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Abstract: Thermal reactions of cobalt(II) salts with flexible N,N′-bis(pyrid-3-ylmethyl)adipoamide
(L) and angular 4,4′-sulfonyldibenzoic acid (H2SDA) in H2O and CH3OH afforded a pair of
supramolecular isomers: [Co2(L)(SDA)2], 1, and [Co2(L)(SDA)2]·CH3OH·H2O, 2. The structure
of complex 1 can be simplified as a one-dimensional (1D) looped chain with L ligands penetrating
into the middles of squares, forming a new type of self-catenated net with the (42

·54)(4)2(5)2 topology,
whereas complex 2 displays a 2-fold interpenetrated 2D net with the rare (42

·68
·8·104)(4)2-2,6L1

topology. While both complexes 1 and 2 display antiferromagnetism with strong spin-orbital
coupling, the antiferromagnetism of 2 is accompanied by a cross-over behavior and probably a spin
canting phenomenon.

Keywords: coordination polymer; supramolecular isomer; coordination chemistry; entanglement

1. Introduction

The preparation and structural characterization of coordination polymers (CPs) with manipulable
networks by judicial design continue to be an important point of contest in the research fields of crystal
engineering, presumably due to their fascinating structural types and various potential applications in
gas storage, catalysis, ion exchange, photoluminescence and magnetism [1–5]. The structural diversity
of CPs is subject to various factors involving the identity of the metal ion, ligand and counterion,
metal-to-ligand ratio, temperature, and solvent system. The supramolecular isomers of CPs are those
that show identical chemical compositions but differ in the structural types of the core structures. Their
structural types can also be altered by using different experimental conditions [6–10]. Although a few
supramolecular isomers based on both dicarboxylate and bis-pyridyl ligands have been reported [8], it
remains a challenge to elucidate the structure–ligand relationship and thereby the intrinsic properties.

Many CPs reported so far are quite attractive due to the formation of independent motifs entangled
in different ways, such as interpenetration, polycatenation and self-catenation, all of which can be
ascribed to the presence of large free voids in a single network. Entanglements may thus happen to
enhance the packing efficiency of a crystal structure [11,12]. The structures of CPs based on flexible
bis-pyridyl-bis-amide (bpba) ligands are less foreseeable, most probably due to the occurrence of
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supramolecular isomerism [13]. The flexible bpba may show various ligand conformations in the CPs
and are considered crucial to the formation of entangled structures [13].

To explore the influence of angular dicarboxylate ligands on the entanglement of flexible
bpba-based CoII CPs and to elucidate their structure–ligand relationship, as well as to inspect
the geometric effect on their magnetic properties, we have investigated the reactions of CoII salts
with N,N′-bis(pyrid-3-ylmethyl)adipoamide (L) and 4,4′-sulfonyldibenzoic acid (H2SDA) (Scheme 1).
Herein, we report the syntheses, structures and magnetic properties of a pair of CoII supramolecular
isomers, [Co2(L)(SDA)2], 1, and [Co2(L)(SDA)2]·CH3OH·H2O, 2.
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2. Results and Discussion

2.1. Synthesis

The combination of a flexible bpba ligand and an angular dicarboxylate is suitable for the formation
of entangled CPs [13]. The N,N′-bis(pyrid-3-ylmethyl)adipoamide (L) ligands were thus reacted with
the CoII salts and 4,4′-sulfonyldibenzoic acid (H2SDA) to prepare CPs 1 and 2, showing a new type of
self-catenated net with the (42

·54)(4)2(5)2 topology, and a 2-fold interpenetrated 2D net with the rare
(42
·68
·8·104)(4)2-2,6L1 topology, respectively, vide infra. The absorptions in the IR spectrum of 1 at

3444 cm−1 can be assigned to N–H stretching, and the one at 1557 cm−1 is due to amide C=O stretching,
while the peaks at 1294 and 1160 cm−1 can be ascribed to S=O stretching, indicating the existence of L
and SDA2− ligands, respectively. Similarly, the characteristic peaks of 2 at 3401 cm−1 are due to N–H
stretching, and the one at 1538 cm−1 can be assigned to amide C=O stretching, while the two peaks at
1296 and 1159 cm−1 can be ascribed to S=O stretching.

The different structural types of 1 and 2 were most probably directed by the solvents H2O and
CH3OH, as well as the anions of the CoII salts OAc− and BF4

−, which may exhibit a template effect on
the structures of 1 and 2, respectively.

2.2. Structure of 1

The structure of complex 1 was solved in the space group Pı̄. Figure 1a depicts a structure showing
the coordination environment about the dinuclear CoII metal centers. The Co–Co distance of 2.929(6) Å
is too long to form a bond [14]. Both Co and Co(A) atoms are six-coordinated by one pyridyl nitrogen
atom of one L ligand [Co–N = 2.058(2) Å], and five oxygen atoms of four µ4-κ2,κ1,κ1,κ1-SDA2− ligands
[Co–O = 2.020(2) Å–2.263(2) Å], resulting in distorted octahedral geometries. Figure 1b shows that
the dinuclear Co2

4+ ions are bridged by the SDA2− ligands to form a 1D looped chain, with the
flexible L ligands penetrating into the middles of the loops. The metal–metal separation between two
dinuclear units is 13.28 Å. If the Co atoms are considered as 5-connected nodes, the SDA2− ligands as
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4-connected nodes and the L ligands as linkers, the structure of 1 can be regarded as a 1D net with
the (3·45)(32

·46
·52)-4,5C11 topology (Figure 1c), determined using ToposPro [15]. If the shapes of the

L ligands are taken into account and considered as two 2-connected nodes, the structure of 1 can be
simplified as a (2-c)(4-c)(5-c), 3-nodal net with the (46

·52
·72)(46)(5) topology (Figure 1d). Moreover, if

the dinuclear Co2(µ-COO)2 units are considered as 6-connected nodes, the structure of 1 can be further
simplified as a (2-c)2(2-c)2(6-c), 3-nodal net with the (42

·54)(4)2(5)2 topology (Figure 1e).
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The structure of complex 1 is worthy of further mention. It has been clearly delineated that
“self-catenated nets are single nets that exhibit the peculiar feature of containing shortest rings through
which pass other components of the same network” [16]. The catenation of the self-catenated nets can
thus be identified by the presence of edges that thread a ring [12]. Since complex 1 forms a 1D looped
chain with one flexible L ligand penetrating into the middle of each of the loops, it can be regarded as a
new type of 1D self-catenated net with a simple structure. This net is in marked contrast to that of
{[Cu(L1)(1,4-pda)]·2H2O}n (L1 = N,N’-di(3-pyridyl)suberoamide; 1,4-H2pda = 1,4-phenylenediacetic
acid), which is a 1D entangled self-catenated net [12].

2.3. Structure of 2

The structure of complex 2 was solved in the space group Pı̄. Figure 2a depicts a structure
showing the coordination environment about the dinuclear CoII centers with a Co–Co bond distance
of 2.831(7) Å, indicating no metal–metal bond formation [14]. Both Co(1) and Co(2) are 5-coordinated
by one pyridyl nitrogen atom of one L ligand [Co–N = 2.052(3) Å], and four oxygen atoms of four
µ4-κ1,κ1,κ1,κ1-SDA2− ligands [Co–O = 2.015(3) Å–2.044(3) Å], resulting in a distorted square pyramidal
geometry. Figure 2b shows that the CoII ions are bridged by four carboxylate groups of the SDA2−

ligands to form 1D infinite looped chains with dinuclear paddlewheel units, which are further linked
by the L ligands to form a 2D layer. If the dinuclear units are considered as 6-connected nodes, the
SDA2− ligands as 2-connected nodes and the L ligands as linkers, the structure of 2 can be simplified
as a rare 2-fold interpenetrated 2D net with the (42

·68
·8·104)(4)2-2,6L1 topology, as shown in Figure 2c.

The water and methanol solvent molecules are located in the cavities of the interpenetrated framework.
The water molecules interlink the independent nets through O–H—O hydrogen bonds to the amide
oxygen atoms (O–H = 1.99 Å; ∠O–H—O = 153.7◦) of one net and to the carboxylate oxygen atoms
of the other net (O–H = 2.44 Å; ∠O–H—O = 145.5◦), while the methanol molecules link two water
molecules (Figure S1).
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The first complex of the same structural type was found in the complex [Co(L2)0.5(MBA)]n

[L2 = N,N’-di(4-pyridyl)suberoamide; H2MBA = diphenylmethane-4,4′–dicarboxylic acid] [17]. The
structure of 2 is in marked contrast to those observed in {[Co2(L2)(OBA)2] · 7CH3OH}n [H2OBA =

4,4′–oxybis(benzoic acid)] [17] and {[Ni2(L2)(SDA)2]·6H2O}n, [18] which show 2D layers that catenate
to each other to form 2D→ 3D inclined polycatenation networks.

2.4. Ligand Conformations

The ligand conformations of the bpba ligands can be determined by following the reported
procedures [13]: (a) If the C-C-C-C torsion angle (θ) of the backbone carbon atoms is 180 ≥ θ > 90◦ and
0 ≤ θ ≤ 90◦, the ligand shows the A and G conformations, respectively. (b) The cis or trans arrangement
is determined according to the relative orientation of the C=O (or N–H) groups. (c) The anti-anti,
syn-anti and syn-syn arrangements are verified on the basis of the different orientations of the pyridyl
nitrogen atoms. In accordance with this descriptor, all of the L ligands of complexes 1 and 2 adopt
the AAA-trans anti-anti conformation (θ = 177.9, 180 and 177.9◦ for 1; and 179.1, 180 and 179.1◦ for 2),
indicating that, instead of the ligand conformation, the structural diversity of 1 and 2 is subject to the
co-crystallization of the solvent molecules.

2.5. Thermal Properties

Thermal gravimetric analyses (TGA) were carried out to examine the thermal decomposition of
1–2. The samples were heated up to 900 ◦C under 1 atm pressure in a nitrogen atmosphere with a
heating rate of 10 ◦C min−1 (Figure 3). The TGA curve of 1 shows that no weight loss can be observed
up to 300 ◦C, and the weight loss of 83.6% (calculated: 88.8%) at 300–836 ◦C can be ascribed to the
decomposition of SDA2− and L ligands. The TGA curve of 2 indicates that the first weight loss of 4.2%
occurred up to 120 ◦C, which is presumably due to the removal of co-crystallized H2O and CH3OH
(calculated: 4.5%), while the weight loss of 81.0% (calculated: 84.7%) at 350–900 ◦C can be ascribed to
the decomposition of SDA2− and L ligands. Based on the starting decomposition temperatures of the
ligands of 1 (300 ◦C) and 2 (350 ◦C), it can be proposed that the 2-fold interpenetrated 2D network is
relatively stable compared to the 1D self-catenated network. Moreover, the powder X-ray diffraction
(PXRD) pattern of 2 heated at 250 ◦C for two hours is quite similar to that of the original 2, indicating
that no structural transformation occurred upon solvent removal (Figure 4).
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2.6. Magnetic Properties of 1 and 2

The test samples were obtained by carefully grinding single crystals of 1 and 2, and the consistency
of the crystal structures of the ground samples was checked by using PXRD. Figures S2 and S3 show
that the calculated pattern is quite consistent with the observed one, indicating that the structures of 1
and 2 remain stable during grinding. The ordering temperatures of the samples were then determined
by conducting χ-T experiments on the SQUID system with a 1 kOe external magnetic field.

The dc magnetic susceptibility measurements of complexes 1 and 2 were conducted on
polycrystalline samples by applying a 1000 G magnetic field in the temperature range 2–300 K.
The χMT vs. T and 1/χ vs. T plots of 1 are shown in Figure 5a,b, respectively. The χMT value of
5.55 cm3 K/mol at 300 K is significantly larger than the spin-only value of 3.74 cm3 K/mol for two
isolated cobalt(II) centers, each with three unpaired electrons and g = 2.0. This can be mainly due to the
spin-orbit coupling of the high-spin Co2+ ions. The χMT values decrease gradually to 4.67 cm3 K/mol
at 100 K, then drop abruptly to 0.12 cm3 K/mol at 2 K, indicating the existence of an antiferromagnetic
coupling as well as a strong spin-orbital coupling. It is thus difficult to give a precise analytical
expression for the magnetic properties of 1 by using normal procedures. However, Rueff and his
coworkers [19] have successfully given a phenomenological approach for the CoII system, χMT = A
exp(−E1/kT) + B exp(−E2/kT), where A + B gives the Curie constant, E1 is the spin-orbital coupling
constant and E2 is the antiferromagnetic coupling interactions. By using this equation, the results
involving (A + B) = 6.13 cm3 K/mol, E1/k =110.4 K and E2/k = −J/2 = 16.1 K can be obtained, which
are confirmed by following that the standard Curie constant is 6.25 cm3 K/mol, while an octahedral
CoII ion usually gives a spin-orbital coupling around 100.0 K. We therefore conclude that this set of
parameters give a reasonable description for 1.
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The χMT vs. T plot of complex 2 is shown in Figure 6a. The χMT value is 6.33 cm3 K/mol at
300 K, which is significantly larger than that of complex 1. It is also larger than the spin-only value
of 3.74 cm3 K/mol for the two uncoupled Co2+ centers with S = 3/2 and g = 2, indicating strong
spin-orbital coupling interactions. The χMT values drop significantly to 0.89 cm3 K/mol at 25 K and
then show a spike feature at 5 K, which is normal for antiferromagnetically coupled CoII ions and
probably indicates a spin canting phenomenon [20]. However, our attempt to analyze the magnetic
properties of 2 by following Rueff’s phenomenological approach afforded no acceptable results. The
(A + B) parameter as high as 13.3 cm3 K/mol is roughly double that of the standard Curie constant of
6.25 cm3 K/mol. A plot of 1/χM vs. T (Figure 6b) shows the significant deviation from Curie–Weiss law,
and a comparison with those of typical CoII spin cross-over complexes such as [Co(terpy)2]X2 [21] and
[Co3(µ3-dpa)4Cl2] [22] implies the spin cross-over phenomenon in 2. Because the magnetic behavior
of 2 is complicated by strong antiferromagnetic coupling, a reasonable quantitative analysis for the
high-low spin barrier is not reachable. However, on the basis of Figure 6a,b, we suggest that complex 2
displays a strong antiferromagnetism, accompanied with a spin cross-over behavior and probably a
spin canting phenomenon.
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3. Materials and Methods

3.1. General Procedures

Elemental analyses were obtained from a HERAEUS VaruoEL analyser (Elementar Americas Inc.,
Ronkonkoma, NJ, USA). The IR spectra (KBr disk) were recorded on a Jasco FT/IR-460 plus spectrometer
(JASCO, 28600 Mary’s Court City, MD, USA). Thermal gravimetric analyses measurements were
carried out on a TG/DTA 6200 analyzer (Seiko Instruments Inc., Tokyo, Japan). PXRD measurements
were performed using a PANalytical PW3040/60 X’pert Pro diffractometer (PANalytical, EA Almelo,
The Netherlands).

3.2. Materials

The reagents Co(CH3COO)2·4H2O, Co(BF4)2·6H2O and 4,4′-sulfonyldibenzoic acid (H2SDA)
were purchased from Aldrich Chemical Co (St. Louis, MO, USA). The ligand N,N’-bis(pyrid-3-
ylmethyl)adipoamide (L) was prepared by using modified procedures for bpba ligands [13,23].

3.3. Preparations

3.3.1. Synthesis of [Co2(L)(SDA)2], 1

Co(CH3COO)2·4H2O (0.05 g, 0.20 mmol), H2SDA (0.06 g, 0.20 mmol) and L (0.032 g, 0.10 mmol)
in 10 mL H2O were placed in a 23 mL Teflon-lined stainless container, which was sealed and heated
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at 120 ◦C for 2 days and then cooled down slowly to room temperature. Red crystals were formed
and then collected, washed with diethyl ether and dried under a vacuum. Yield: 0.067 g (64%, based
on Co). Anal. calcd. for C46H38S2N4O14Co2 (MW = 1052.78): C, 52.47; N, 5.32; H, 3.63%. Found: C,
51.97; N, 4.86; H, 4.03%. Selected IR(cm−1): 3444(m, N–H), 3289(m), 1625(s, C=O), 1557(s, amide C=O),
1402(s), 1294(m, S=O),1160(s, S=O), 1100(m), 780(m), 740(m), 622(m).

3.3.2. Synthesis of [Co2(L)(SDA)2]·CH3OH·H2O, 2

This complex was prepared by following similar procedures to those carried out on 1, except that
Co(BF4)2·6H2O (0.086 g, 0.20 mmol) and 10 mL CH3OH were used. Blue-green crystals were derived.
Yield: 0.034 g (30%, based on Co). Anal. calcd. for C47H44S2N4O16Co2 (MW = 1102.86): C, 51.18; N,
5.08; H, 4.02% Found: C, 51.13; N, 5.17; H, 4.48%. Selected IR(cm−1): 3400(s, N–H), 1635(s, C=O),
1538(m, amide C=O), 1400(s), 1296(s, S=O), 1159(s, S=O), 1103(m), 741(m), 622(m), 506(m).

3.4. X-Ray Crystallography

Single crystals of 1 and 2 that were suitable for structural determination were obtained from
hydrothermal and solvothermal reactions, respectively, and their diffraction data were collected
on a Bruker AXS SMART APEX II diffractometer, using graphite-monochromated MoKα radiation
with λα = 0.71073 Å. The reflections of 1 and 2 that were collected were reduced and corrected
by using Lorentz-polarization [24], and their structures were solved by using the direct method in
the SHELXTL-97 program [25], both of which are well-established computational procedures. The
solutions first afforded the positions of some of the heavier atoms, including the cobalt atom. The
remaining atoms were found in a series of difference Fourier maps and least-square refinements,
while the hydrogen atoms were added by using the HADD command. The methanol carbon atom is
disordered such that two orientations can be found. Table 1 lists the crystal parameters and structural
refinement results.

Table 1. Crystal data for complexes 1 and 2.

Compound 1 2

Formula C23H19CoN2O7S C23.5H22CoN2O8S
Fw 526.39 551.42

Crystal system Triclinic Triclinic
Space group Pı̄ Pı̄

a, Å 9.1273(2) 9.2206(8)
b, Å 12.0439(2) 11.0642(10)
c, Å 12.0526(2) 13.3450(12)
α,◦ 62.4993(8) 96.611(5)
β,◦ 75.9211(10) 109.696(5)
γ,◦ 79.9212(9) 103.697(5)

V, Å3 1136.88(4) 1216.73(19)
Z 2 2

dcalc, g/cm3 1.538 1.505
F(000) 540 568

µ(Mo Kα), mm−1 0.895 0.842
Independent reflections 5647 [R(int) = 0.0301] 4661 [R(int) = 0.0670]

Data/restraints/parameters 5647/0/307 4661/1/321
Quality-of-fit indicator a 1.038 1.024

Final R indices [I > 2σ(I)] b,c R1 = 0.0293, wR2 = 0.0787 R1 = 0.0573,
wR2 = 0.1348

R indices (all data) R1 = 0.0330, wR2 = 0.0815 R1 = 0.0946,
wR2 = 0.1531

a Quality-of-fit = [Σw(|Fo
2| – |Fc

2|)2 / Nobserved − Nparameters)]1/2. b R1 = Σ||Fo| − |Fc||/Σ|Fo|. c wR2 = [Σw(Fo
2
−

Fc
2)2/Σw(Fo

2)2]1/2. w = 1/[σ2(Fo
2) + (ap)2 + (bp)], p = [max(Fo

2 or 0) + 2(Fc
2)]/3. A = 0.0395, b = 0.4074, 1; a = 0.0691,

b = 0.7719, 2.
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4. Conclusions

A pair of CoII CPs, [Co2(L)(SDA)2]n, 1, and [Co2(L)(SDA)2·CH3OH·H2O]n, 2, constructed from
flexible N,N′-bis(pyrid-3-ylmethyl)adipoamide (L) and angular 4,4′-sulfonyldibenzoic acid (H2SDA)
have been synthesized under hydrothermal and solvothermal conditions, respectively. The structural
types of 1 and 2 are directed by the solvents and/or the anions of the reaction systems. The L ligands
of 1 penetrate into the middle of squares formed by dinuclear Co2

4+ ions bridged by SDA2− ligands,
resulting in a new 1D self-catenated net with a simple structure, and the 2D layers of 2 entangle each
other to form a rare 2-fold interpenetrated 2D net with the (42,68,8,104)(4)2-2,6L1 topology. We have
verified that the combination of flexible bpba and angular dicarboxylate ligands may afford interesting
entangled CPs. Complexes 1 and 2 display antiferromagnetism with strong spin-orbital coupling,
while the antiferromagnetism of 2 is accompanied by a cross-over behavior and probably a spin canting
phenomenon. This study provides an insight into understanding the magnetostructural relationship in
a pair of CoII supramolecular isomers based on bpba and angular dicarboxylate ligands.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/25/1/201/s1,
Powder X-Ray Patterns (Figure S1 and Figure S2). CCDC No. 1920174-1920175.
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