picture that emerges is encouraging: survival in leukemia patients has increased notably in the last 

years. Around 90% survival rates are reported in countries such as the United States and the United 

Kingdom. According to these statistics, 10% of patients were non-responsive to primary 

chemotherapy and consequently died [4–6]. 

Nowadays, a major concern in public health is the quality of life of childhood leukemia patients, 

especially related the side effects and toxicity of the drugs used to treat this kind of disease. In this 

regard, studies of leukemia biology have increased in the past decade [7,8]. Some recent articles have 

reported the discovery of protein targets that play an essential function in the life cycle of leukemia 

cells. This knowledge represents a subtle but real thread of hope in the search for new and novel 

compounds with a high affinity for this target; additionally, understanding the action mechanisms of 

thse targets could help researchers to improve the activity and toxicity of cancer drugs [9–12]. 

In recent decades, quantitative structure–activity relationships (QSAR) are among the 

techniques most often used to generate new, promising compounds against diseases such as malaria 

[13], diabetes [14], and cancer [15], among others. By definition, a QSAR model is an equation that 

involves molecular descriptors with a remarkable influence on a particular biological activity. The 

knowledge of these chemical characteristics will allow the development of new compounds with 

better activity and better therapeutic indexes. Moreover, it has been shown that the QSAR-based 

synthesis has a high probability of success in any disease [16,17]. 

At the same time, another technique widely used in the development of new drugs is molecular 

docking [18,19]. This tool has become more and more critical in drug design because of the 

extraordinary advances in protein purification, nuclear magnetic resonance in proteins, and protein 

crystallography, which have contributed to elucidating the structural details in ligand–protein 

complexes. This technique can be used to model the interactions between small molecules and any 

protein at the atomic scale, allowing researchers to describe the behaviors of these small molecules at 

the binding site (active site). 

The knowledge of both a leader structure from QSAR and its interaction type at the active site 

of the protein target from docking techniques represents a promising path in the search for and the 

development of new series of molecules active against a particular disease [20–26]. 

Regarding leukemia, the literature reveals extensive effort paid to the search for new molecules 

with potential applications in the treatment this disease. QSAR techniques have been applied to 

several families of compounds to find the structural characteristics that influence antileukemia 

activity [26–28]. More recently, some works have reported relationships between the structures of a 

compound family and affinity with a particular protein that plays a fundamental role in leukemia 

cell growth [29–32]. 

Ellipticine is a natural metabolite from the plant Ochrosia elliptica (Apocynaceae), and it has a 

potent anticancer activity. Its mechanism of action is related to DNA intercalation or via the inhibition 

of topoisomerase II protein [33–35]. Besides the significant activity of this compound, it is not yet 

available in the pharmaceutical market because of several side effects like nausea, vomiting, 

hypertension, and fatigue. We believe that strategies to eliminate or minimize the adverse effects of 

ellipticin can be derived based on functionalization, structural modification, or, more drastically, the 

search for new compounds analogous to this nucleus. 

Among the compounds similar to ellipticine are the benzodioxinic analogues. Some studies have 

reported that the presence of oxygen atoms as a cyclic peroxide (dioxygen) or as an ester group on 
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the ellipticine moiety seems to have a significant influence on the compound’s biological activity [36–

39]. The structural similarity with ellipticine is, in theory, a fundamental key to designing new 

anticancer compounds. Moreover, the vast quantity of reported compounds with structures close to 

ellipticine represents a unique opportunity to identify the common structural characteristic that any 

molecular structure must have to be active against leukemia. In this respect, this work aimed to find 

a quantitative relationship between several molecular descriptors (topological, thermodynamics, and 

electronics) and the antileukemia activity of compounds related to ellipticine, in order to guide the 

synthesis of new promising antileukemia compounds. Additionally, to offer more insight into the 

interaction of ellipticine derivatives with leukemia cells, a docking calculation on the selected 

molecular target of the L1210 leukemia line cell is presented. 

2. Results 

Pharmacological data in vitro of several ellipticine analogues with antileukemia activity against 

L1210 cells were collected from the literature [40,41]. After the application of the Lipinski [42] rule 

filters, only 23 ellipticine analogues (ellipticine include) were selected. Figure 1 shows the chemical 

structure of the compounds studied herein. 

2.1. Molecular Modeling 

The minimum-energy 3D geometries for the compounds shown in Figure 1 were obtained using 

density functional theory with WB97XD/6-311G(d,p) as a theory level [43], using Gaussian 16 

software [44] for Linux available in the high performing computer of the San Francisco de Quito 

University, Quito, Ecuador. The DFT level and interchange correlation functional was chosen because 

of its good correlation with experimental results based on the energetics and structure of organic 

molecules [45–48]. 

The minimum geometry structure was verified using the second derivative criteria [49]. In this 

regard, the vibrational frequency calculations were performed for the entire dataset and displayed 

no imaginary frequency, indicating that all of the geometries were minimum-geometry structures. 

Both minimum structures and frequency calculations were used to find electronic and molecular 

descriptors such as dipolar momentum (), HOMO (High Occupied Molecular Orbital) and LUMO 

(Low Unoccupied Molecular Orbital) energies, polarizability (α), enthalpy (H), entropy (S), free 

energy (G), ionization potential (PI), electronic affinity energy (EAE), hardness (), softness (s), 

electrophilic index (), lipophilia (ClogP), polar surface area (PSA), topological index (TI), Balaban 

index (BI), hydrogen bond acceptor (HA), hydrogen bond donator (HD), 

AC[1]_K_F_AB_nCi_2_M1_NS0_C_LGL[8-9]_a_MID (AC1RABABMID), and 

TS[1]_K_F_AB_nCi_2_M1_SS0_T_LGL[2-3]_a_MID (TS1KFABMID). Except for AC1RABABMID 

and TS1KFABMID, these topological indexes were computed using Chemaxon [50], while 

AC1RABABMID and TS1KFABMID were calculated using QuBiLs-MIDAS as reported previously 

[51]. 
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Figure 1. Chemical structures of ellipticine-analogous compounds studied in this work. 

2.2. Statistical Analysis 

The linear regression (LR) method was employed to find the most relevant molecular 

descriptors—the parameters related to the biological activity. Thus, the biological activity as pIC50 

(−ln(1/IC50), dependent variable) was plotted against each molecular descriptor. A regression 

coefficient > 0.5 was considered to indicate an “important” molecular descriptor. 

According to the linear regression analysis (LRA), Table 1 reveals that four electronic molecular 

descriptors (HOMO, softness, LUMO, and dipolar momentum ()) and three topological molecular 

descriptors (AC1RABABMID, TS1KFABMID, and PSA) have a strong influence over biological 

activity. 

Table 1. Values of the seven most important properties calculated and their respective values of 

antileukemial activity. HOMO, softness, and LUMO are expressed in hartree/particle, while  is 

expressed in Debye. 

Compound pIC50 HOMO AC1RABABMID TS1KFABMID Softness (s) LUMO  PSA () 

1 12.94 −0.288 0.015 0.762 3.615 0.011 5.636 87.38 

2 13.23 −0.288 0.007 0.187 4.613 0.011 5.646 91.98 

3 13.12 −0.288 0.038 0.142 3.614 0.011 5.610 96.58 

4 12.45 −0.291 0.011 0.197 3.576 0.011 5.575 101.18 

5 11.21 −0.294 0.010 0.767 3.535 0.011 5.475 105.55 

Name X R1 R2 

1 O CH3 -(CH2)3CH3 

2 O CH3 -(CH2)4CH3 

3 O -(CH2)4CH3 CH3 

4 O CH3 -(CH2)5CH3 

5 O CH3 -(CH2)6CH3 

6 O CH3 -(CH2CH(CH3)CH2C(CH3)3 

7 O -(CH2CH(CH3)CH2C(CH3)3 -CH3 

8 S CH3 -(CH2)5CH3 

9 O CH3 -(CH2)4CN 

10 O CH3 -(CH2)5CN 

11 O CH3 -(CH2)4CO2H 

12 O CH3 -(CH2)5NH2.HCl 

13 O CH3 -(CH2)4NHCH3 

 1 
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6 10.87 −0.288 0.015 0.342 3.502 0.003 5.099 102.75 

7 9.47 −0.295 0.010 −0.029 3.427 0.003 9.575 73.94 

8 14.43 −0.291 0.214 −0.199 4.528 0.007 6.154 73.94 

9 9.33 −0.289 0.022 −0.303 3.612 0.012 6.567 88.38 

10 11.27 −0.289 0.061 0.036 3.685 0.011 4.510 73.94 

11 12.94 −0.281 0.022 0.169 4.011 0.015 6.952 69.18 

ELLIPTICINE 15.48 −0.281 0.095 −1.020 6.100 0.000 3.545 24.06 

12 13.63 −0.286 0.169 −1.020 3.495 13.630 −0.286 23.59 

13 13.63 −0.286 0.169 −1.020 3.495 0.007 3.274 30.49 

14 10.59 −0.274 0.007 −0.193 3.914 0.016 5.912 59.95 

15 11.01 −0.262 0.055 −0.093 2.046 0.016 6.150 69.18 

16 10.82 −0.270 0.014 −0.453 3.835 0.007 5.121 41.93 

17 11.62 −0.287 0.027 0.382 3.369 −0.010 3.638 52.93 

18 11.17 −0.285 0.046 −0.018 3.410 −0.009 2.842 41.93 

19 14.51 −0.274 0.019 1.636 3.571 −0.008 7.458 100.85 

20 15.42 −0.274 0.022 2.150 3.567 −0.008 7.597 100.85 

21 10.11 −0.278 0.026 −0.660 3.560 −0.003 6.429 82.39 

22 17.73 −0.288 0.201 2.337 3.292 −0.015 7.236 100.85 

2.2.1. QSAR Model 

Using the descriptors shown in Table 1 as independent variables, we obtained the mathematical 

models described by Equations (1)–(3), with three–four descriptors. 

pIC50 = 6.3074 + 1.2938 s + 19.794 AC1RABABMID + 1.5161 TS1KFABMID 

R2 = 0.798, F = 25.0, s = 1.023, Q2 = 0.650, a(R2) = 0.064, a(Q2) = −0.453 
(1) 

 

pIC50 = 12.533 − 0.0189 PSA + 18.828 AC1RABABMID + 1.6302 TS1KFABMID 

R2 = 0.652, F = 11.9, s= 1.342, Q2 = 0.506, a(R2)= 0.036, a(Q2) = −0.287 
(2) 

 

pIC50 = 20.530 + 51.942 HOMO + 20.763 AC1RABABMID + 1.5447 

TS1KFABMID + 1.4174 s 

R2 = 0.836, F = 23.0, s = 0.946, Q2 = 0.729, a(R2) = 0.126, a(Q2) = −0.505 

(3) 

The best model, selected according to the statistical robustness, was Model 3, with an R2 of 0.836, 

a high Fisher ratio value of 27.02, and a great correlation prediction index (Q2). A Y-scrambling 

analysis was also performed on Model 3, and found values of a(R2) = 0.126 and a(Q2) = −0.505, which 

suggest that the models predictability cannot be explained by chance. The correlation prediction 

index was estimated by using the leave-one-out crossvalidation. Figure 2 graphically represents the 

linear relationship between the experimental pIC50 values and those predicted using Equation (3). 

 

Figure 2. Experimental pIC50 vs. pIC50 predicted using Equation (3). 
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The correlation matrix of Model 3 is shown in Table 2. Note that the Pearson’s correlation 

coefficient in each descriptor was <0.6, indicating that the model did not over fit. The descriptors 

AC1RABABMID and TS1KFABMID seemed to have the most influence over the activity. 

Table 2. Pearson’s correlation coefficient for the molecular descriptors used in Equation (3). 

 pIC50 HOMO AC1RABABMID TS1KFABMID Softness 

pIC50 1 0.012 0.497 0.512 0.210 

HOMO  1 −0.151 0.412 0.285 

AC1RABABMID   1 −0.010 0.043 

TS1KFABMID    1 −0.400 

Softness     1 

According to Equation (3), the highest occupied molecular orbital, HOMO, has a large influence 

over the antileukemia activity. Thus, the more negative the HOMO energy, the greater the impact on 

biological activity. This descriptor is related to the molecule’s capability to participate in 

dipole/dipole interactions like hydrogen bonds. Additionally, the HOMO energy describes the 

ionization potential and the molecule’s vulnerability to electrophiles attack. HOMO energy also plays 

a pivotal role in free radical reactions and redox potential [52–55] therefore, it is very common to find 

this descriptor in works related to anticancer activity. 

The global softness (s) related to the antileukemia activity shown for the compounds studied 

herein. Global softness is defined as the reciprocal of global hardness and describes the extent to 

which the electronic environment surrounding the nucleus/nuclei of an atomic/molecular species 

tends to loosen itself [56–60]. In this sense, it could be associated with a compound’s ability to deform 

its electronic cloud via variation of the number of electrons. Therefore, a soft compound necessarily 

has a high potential to transfer electrons in a redox process. As reported by Table 1, ellipticine had 

the highest softness value, while the rest of the studied compounds had values between 3 and 5, with 

the most actives ones values close to 5. 

The topographic descriptors AC1RABABMID and TS1KFABMID, which were estimated using 

QuBiL-MIDAS software, have been widely used for the construction of QSAR models for several 

biological activities [51,61]. These descriptors presented a good correlation with the pIC50 values, as 

shown in Table 2, and they were obtained by the application of some algebraic linear indexes, 

considering an autocorrelation and a total sum invariant with a lag value of 1 (AC1 and TS1) on the 

3D optimized structure. These two descriptors were atomic weighted by the physicochemical 

property logP, denoted with “a” at the end of the descriptor, and this property is related to the water 

solubility as well as to the lipophilicity of the compounds, which both play an important role in 

almost any biological activity of an organic compound. 

2.3. Molecular Docking 

A molecular docking tool was used to gain more insight into the binding modes of the ellipticine-

related compounds studied herein with the selected targets. It is necessary to mention that with the 

exception of ellipticine, the mechanisms of antileukemial cell proliferation inhibition by the 

compounds studied herein are not well known. One author proved that, in contrast to ellipticine, 

these kind of compounds are not able to inhibit topoisomerases I and II proteins [40,41]. In this regard, 

it seems that the antileukemial activity might be associated with other mechanisms that involve 

different targets than topoisomerases.  

According to the literature, spleen tyrosine kinase (SYK), phosphoinositide 3’kinase (PI3K), and 

Bruton’s tyrosine kinase (BTK) were selected because they have been related to decrease of leukemia 

cells [62–64] in preclinical models. Morover, some compounds structurally close to those studied 

herein have been reported as SYK [65], BTK [66], and PI3K inhibitors [67]. In this regard, the entire 

dataset shown in Table 3 was docked against the three targets mentioned above. Due to the inactivity 

against topoisomerase II, this target was ruled out.  
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Table 3. Scoring values for the entire data studied against the three selected target proteins. SYK: 

spleen tyrosine kinase; PI3K: phosphoinositide 3’kinase; BTK: Bruton’s tyrosine kinase; R788: 

fostamatinib. 

Compound pIC50 SYK PI3K BTK 

1 12.94 −8.1 −8.3 −9.0 

2 13.23 −8.9 −9.5 −8.9 

3 11.84 −8.3 −8.2 −8.9 

4 13.12 −8.8 −9.1 −9.1 

5 12.45 −7.6 −8.1 −9.0 

6 11.21 −7.6 −8.6 −9.7 

7 10.87 −7.3 −7.5 −7.9 

8 13.00 −9.5 −9.2 −9.1 

9 14.43 −9.8 −9.0 −9.8 

10 9.32 −7.7 −8.4 −8.9 

11 11.27 −8.8 −8.9 −8.9 

12 12.94 −8.4 −8.4 −8.8 

Ellipticine 15.48 −9.5 −9.9 −9.5 

13 13.63 −9.1 −9.0 −8.4 

14 10.58 −7.5 −7.4 −10.1 

15 11.06 −9.0 −10.0 −10.5 

16 10.83 −7.7 −6.9 −6.8 

17 11.61 −7.7 −7.9 −7.4 

18 11.16 −7.5 −9.8 −10.1 

19 14.51 −8.9 −9.3 −10.1 

20 15.42 −8.9 −8.7 −8.9 

21 10.11 −7.7 −7.3 −6.7 

22 17.73 −9.7 −8.7 −9.7 

R788 13.23 −9.1 −9.5 −9.4 

Fostamatinib (R788) is one of the latest reported inhibitors of both SYK and PI3K leukemia 

proteins; its action mechanism relates to the blocking of antigen-dependent B-cell-receptor signaling 

[66,67]; thus, based on its already known antileukemial activy, it was used as the control ligand in 

the docking study. 

Table 3 reveals some interesting patterns: the most active compounds (pIC50 > 13) showed 

scoring values smaller than −8 kcal/mol against any target. It is also of note that the less active 

compounds (pIC50 < 11) had at least one value scored higher than −8 kcal/mol. A close inspection of 

Table 3 reveals that compounds 9, 20, and 22 can be highlighted because of their scoring values close 

to those of compound R788. 

According to Table 1, the entire dataset could be divided into two structural groups; compound 

13 derivatives and compound 22 derivatives. Compounds 9 and 22 had the highest antileukemia 

activity and the highest scoring values into their group. Thus, to gain more details about these two 

compounds, Figure 3 shows these molecules docked with the proteins SYK, PI3K, and BTK. However, 

because only the SYK protein has a reported inhibitor, this protein was selected to show the 

interactions with 9 and 22 compared with that inhibitor (fostamatinib). Thus, the molecular 

interaction between these ligands and SYK protein is shown in Figure 3; this was generated using 

Pymol [68] and ligplot software [69]. 

Figure 3 shows the most active compounds (9 and 22) and the structure of fostamitinib with the 

target protein, as well as a 2D diagram of interactions with the terminal residues of the protein. 

Further, the figure shows the pose of compounds 9 and 22 bound to the SYK protein; the inhibitor 

R788 (fostamatinib) is also displayed. It can be noted that compounds 9, 22, and fostamatinib contact 

with the protein via the same pocket. This result is fascinating because it suggests that these 

compounds might act via a similar mechanism. However, some differences were found in the 

molecular interaction types. 

As shown in Figure 3, the molecular interactions between SYK and fostamatinib were mostly, 

dipolar in nature. The figure highlights the hydrogen bonds between Glu48 and Leu45 with the OH 
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fragment, Lys40 and Gly18 with NH, and Met80 with the P–OH fragment in fostamatinib. In contrast, 

compound 9 did not present hydrogen bond formation with the target; however, other dipolar 

interactions, such as LEU133, Met82, and Glu81 with the CN aliphatic chain, and hydrophobic 

interactions such as cation–pi (Lys40) or pi–pi (PHE20), did take place. 

Compound 22 showed a similar behavior to fostamatinib. This compound displayed several 

hydrogen bonds formed with the residues ASN131 and ARG130. Additionally, other dipolar 

interactions were noted, such as with PRO87, Asp144, and Val23. The rest of the interactions were in 

the hydrophobic range. 

 

(a) Compound 9 

 

(b) Fostamitinib 
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(c) Compound 22 

Figure 3. On the left, the 3D representation is shown, and on the right, the 2D interactions of 

compound 9 (a), fostamitinib (b), and compound 22 (c) at the active site of spleen tyrosine kinase 

(SYK). 

Compounds 9 and 22 were docked against phosphoinositide 3’kinase (PI3K). The 3D and 2D 

docking interaction diagrams are shown in Figure 4. As shown in Figure 4, both compounds 9 and 

22 hit the PI3K protein at the same pocket as fostamitinib. However, the nature of the interaction was 

different. While fostamitinib interacts mostly via dipolar interactions (several hydrogen bonds), in 

general, compound 9’s activity was related to several hydrophobic interactions, mostly pi 

interactions; however, a few dipolar interactions could be observed (Hist650, Glu792, and Met788 

with CO group). The same behavior was observed for compound 22. Figure 4 shows that just a 

dipolar interaction (Lys642 with OCH3 group) took place for this compound. 

According to the result above, it seems that the selected compounds might hit the proteins SYK 

and PI3K in the same pocket as the leader compound fostamitinib. This outcome represents a good 

starting point for the design and testing of these compounds and their derivatives experimentally. 
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Figure 4. On the left, the 3D representation is shown, and on the right the 2D interactions of 

compounds 9 and 22 at the active site of PI3K. 

As shown by the QSAR result, antileukemia compound activity demanded a low HOMO energy 

and high softness. Moreover, a close inspection of the molecular docking results revealed the 

relationship of scoring value and QSAR descriptors in Model 3: side chains with electronegative 

substitution drive to more polar molecules with smaller HOMO energy; thus, a better interaction 

with the molecular target could be. 

In agreement with the above, i.e., the combination of both molecular behavior and QSAR results, 

we propose four molecules with the necessary chemical characteristic previously outlined. Figure 5 

shows the predicted pIC50 and scoring values for these compounds against SYK protein. 
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Figure 5. Structures, pIC50, and scoring values against SYK protein for new proposed compounds 

based on QSAR results. 

As shown in Figure 5, the QSAR model predicted both activity and scoring values higher than 

its precursor, encouraging the synthesis and experimental evaluation of the proposed compounds. 

However, as the scoring values for SYK were higher than for PI3K protein, only the docking against 

SYK was analyzed. 

It was noetd that in the compound 9 derivatives, the enhancing of the side-chain with a 

hydrophobic substituent like a benzene ring increased the antileukemia activity. The benzene ring 

with an NH terminal not only improved the softness and diminished the HOMO energy, but also 

enhanced both hydrophobic and dipolar interactions with the selected target. This behavior is 

highlighted in the SYK proteins when interactions like hydrogen bonds (Arg130 and Asp126) take 

place.  

On the other hand, of the compound 22 derivatives, 22_2 presented the best results against the 

SYK protein. It was noted that an aromatic ring bound to the ester moiety enhanced the biological 

activity. Once again, an aromatic ring meets the electronic requirements demands of the QSAR 

models, i.e., smaller HOMO energy and a higher softness. Additionally, the docking result from SYK 

target revealed some new interactions driven by further substitutions. For example, as in compound 

22, the hydrogen bonds with ASn131 and Asp130 remain; however, a new hydrogen bond between 

the ester carbonyl group and Asp144 residue formed. Nevertheless, it seems that the hydrophobic 

interactions were more critical than for the precursor. Thus, several hydrophobic interactions 

appeared between the ester moiety aromatic ring and PHE20, Asn19, Val23, Asn19, Lys165, and Ser17 

(Figure 6). 
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9_1 

9_2 

22_1 

22_2 
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Figure 6. On the left, the 3D representation is shown, and on the right, the 2D interactions of the 

proposed compound at the spleen tyrosine kinase (SYK) active site. 

The combination of QSAR and docking results in this work seem to support Romero et al.’s idea 

[41] that the enlargement of the side-chain in ellipticine-related compounds enhance their 

antileukemia activity. When this enlargement of the side-chain is accompanied by an aromatic ring 

and electronegative atoms like N, the antileukemia activity is enhanced. Thus, the results reported 

herein support compounds 9 and 22. Likewise, their derivatives have a reasonable probability of 

being active against leukemia cells; therefore, their synthesis and posterior biological testing is 

encouraged. 

The literature revealed that the synthesis procedure for compound 9_1 has been reported before 

[66]. However, it was not tested again cancer cells. The rest of the compounds have not been reported 

to date; however, some similar structure nuclei have been reported. In this regard, based on earlier 

reports, Figure 7 shows a proposing synthetic route for the four potential antileukemia compounds 

predicted in this work. 

 

Figure 7. Possible synthetic schema for proposed anticancer compounds. (1) Compounds 9_1 and 9_2. 

(2) Compounds 22_1 and 22_2. 
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3. Materials and Methods 

3.1. Pharmacological Data Collected 

The data of in vitro ability to inhibit 50% L1210 leukemia cell proliferation for 23 ellipticine-

related compounds were collected from the literature, mainly from Pujol et al. [40] and Romero et al. 

[41]. All data collection ensured homogeneity; all of the IC50 data were obtained through the same 

experimental methods. The selected compounds’ IC50 values < 100 M. 

3.2. Molecular Modeling 

The minimum energy geometries for the 23 compounds studied herein were obtained using 

density functional theory with WB97XD/6-311G(2d,p) as the theory level, using Gaussian 16 software 

for Linux [44]. Both DFT theory level and interchange correlation functional were chosen because of 

their good correlation with experimental results based on the energetics and structure of organic 

molecules [45–47]. 

The minimum geometry structures were verified using the second derivative criteria [50]; the 

vibrational frequency calculations performed for the entire dataset showed no imaginary frequencies; 

therefore, all of the geometries were confirmed to be minimum-energy structures. Both the minimum 

structures and frequency calculations were used to find electronic and molecular descriptors such as 

dipolar momentum (), HOMO and LUMO energies, polarizability (α), enthalpy (H), entropy (S), 

free energy (G), ionization potential (PI), electronic affinity energy (EAE), hardness (), softness (s), 

and electrophilic index () using Equations (4)–(7). 

𝜇 = −𝜒 =  
−(𝐼𝑃 + 𝐸𝐴)

2
         (4) 

 

𝜂 =
(𝐼𝑃 − 𝐸𝐴)

2
   (5) 

 

𝑆 =  
1

2𝜂
   (6) 

 

𝜔 =  
𝜇2

2𝜂
    (7) 

where (µ) is electronic chemical potential and (X) is electronegativity. 

The partition coefficient (ClogP), a measure of lipophilicity (a highly influenced descriptor), was 

obtained using MarvinSketch software for Windows 2017 [50], whereas Gibbs energy, enthalpy, and 

entropy were obtained by combining frequency calculation and statistical mechanics [49]. The 3D-

optimized structures for the all data studied herein were used for the calculation of MAM descriptors, 

as described previously [14,15]. MAM descriptors are molecular attributes based on n-linear 

transformation matrix representations weighted over atomic properties like lipophilicity, van der 

Waals volume (), refractivity (r), polar surface area (PSA), polarizability (α), and electronegativity 

(), and these calculations were performed with QuBiLs-MIDAS software [51]. 

3.3. Statistical Analysis 

The molecular descriptors were plotted against IC50 (as pIC50) to find the significance over the 

biological activity. Descriptors with higher association with antileukemia activity (r > 0.5) were 

considered statistically relevant and used in the construction of the mathematical model (QSAR). 
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3.3.1. Quantitative Structure–Activity Relationship (QSAR) and Statistical Validation 

The relationships of antileukemia activity and the most relevant molecular descriptors were 

studied using multiple linear regressions. The method used has been described [13,70] before. Briefly, 

attempts were made to map the relationship between two or more independent variables with a 

dependent variable by fitting a linear equation involving the observed data. The independent 

variables of the model, selected according to forward selection and backward elimination [71–73] 

methods, were three statistical variables: the correlation coefficient (R), the Fisher ratio values (F), 

and the standard deviation (s). 

After the QSAR models were formulated, they were validated statistically before their 

application in the designs of the new antileukemia molecules. To this end, the predictive power of 

the best equation was verified via leave-one-out cross-validation methods [74] and quantified by 

Equation (8). This method has been explained previously in several articles, and is well known for its 

extensive use in QSAR studies [75–78]. 

𝑞𝑐𝑣
2 = 1 −

∑ (𝑌𝑒𝑥𝑝 − 𝑌𝑝𝑟𝑒𝑑)2𝑛
𝑖=1

∑ (𝑌𝑒𝑥𝑝 − �̅�)2𝑛
𝑖=1

 (8) 

Likewise, the standard error of prediction (SEP) is calculated as: 

𝑆𝐸𝑃 = √
∑ (𝑦𝑖 − ÿ𝑖)2𝑛

𝑖=1

𝑛
 (9) 

where y is the experimental value of ln (1/IC50), ÿ is the predicted value, and n is the number of 

samples used for model building. A y-scrambling analysis was also performed in order to confirm 

that the predictability of the models was not due to chance. The a(R2) and a(Q2) values were then 

determined using a total of 300 iterations on the response variable, and small values of these 

correlation coefficients were associated with a correlation not due to chance. 

3.3.2. Molecular Docking 

The protocol used herein to perform the molecular docking has been reported previously [68,72], 

and has been used to model the interactions of drugs with the active sites in different diseases, such 

as Pin1 (peptidyl-prolyl cis-trans isomerase NIMA-interacting 1) [15] inhibition and antimalarial 

activity [13]. Autodock4 software was used to this end [79]. Tridimensional structures of spleen 

tyrosine kinase (SYK, PDB-ID:4F4P), phosphoinositide 3´kinase (PI3K, PDB-ID:6DGT), and Buton´s 

tyrosine kinase (BTK, PDB-ID:3PIY) were obtained from the reported RX in the protein data bank 

(PDB) as.pdb format [80]. Each protein was refined before use; water molecules and any ligand 

associated with the protein were removed. Additionally, both polar hydrogen atoms and Kollman-

type charge were added. The non-ligand proteins were then saved in .pdb format. Next, the 

optimized ligands from the WB97XD/6-311G(d,p) theory level were converted to .pdb format and 

added to the protein. Next, both protein and ligand saved in PDBQT format were used to perform 

the docking calculation with autodock4 software. The interaction points between ligands and 

proteins were analyzed using autogrid software, building the grid box into the active center of each 

protein considering 50 points through the x, y, and z directions, taking into account at least 2.5 million 

interactions through genetic algorithm, and taking into account a binding site size of 22 Angstrom. 

The best scoring factors obtained were compared with standard ligands, i.e., the reported inhibitors 

of the proteins used. These poses were saved in .pdb format and visualized using pymol for Linux. 

Next, the best pose interaction images were generated using Ligplot; this software allowed us to gain 

information about the molecular interactions (dipole–dipole and hydrophobic) around the protein 

active site and the ligand. The identified interactions were validated via the QSAR model. 

4. Conclusions 

The minima energy structures for 23 compounds—including ellipticine, a prominent anticancer 

compound—were obtained by means of density functional theory, combining the WB97XD method 
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with a 6-311G(d,p) basis set. Multiple linear regression methods were applied over the entire dataset, 

using both electronic and topological molecular descriptors as independent variables and the pIC50 

as the dependent variable. After this stepwise approach was used, three mathematical models were 

generated; according to statistical descriptors, Model 3 had the best results. Moreover, this model 

was statistically validated through leave-one-out cross-validation methods. According to the results 

herein, antileukemia activity can be attributed to four molecular descriptors: HOMO, softness, 

AC1RABAMBID, and TS1KFABMID. These manageable descriptors allowed association of the 

chemical characteristics with antileukemia activity. The entire dataset was used to perform docking 

studies with three fundamental protein targets: spleen tyrosine kinase (SYK), phosphoinositide 

3’kinase (PI3K), and Bruton’s tyrosine kinase (BTK). Compounds 9 and 22 were highlighted based on 

their scoring values; moreover, these compounds hit the SYK protein into the same active site as 

compound R788 (fostamatinib), a reported inhibitor of SYK protein. Furthermore, the scoring values 

of the four compounds were close to the R788 values. Based on QSAR analysis and the analysis of 

docking molecular interactions with SYK protein, four compounds are proposed as possible SYK 

inhibitors; the results achieved herein encourage the synthesis of these four compounds and 

subsequent biological tests. 
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