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Abstract: It was found previously that neither monomer MoS2 nor WO3 is an ideal material for the
adsorption of organic dyes, while MoS2/WO3 composites synthesized by a two-step hydrothermal
method have outstanding adsorption effects. In this work, the chemical state of each element was
found to be changed after combination by X-ray photoelectron spectroscopy analysis, which lead
to their differences in adsorption performance. Moreover, the adsorption test of methylene blue on
MoS2/WO3 composites was carried out under a series of temperatures, showing that the prepared
composites also had appreciable adsorption rates at lower temperatures. The adsorption process
could be well described by the Freundlich isothermal model and the pseudo-second order model.
In addition, the particle-internal diffusion model simulation revealed that the internal diffusion of the
particles played an important role in the whole adsorption process.
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1. Introduction

With the development of some chemical industries, such as textile, leather, paper, plastics,
more and more organic dyes are used in the manufacturing process in order to color the products and
also consume a substantial volume of water. As a result, a lot of organic dye wastewater has been
produced [1]. According to relevant statistics, more than 100,000 dyes have been produced each year,
and the total production exceeds 7 × 105 tons. Even if the content of organic dyes in the water is less
than 1/1,000,000, it can cause uneasiness [2]. Methylene blue (MB) is an azo dye often used in printing
and dyeing textiles. It is also frequently used as a pH control for chemical reactions in the laboratory,
industry, and agriculture. MB is a micro-toxic type, so a large amount of oral administration can cause
abdominal discomfort, skin eczema, and have irritating effects on the eyes. Therefore, it is meaningful
to treat wastewater containing MB [3]. At present, there are many physical, chemical, and biological
methods used in the treatment of organic dye wastewater, such as flocculation precipitation [4],
hydrogen peroxide treatment [5], and photo electrocatalytic degradation [6,7]. Chemical adsorption is
a method of adsorbing nonionic organic refractory compounds in dye wastewater [8]. Because of its
simple operation and low cost, more and more attention has been paid to the chemical adsorption in
dye wastewater. The development of efficient adsorbents is the key to improving adsorption efficiency.
Nowadays, the commonly used adsorbents in the adsorption field are carbon, minerals, chitosan, and
other organic compounds.

MoS2 is a new graphene-like material. Its layered structure is sandwiched together by Mo–S–Mo
units with a weak van der Waals force [9], and the direct band gap is 1.82 eV [10]. This unique
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structure gives MoS2 stable chemical properties, an adjustable band gap, a large specific surface
area, and an abundant layered edge to provide a large number of unsaturated active sites [11].
Therefore, MoS2 is expected to become a high-performance adsorbent. In addition, by controlling
the preparation parameters and methods, the morphology and number of layers of the MoS2 can
be adjusted, and heterojunctions can be constructed to expose more active edge sites for adsorption.
Sabarinathan et al. used the hydrothermal method to synthesize layered MoS2 with citric acid as an
auxiliary additive [12]. It was found that an appropriate amount of citric acid induced the growth of
the original MoS2 microspheres into a well dispersed layered structure. With the appearance of such
a dispersed layered structure, the photocatalytic performance of MoS2 for methylene blue was more
excellent. Hou et al. prepared MoS2/WO3 composite semiconductor photocatalysts successfully by the
hydrothermal method and studied the photocatalytic performance on MB [13]. After compounding
with tungsten oxide, the photocatalytic effect of MoS2 on MB was better than that of pure tungsten
oxide and molybdenum disulfide. Unfortunately, the reaction still took a long time to complete and
there were certain restrictions, such as the use of visible light. Moreover, the studies only focused
on transferring photo-induced electrons but ignored capturing the holes. Therefore, it is essential
to introduce a reasonable bandgap-matchable semiconductor material as a template to construct an
MoS2-coated system, which can provide holes for trapping electrons [14–19], facilitating charge transfer
and thus enhancing adsorption ability.

In our previous work, the MoS2/WO3 heterojunction was successfully synthesized by a two-step
hydrothermal method using rod-like tungsten oxide as a template, and the adsorption performance
under dark conditions at room temperature was proven to be excellent. For further investigation, in
this work, X-ray photoelectron spectroscopy (XPS) was used to study the combination of MoS2 and
WO3. Considering the practical situation of application, the adsorption performance of the composites
under a series of temperatures was also investigated. Furthermore, the adsorption mechanism was
also discussed by the adsorption thermodynamics and kinetic simulation.

2. Results and Discussion

2.1. The Phase of Samples

The crystal phases of the obtained samples were investigated by X-ray diffraction (XRD) analysis.
The corresponding XRD patterns of WO3, MoS2, and MoS2/WO3 are presented in Figure 1. It can be
seen that all diffraction peaks of pattern c were well indexed to WO3 (Joint Committee on Powder
Diffraction Standards, JCPDS No. 75-2187) and MoS2 (JCPDS No. 17-0744), which preliminarily
indicates that the MoS2/WO3 composites were successfully produced.
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2.2. The Morphology of Samples

Figure 2a shows the SEM images of WO3, which exhibited a uniform rod-like structure randomly
oriented with a length of a few microns or more. As shown in Figure 2c, after reacting for 24 h, there were
interlaced MoS2 sheets dispersed on the WO3 nanorods, expanding the diameter of the nanorods.
Moreover, a porous, discontinuous, and loose surface could be found in MoS2/WO3 (Figure 2c). It is this
unique structure that leads to the excellent adsorption capacity of MoS2/WO3 composites, which has
already been discussed by Ying et al. [20]. Besides this, the SEM image of MoS2 prepared without
adding WO3 as a template under the same conditions is shown in Figure 2b, which indicates that the
product exhibited microspheres formed by sheet-like subunits. Simultaneously, the element mapping
of as-prepared MoS2/WO3 sample in Figure 3 showed a uniform distribution of Mo and S on the
surface of W and O, which further proves that the coating composites were formed.
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2.3. The Elemental Chemical States Analysis of Samples

As is known, the adsorption reaction is closely related to the surface state of the sample and the
interface of the catalysts. Thus, it is significant to investigate the surface states of obtained samples
by XPS measurements. The XPS results are presented in Figure 4. As for Mo3d in MoS2, shown in
Figure 4A1, two obvious peaks appeared at 229.2 eV and 232.3 eV, which were attributed to Mo 3d5/2

and Mo 3d3/2, and the pair of peaks at higher binding energies (229.6 eV and 233.2 eV) demonstrates
that there is no-metric ratio MoSx in mono MoS2. Comparably, two peaks of Mo 3d5/2 and Mo 3d3/2 in
MoS2/WO3 (Figure 4C1) were slightly shifted to higher binding energies (about 0.3 eV). This suggests
that there are strong electronic interactions between MoS2 and WO3 domains through established
heterogeneous interfaces [21,22]. In addition, the pair of peaks in Figure 4C1 at about 233.5 eV and
236.4 eV, corresponding to Mo 3d5/2 and Mo 3d3/2, suggests the presence of Mo6+. Comparing O 1s
in WO3 before and after combination, the peaks at 527.4 eV (Figure 4B1) and 531.1 eV (Figure 4C3)
indicate the formation of W–O binding. After combination, a new peak was found in 531.9 eV, which
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means there was a new chemical bond generated. This peak can be attributed to O2− in the Mo–O
bond, which is in agreement with the results of Mo 3d in MoS2/WO3. Cui et al. proved that with the
increase in MoO3 composition in the transformation of MoS2 to MoO3, the product showed better
adsorption capacity [23]. Besides, the peaks at the binding energy of 529.0 eV in Figure 4B1 and 532.6 eV
in Figure 4C3 were both due to the adsorbed O on the surface of the samples. In Figure 4C4, the peaks
at about 36.3 eV and 35.2 eV of W 4f7/2 suggest the formation of W–O and W–S bindings. S 2p spectra in
the obtained samples (Figure 4A2,C2) could be deconvoluted into three pairs of peaks (S 2p3/2, S 2p1/2),
corresponding to MoS2, MoSx, and W–S–Mo respectively. The S 2p3/2 peak was attributed to the typical
metal-S bond, while the S 2p1/2 peak was corresponding to the sulfur with low coordination, which
is generally related to sulfur defects [24,25]. W–S and Mo–S have a similar structure, so it is usually
assumed that tungsten catalysts are similar to molybdenum catalysts. At the edge of this layered
structure, the sulfur vacancies, which are active sites for catalytic reactions, are easily created because
of the weaker sulfur bonding [26]. The semi-quantitative data of Mo–O and W–S were obtained by XPS
data fitting results. Within the range of measurement on the surface of the sample, the Mo–O accounted
for 10% of the total and the W–S accounted for 5%. Consequently, we conjectured that the formation of
the W–S–Mo and Mo–O–W structures promotes the MoS2 layers being more tightly coated on WO3

nanorods, which is beneficial for increasing the specific surface area in favor of adsorption.
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as-prepared MoS2, WO3, and MoS2/WO3.

In short, the peaks of Mo3d, S2p, O1s, and W4f all shifted to higher binding energies after
combination, indicating that there are strong electronic interactions between MoS2 and WO3. There were
new bonds of Mo–O and W–S generated, suggesting the chemical combination of MoS2 and WO3.
Therefore, this results in the high stability of MoS2/WO3 composites. Moreover, as discussed above,
the S 2p1/2 peak revealed the presence of terminal unsaturated S atoms on the Mo–S and W–S sites.
Consequently, associated with SEM, TEM, and XPS analysis, the as-synthesized MoS2/WO3 composites
were proved to possess a porous nanostructure and defected interface of rich active sites and are
expected to achieve excellent adsorption performances.

The details of this unique structure affecting its adsorption property has been discussed in our
previous work [20]. In addition, the Zeta potentials of MoS2/WO3 were measured and are shown in
Figure S1 of the supplemental information, which demonstrates that the adsorbents dispersed in water
must have large negative Zeta potentials (−29.3 mV) to have an electrostatic interaction with MB,
which has positive charges located on the heteroatom ring. This is another reason why the MoS2/WO3

composites have an impressive adsorption property on MB.
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2.4. Effect of Temperature on Adsorption Properties

The effect of temperature on the adsorption rate is revealed in Figure 5. At all experimental
temperatures, the MB adsorption rate was higher at the beginning and gradually decreased as
contact time increased. This may be attributed to the change in concentration, which is the driving
force of adsorption reaction, and the change in available adsorption sites [27]. At the beginning
of the reaction, a higher concentration of MB caused large mass transfer and the large difference
between the concentration of the volume solution and the adsorbent could produce a large adsorption
force, which would promote the transport and adsorption of MB molecules onto the active sites
of MoS2/WO3 [28]. When the temperature of the adsorption reaction decreased from 25 ◦C to 0 ◦C,
the adsorption capacity within 62 min was studied. Significantly, it only takes about 60 min for MB
to be adsorbed on MoS2/WO3 with the degradation rate up to 98%, which is more efficient than
polypropylene–clinoptilolite composites [29], graphene [30], and some other carbon materials [31].
The equilibrium adsorption capacity slightly decreased from 98.6 mg/g to 83.7 mg/g as reaction
temperature decreased. These results indicate that the main factor affecting the adsorption rate was
not the ambient temperature, but the active center of the material itself. There are a large number
of adsorption activity sufficient points on MoS2/WO3, which determines that it still has favorable
adsorption efficiency at lower temperatures. Figure 6 indicates the effect of reaction temperature on
the MB degradation rate. The degradation rate remained steady when the reaction temperature varied
from 25 ◦C to 0 ◦C. However, as observed in Figure 6, the degradation efficiency became lower with the
decrease in temperature. According to the theory of adsorption kinetics, the molecular diffusion rate
increases with the increase in temperature, and the elevated temperature can accelerate the reaction
rate. Therefore, as the temperature decreased, the adsorption efficiency was slightly deteriorated.
It is worth noting that the adsorption capacity of the composite could reach 83.7 mg/g in 62 min, even at
0 ◦C, indicating that MoS2/WO3 may be an ideal adsorbent for MB and other dyeing materials because
of its faster adsorption rate at low temperatures.
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2.5. Adsorption Kinetics

In order to study the steps that may limit the adsorption rate, the experimental data at different
temperature conditions were fitted using the pseudo-first order kinetic equations, the pseudo-second
order kinetic equations, and the intra-particle diffusion model. The correlation coefficient (R2) was
used to express the degree of fitting. Besides this, the corresponding rate constant and theoretical
equilibrium adsorption amount were calculated.

The pseudo-first order kinetic model, the pseudo-second order kinetic model, and the intra-particle
diffusion model are represented by the following equations (Equation (1), Equation (2), Equation (3)):

ln(q e − qt) = lnqe − k1t, (1)

where k1 indicates the rate constant of the pseudo-first order kinetic (min−1);

t
qt

=
1

k1q2
e
+

t
qe

, (2)

where k2 indicates the rate constant of the pseudo-second order kinetic (g·mg−1
·min−1);

qt= kpt1/2 + Ci, (3)

where kp indicates the rate constant of the intra-particle diffusion model (g·g−1
·min−1), while Ci is

a constant reflecting the thickness of the boundary layer and a larger Ci indicates a greater boundary
layer effect [32].

The linear fits of the different kinetic models are shown in Figure 7 and the specific parameters
are listed in Table 1. For all temperatures, the linear regression correlation coefficient (R2) for the
pseudo-second order was much higher than that of the pseudo-first order and the intra-particle
diffusion model, indicating better fitness while using the pseudo second-order model. This means that
extreme membrane diffusion may not be the rate limiting step for MB adsorption on MoS2/WO3 [33,34].
In addition, the calculated values of qe by the pseudo-second order model were analogous to the
corresponding experimental values. Therefore, the pseudo-second order model is more appropriate to
describe the MB adsorption onto MoS2/WO3 and it contains all processes in which MB adsorbs on
MoS2/WO3, such as external liquid membrane diffusion, internal particle diffusion, and the adsorption
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of adsorbate on the interior surface site of adsorbents [35]. As shown in Equation (3), the intra-particle
diffusion model is usually used to further study the possible adsorption mechanism on adsorbents [36].
The total rate of adsorption may be controlled by one of the steps or a combination of more steps [37].
If the linear fitting image of qe versus t1/2 is a straight line passing the origin, it means that the
adsorption process is a single diffusion. However, multi-linear plots are observed in Figure 7a and
none of them passed through the origin. This indicates that the intra-particle diffusion is not the sole
rate-limiting step and multiple rate-control steps may be involved in the adsorption process of MB
onto MoS2/WO3. Consequently, we speculate that the adsorption process of MB onto MoS2/WO3

under different temperature conditions can be divided into three stages. The initial stage is generally
related to the external mass delivery, called external mass transfer, which diffuses or moves to the
outer surface of the adsorbents through the boundary layer around the adsorbed particles [38,39].
In the next two stages, the first is the diffusion of the adsorbate in the pores and adheres to the surface
of the adsorbents, followed by adsorption/desorption equilibrium. In the last stage, the adsorbed
organic molecules may exchange or share electrons with the adsorbed particles, depending on the
chemical nature of the solid. The relevant parameters are listed in Table 1. According to the values of
the intra-particle diffusion rate constants (kp) and Ci values, intra-particle diffusion plays an important
role in the overall adsorption of all groups.
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Table 1. Kinetic parameters of the pseudo-first and pseudo-second order model and intra-particle
diffusion model.

Temperature
(◦C)

qe exp
(mg/g)

Pseudo-First Order Model Pseudo-Second Order Model Intra-Particle Diffusion Model

k1
(min−1)

qe cal
(mg/g) R2 k2·103

(g·mg−1·min−1)
qe cal

(mg/g) R2 kp

(g·g−1·min1/2)
Ci R2

25 99.599 0.0665 83.713 0.9853 1.1506 110.497 0.9992 10.9769 21.8190 0.9802
20 99.588 0.0433 67.078 0.9826 1.1562 106.383 0.9995 10.6596 19.8856 0.9806
15 99.559 0.0349 76.256 0.9858 0.7608 106.610 0.9992 11.2756 8.8740 0.9912
10 99.575 0.0290 69.030 0.9598 1.0374 98.814 0.9991 10.1768 14.0003 0.9851
5 99.565 0.0288 77.676 0.9772 0.6904 103.093 0.9992 10.9661 5.6302 0.9934
0 99.559 0.0254 71.621 0.9511 0.9474 96.061 0.9994 10.0647 10.6341 0.9397

2.6. Adsorption Thermodynamics

The adsorption isotherm of the composite material of methylene blue was studied under the
condition of 25 ◦C, 10 mg MoS2/WO3, and the adsorption time of 24 h. The variation range of the
initial concentration of MB solution was from 2 to 40 mg/L (2 mg/L, 5 mg/L, 10 mg/L, 15 mg/L, 20 mg/L,
25 mg/L, 30 mg/L, 35 mg/L, 40 mg/L). The most common expressions describing the solid–liquid
adsorption isotherm are the Langmuir equation, the Freundlich equation, and the Tenkin equation.
The validity of the isotherm models fitting can be determined by their linearization curve, as shown in
Figure 8. The regression coefficient (R2) was used as a criterion to compare the fitness of each model.
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The linear form of Langmuir isotherm equation is expressed as the following (Equation (4)):

Ce

qe
=

1
kqm

+
Ce

qm
, (4)

where Ce (mg/L) and qe (mg/L) are the equilibrium concentration of the adsorbate in liquid-phase
and solid-phase, respectively; Qm (mg/g) is the maximum monolayer coverage capacity adsorbent;
and k (L/mg) is the Langmuir adsorption constant. One of the most important characteristics of the
Langmuir adsorption isotherm equation is that the dimensionless separation factor RL is defined,
which is expressed as in Equation (5):

RL =
1

1 + kC0
, (5)

where RL is used to represent the properties of adsorption process. If 0 < RL < 1, it indicates that the
adsorption process is preferential adsorption.

The linear expression of Freundlich isotherm equation is shown in Equation (6):

ln qe = lnKi +
1
m

lnCe, (6)

where Ki (mg/L) is a constant to describe the sorption capacity, and m is a constant representing the
favorability of the sorption system, and the value of 1/m indicates the effect of concentration on the
adsorption capacity [40,41].

The Temkin is one of the isotherm fitting equations that similar to the Freundlich isotherm.
The model equation is expressed as the following (Equation (7)):

qe= Aln(B ·Ce
)
, (7)

where A is a constant related to heat of adsorption, B (L/g) is the Temkin isotherm equilibrium
binding constant.

The constants obtained by fitting the three isotherms are summarized in Table 2. According to
the regression coefficients, the Freundlich isotherm model was the best to describe the adsorption
data, which implies that multi-layer adsorption with uneven adsorption energy may occur in the
MB–MoS2/WO3 system. In this work, the value of 1/m was between 0.1 and 0.5 (1/m = 0.2052),
which indicates favorable adsorption of MB onto MoS2/WO3 [42]. Moreover, a uniform distribution
of bounding energy rather than a uniform adsorption energy may also have taken place in the
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MB–MoS2/WO3 system, because the regression coefficients for the Temkin isotherm model were
relatively high (R2 = 0.9779). As shown in Figure 8, when the concentration of MB at equilibrium
was within the range of 2~15 mg/L, the Langmuir isotherm model also fitted well. This phenomenon
may be due to the Langmuir isotherm being valid for the low ion concentrations and the monolayer
adsorption capacity of adsorbents is insufficient. The comparison of maximum adsorption capacities of
MB on some other reported adsorbents are shown in Table 3. It can be seen that MoS2/WO3 prepared
in this work exhibited higher adsorption capacity, which is expected to be an ideal adsorbent in
a worse environment.

Table 2. Summary of isotherm parameters.

Isotherms Constants MoS2/WO3

Langmuir
Qm 228.2849
b 7.1529

R2 0.8718

Freundlich
Ki 161.5729

1/m 0.2052
R2 0.9898

Temkin
A 29.5634
B 354.7873

R2 0.9779

Table 3. The reported maximum monolayer coverage capacity of MB onto other adsorbents.

Adsorbents Q0 (mg/g) Reference

Flower-like sodium titanate 58.0 [43]
Jute fiber carbon 74 [44]

Perlite 94 [45]
Dehydrated wheat bran 122.0 [46]

MoS2 136.99 [47]
MoS2/WO3 268.42 This study

Q0 is the maximum adsorption capacity of a material reported in the literature under certain conditions.

3. Materials and Methods

3.1. Fabrication of WO3 Nanorods

The preparation process of rod-like WO3 can be found in Reference 20 for details [20].

3.2. Synthesis of MoS2/WO3 Composites

The formation process of MoS2/WO3 composites was similar to that of Ying et al. [20]. Typically,
90 mg sodium molybdate (Na2MoO4·2H2O) and 180 mg thioacetamide (C2H5NS) were dissolved in
60 mL deionized water to form a transparent solution. While stirring, 60 mg WO3 nanorods was added
into the above solution and then the pH was adjusted to 1.5 with a certain concentration of hydrochloric
acid. Then, a suspension was obtained and transferred into a 100 mL Teflon-lined autoclave and then
maintained at 220 ◦C for 24 h. The product was centrifuged and washed three times with deionized
water and anhydrous ethanol, and then dried at 60 ◦C for 20 h.

3.3. Characterization

The crystallization and the phase composition were characterized by X-ray diffraction (XRD) with
a PAN analytical X’ Pert PRO X-ray diffractometer (PANanalytical B.V., Almelo, The Netherlands)
using Cu Kα radiation (λ = 1.5418 Å). The X-ray tube voltage and current were set at 40 kV and
40 mA with a step size of 0.033◦/s. The morphology and element mappings of MoS2/WO3 composites
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were determined with Hitachi S-4800 scanning electron microscopy (SEM, Tokyo, Japan) and a Tecnai
G2 F30 S-Twin transmission electron microscopy (TEM, FEI Company, Hillsborough, OR, USA),
respectively. The chemical state of each element of the composite material was characterized by
X-ray photoelectron spectroscopy (XPS, Kratos Axis Ultra DLD, Shimadzu Kratos, Manchester, UK).
For XPS characterization, spectra representing the C 1s, O 1s, S 2p, Mo 3d, and W 4f photoelectrons
were recorded. The test results were processed by XPSPEAK4.1 software (4.1, Hong Kong, China).
All binding energies (BE) were calibrated based on the C1s of adventitious carbon (284.8 eV). A UV-visible
spectrophotometer (Shanghai Jinghua 7600, Shanghai, China) was adopted to detect the adsorption
spectrum of the sample.

3.4. Adsorption Test

The adsorption experiments were conducted under dark conditions at a range of different
temperatures to test the adsorption process of organic dye onto MoS2/WO3. Typically, MoS2/WO3

adsorbent was added to 100 mL MB solution, and then the mixture was magnetically stirred. After
a certain time, about 5 mL of suspension was taken out from the stirred mixture and filtered to
remove the adsorbent. Then, the resulting solution was measured by a UV-vis 7600 spectrophotometer
(Shanghai Jinghua Instruments) at the wavelength range of 400~800 nm. For the efficient study of
adsorption, 10 mg MoS2/WO3 was dispersed in a 100 mL MB solution of 10 mg/L. The mixture was
continually stirred at different temperature (from 25 ◦C to 0 ◦C) for 62 min and then the absorbance
was measured in order to compare the effect of temperature on adsorption rate. Furthermore, different
initial concentrations of MB solution were stirred continuously at 25 ◦C for 24 h to ensure that the
adsorption/desorption equilibrium was reached, and then the absorbance was measured to study the
thermodynamic properties of adsorption. The degradation of MB was quantified from the decrease in
the intensity of the associated characteristic absorption band at 664 nm. The quantity of MB adsorbed
on MoS2/WO3 within a certain period time was calculated by mass balance, as shown in Equation (8),
and the degradation rate of MB was determined using Equation (9):

qt =
C0−Ct

m
× V, (8)

η =
C0−Ct

C0
=

A0−At

A0
, (9)

where qt (mg/g) is the pollutant concentration in solid phrase at time t (min), m is the weight of
adsorbent (g), V (mL) is the volume of MB solution, and η is the degradation rate, C0 (mg/L) and Ct

(mg/L) are the concentrations of MB at time 0 and t (min), A0 is the initial adsorbance of the solution,
At is the adsorbance of each time period.

4. Conclusions

In general, MoS2/WO3 composites prepared by the two-step hydrothermal method with
rod-shaped WO3 as the template have good adsorption efficiency and are expected to be used
as an ideal adsorbent to remove organic dye from wastewater at low temperatures, as well as at
room-temperature. According to SEM and TEM images, the composites of MoS2-coated WO3 nanorods
were smoothly obtained. The surface of the structure was loose, which can provide a large number of
active sites for the adsorption reaction. The XPS results showed that besides MoS2 and WO3 in the
products, there were also new chemical bonds formed. The chemical structures Mo–S–W and W–O–Mo,
newly generated, both had good electro-active sites, so the ability of the composite material to adsorb
positively charged dye was greatly improved. It can be concluded from the adsorption thermodynamics
and kinetic simulation results that the adsorption of MB onto MoS2/WO3 is easy to carry out. Moreover,
the adsorption capacity of the adsorbent and adsorption efficiency were found to be mildly affected
by temperature, even at 0 ◦C. All the above results show that the as-prepared MoS2/WO3 composites
would have broad prospects of application for removing organic dyes from wastewater.
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