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Abstract: Tungsten oxide-based bulk and nanocrystalline materials are widely used as photocatalytic
and photo- and electrochromic materials, as well as materials for biomedical applications. In our
work, we focused our attention on the effect of sodium cations on the structure and photochromic
properties of the WO3@PVP aqueous sols. To establish the effect, the sols were synthesized
by either simple pH adjusting of sodium or ammonium tungstates’ solutions, or using an ion
exchange technique to remove the cations from the materials to the greatest possible extent.
We showed that the presence of sodium cations in WO3@PVP favors the formation of reduced
tungsten species (W+5) upon UV irradiation of the materials, strongly affecting their photochromic
and photocatalytic properties. The pronounced photoreductive properties of WO3@PVP sols in
photocatalytic reactions were demonstrated. Due to photoreductive properties, photochromic sols of
tungsten oxide can act as effective photoprotectors in photooxidation processes. We believe that our
work provides a considerable contribution to the elucidation of photochromic and redox phenomena
in WO3-based materials.
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1. Introduction

Tungsten oxide is a semiconductor material widely used in heterogeneous catalysis [1] and
in photo- and electrochromic devices [2]. Tungsten oxide nanoparticles have also been considered
a promising nanomaterial for biomedical applications: In recent years, WO3-based materials have been
used in advanced medical and biological research as antibacterial coatings, biosensors, theranostic
materials, and materials for proliferation control [3–7]. The majority of applications of these materials
are due to the photochromic effect and the ability to participate in reversible redox reactions due to the
W+6-W+5 transformations. Despite the fact that tungsten oxide-based bulk materials and thin films
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are well studied [8,9], the synthesis and photochromic properties of colloidal WO3 solutions in liquid
media are still largely unexplored.

Several mechanisms have been proposed to explain the photochromism of WO3. One of the
earliest theories of WO3 photochromism declared that the positively charged oxygen vacancies in the
WO3 crystal structure are able to capture photogenerated electrons [10]. Certainly, the oxygen effect on
the optical and photochromic properties of materials based on WO3 is a common phenomenon [11].
Another commonly accepted theory of photochromism is based on the assumption of W+5 stabilization
due to the hydrogen tungsten bronzes’ (HxWVI

1−xWV
xO3) formation [12]. This theory has several

experimental confirmations; for instance, the correlation was confirmed between bronzes’ formation
and photochromic effect in the mesoporous WO3·0.33H2O nanorods [13]. Physically adsorbed water
plays a key role in the mechanism of photochromism in anhydrous oxides [14–17]. Under UV irradiation,
electrons and holes are generated in tungsten oxide samples. Photogenerated holes can react with
adsorbed water on the surface of the WO3 crystallites with H+ formation. Then, hydrogen ions
diffuse into the WO3 structure, which leads to W+5 stabilization and the corresponding color change.
The by-products in this reaction are both oxygen and hydroxyl radicals. Thus, the photochromism
in WO3 materials is typically caused by the changes in the structure and in the composition of
tungsten oxide [18].

Existing studies pay special attention to the enhancement of the photochromic properties of bulk
materials based on tungsten oxide, with typical sizes of nanoparticles in the range from tens to hundreds
of nanometers. In turn, the study of the photochromic processes in X-ray amorphous materials based
on tungsten oxide or organic W+6 complexes have received much less attention. The main mechanism
for the reduction of W+6 to W+5 is the electron transfer from an organic stabilizer or a ligand to tungsten
ion [19]. The reduction of W+6 in the course of the photochromic response is supposed to be mainly
due to the transfer of an electron from an organic stabilizer [20]. The photoexcitation of WO3 leads to
the transfer of electron density from the oxygen atom to the tungsten atom. The presence of nitrogen
atoms in the stabilizer molecule results in an increase in photochromic properties due to the increased
donor ability of nitrogen [21,22].

The most general approach to the description of the photochromic properties of tungsten
oxide-based materials has been proposed recently [23,24]. Under UV irradiation, both protons and
electrons are intercalated into the WO3 structure that results in W+6 reduction and crystal structure
stabilization due to bronzes’ formation. Thus, when polyvinylpyrrolidone (PVP) is used as a stabilizer,
the PVP molecules act as effective electron donors, whereas H2O molecules act as the source of
protons. Since the generally accepted mechanism of WO3 photochromism involves the formation of
tungsten bronzes, the photochromic properties of WO3-based materials should also be affected by the
incorporation of the single charged cations (e.g., Na+) in their structure. A literature survey shows that
such an effect has not been studied in detail. In this paper, in order to elucidate the role of sodium
cations in the photochromism of WO3@PVP sols, they were synthesized by either pH adjusting of
sodium or ammonium tungstates’ solutions, or using ion exchange technique to remove sodium or
ammonium cations from the materials to the greatest possible extent. The structure and photochromic
properties of the obtained materials were carefully studied. Special attention was also paid to the
interplay of the recently reported UV-assisted organic dyes’ discoloration in the presence of WO3@PVP
water dispersible nanoparticles [21] and the strongly reducing properties of W+5 species, which form
in the photochromic WO3 nanoparticles upon UV-irradiation. Surprisingly, we found that WO3@PVP
nanoparticles possess photoreductive and photoprotective properties.

2. Results

All WO3 sols were synthesized using two different techniques: By using ion exchange technique
and by direct acidification of sodium or ammonium tungstates’ aqueous solutions. Hereafter, the sample
names Na_1, Na_2, and Na_3 correspond to the sols synthesized using the ion exchange technique
from sodium tungstate solution with various polyvinylpyrrolidone (PVP) content (molar ratio WO3:
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PVP = 1:1; 1:2; 1:4, respectively). The sample names NH_1, NH_2, and NH_3 correspond to the sols
synthesized using the ion exchange technique from ammonium metatungstate solution with various
PVP content (molar ratio WO3: PVP = 1:1; 1:2; 1:4, respectively). The samples obtained using direct
acidification of sodium or ammonium tungstate solutions are labeled hereafter as M(N)x, were symbol
M designates the samples synthesized from ammonium metatungstate and symbol N designates the
samples synthesized from sodium tungstate, x indicate an approximate pH of a solution.

2.1. Small- and Wide-Angle X-ray Scattering

Analysis of the small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS)
data (Figure 1) allows us to conclude that the structures of individual PVP or WO3@PVP composite
differ significantly. Nevertheless, in the low and high q-ranges (q < 0.01 Å−1 and q > 1 Å−1 and),
the scattering curves for the composite or the individual PVP coincide, which indicates that the
scattering in these q-ranges was due to the PVP structure. This scattering pattern is typical for PVP;
the peak at 2 Å−1 corresponds to closely packed side PVP chains, which have characteristic sizes of
about 0.5 Å [25]. In the low q-range, up to 5 × 10−3 Å−1, there was no Guinier region, which indicates
that the characteristic dimensions of PVP aggregates exceeded 200 nm.
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Figure 1. Results of small- and wide-angle X-ray scattering by PVP and WO3@PVP (Na_3) samples.

The coincidence of the scattering patterns in the low and high q-ranges for PVP and WO3@PVP
composite also indicates the colloidal stability of PVP-coated tungsten oxide particles and the absence
of large aggregates. X-ray scattering from the WO3@PVP composite in the range from 0.01 Å−1 to
1 Å−1 with a maximum at 0.05 Å−1 corresponds to the particles of about 2 nm in size.

2.2. X-ray Diffraction

Figure 2 shows the X-ray diffraction (XRD) patterns of dried WO3@PVP samples along with
the XRD pattern of the dried PVP solution. XRD patterns of dried WO3@PVP sols prepared by ion
exchange demonstrated an intense scattering peak at small angles, which was not observed in the XRD
pattern of individual PVP. This peak corresponded to the scattering from WO3 nanoparticles confined
in the dried WO3@PVP composite. It was clearly seen that the position of the peak and, consequently,
the size of the obtained particles were in a strict correlation with the concentration of PVP: The increase
in the amount of PVP led to the formation of larger WO3 particles. For example, when a mass ratio of
WO3:PVP was 1:1, the size of tungsten oxide particles was about 1.4 nm, whereas an increase in the
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WO3:PVP ratio to 1:4 resulted in 2 nm WO3 particles formation. At pH 7, the formation of a composite
was not observed, which was confirmed by the absence of a peak at small angles. The diffraction
pattern for the N7 sample coincided with the diffraction pattern of individual PVP. The diffraction
maximum in the XRD pattern of the N7 sample at 16.8◦2θ corresponded to the [111] peak of the
Na2WO4 phase (card [12–772], PDF-2, ICDD database).
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Figure 2. XRD patterns of dried WO3@PVP sols: (a) Samples obtained using the ion-exchange technique
from sodium tungstate (Na_1, Na_2, and Na_3) and from ammonium metatungstate (NH_1, NH_2,
and NH_3); (b) samples obtained by the pH adjusting from sodium tungstate (N1, N5, and N7) and
from ammonium metatungstate (M1, M5, and M7). As a reference, the data for pure PVP (not modified
with WO3 nanoparticles) are also given.

In the case of the samples obtained without the use of the ion exchange technique, the formation
of the particles of approximately the same size (about 1.8 nm) was observed regardless of the pH value.

Thus, it was confirmed that all the dried samples except N7 contained WO3 nanoparticles.

2.3. Fourier-Transform Infrared Spectroscopy

Fourier-transform infrared (FTIR) spectra of dried WO3 sols are shown in Figure 3. The FTIR
spectra of dried WO3 sols are identical to the spectrum of individual PVP presented elsewhere [26],
excepting the ranges of 795–995 cm−1 and 420–435 cm−1. Absorbance in these ranges is typical for
tungsten oxide [27–29]. FTIR spectra of dried WO3 sols irradiated with UV light (λ = 312 nm, exposure
time of 10 min) were similar to the spectra of dried WO3 sols kept in the dark, while a slight difference
in the splitting of the absorption band at 430 cm−1 was observed. Such a difference can be due to the
distortions of [WO6] octahedra caused by the changes in the tungsten oxidation state. It should also be
noted that the absorption band at 795 cm−1 for the sols synthesized from ammonium metatungstate
was in all cases broader than the same band for the sols obtained from sodium tungstate. Apparently,
this can be related to the influence of the cation: Ammonium had greater ionic radius than sodium for
the same coordination numbers [30,31].

2.4. Transmission Electron Microscopy

Figure 4 shows transmission electron microscopy (TEM) images of WO3@PVP (Na_3 and NH_3)
composites consisting of the particles with the specific sizes of several nanometers. The electron
diffraction images do not contain any reflexes that prove that the samples are amorphous.
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2.5. Photochromic Tests

To confirm the tungsten oxide formation and to compare the photochromic properties of all the
obtained samples, the evolution of optical absorption spectra upon UV irradiation was analyzed.
Figure 5 shows the time dependences of the absorption spectra of WO3@PVP composites synthesized at
different pH values. The optical absorption spectrum of the N7 sample was identical to the individual
PVP spectrum, and the sample did not exhibit photochromic properties. This indicates that the
formation of the WO3@PVP composite did not occur at pH 7, which was also confirmed by the results
of the XRD analysis. In the case of N5 and N1 samples, the absorption edge differed from the PVP
absorption edge and was shifted to the larger wavelengths range, which confirmed the formation
of tungsten oxide in these syntheses. The N5 sample demonstrated the pronounced photochromic
properties, while the N1 sample only demonstrated poor photochromism, probably due to poor redox
activity of WO3 nanoparticles in an acidic media.
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All the sols obtained from ammonium metatungstate did not exhibit the photochromic effect,
and their absorption spectra were identical to those of the PVP solution. Thus, we can assume that
under these conditions ammonium metatungstate was stable and it did not transform into tungsten
oxide. Nevertheless, when these sols were dried, tungsten oxide nanoparticles were finally formed,
as confirmed by the results of XRD analysis.

In the syntheses with the ion-exchange resin and sodium tungstate as the precursor, WO3@PVP
composites were formed, which was confirmed by the changes in optical absorption spectra and by the
appearance of the photochromic effect. Our experimental data indicated that upon the increase in the
PVP to WO3 ratio, the photochromic effect became less pronounced (Figure 6). This was manifested
by a lower rate of coloration and faster discoloration after switching off UV irradiation (Figure 7).
The differences in photochromic behavior of the samples most probably arose from the size effect as
the increase in the amount of PVP added to the sol resulted in the larger WO3 particles.

Figure 8 shows the absorption spectra of dried WO3@PVP samples before and after UV irradiation.
Peaks at 630 and 750 nm were present in the optical absorption spectra of all the samples prepared
from sodium tungstate. In turn, the spectra of the samples obtained from ammonium metatungstate
differed significantly from those described above. Here, there were no narrow peaks in the spectra,
and the wide absorption band was present in the range from 400 to 1000 nm. This indicates possible
formation of ammonium tungsten bronzes with a different absorption spectra. The appearance of
dried sols synthesized from sodium tungstate and ammonium metatungstate before and after UV
irradiation is shown in Figure S2.

The photochromic properties of the samples correlated with the results of XRD analysis. For all
the samples having a small-angle diffraction maximum in the XRD pattern, the photochromic effect
was observed.

In order to determine the mechanism of photochromism we continuously measured the pH of the
solution during the photochromic cycling of the Na_3 sample. These experiments were carried out
both in deionized water and in 0.1 M and 1 M NaCl solutions (Figure 9).
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According to the data obtained (Figure 9b), UV irradiation of the Na_3 sol was accompanied
with a decrease in the sample pH, while after turning off the UV irradiation the pH value was
almost completely recovered. Upon the increase in NaCl concentration, this effect also increased.
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At the same time, there were nearly no changes in the pH value registered in the experiments performed
in deionized water.

The mechanism of photochromism described in the current literature is presumably based on the
formation of hydrated tungsten oxide in the reaction with H+:

xH+ + xe− + WO3 → HxW+6
1−xW+5

x O3 (1)

xNa+ + xe− + WO3 → NaxW+6
1−xW+5

x O3. (2)

As follows from Equation (1), in the absence of alkali metal cations, the formation of hydrated
tungsten oxide should increase the solution pH, which was not observed in our experiments. However,
according to Equation (2), a decrease in the pH values can take place due to the formation of sodium
tungsten bronzes. High stability of tungsten bronzes leads to a relatively larger fraction of the tungsten
reduced form (W+5), as can be seen from the optical absorption spectra (absorption at 600–800 nm rises
with an increase in the concentration of sodium cations in the solution).

2.6. Photocatalytic Dye Discoloration

In order to study the photocatalytic properties of the obtained tungsten oxide sols, the rate
of methyl orange solution discoloration was determined. The corresponding time-resolved optical
absorption spectra are shown in Figure 10. At the first stage, up to ~120 s, the color of the solution was
faded, which was accompanied by an increase in pH value (I in Figure 10c). After that, photochromism
was observed, accompanied by an increase in the intensity of absorption at wavelengths of 600–800 nm
(Figure 10a) and a decrease in pH (II in Figure 10c). After switching off the UV source, the sol bleached
in ~100 s (Figure 10b and III in Figure 10c). After that, two absorption peaks occurred at 510 and
560 nm, which may correspond to the acidic form of methyl orange (Figure 10b and IV in Figure 10c).

Photocatalytic decomposition of methyl orange in the presence of oxide photocatalysts is known
to proceed through an oxidative mechanism involving the hydroxyl radicals and photogenerated holes.
Under anaerobic conditions, the reductive discoloration of methyl orange (MO) proceeds. This reaction
is accompanied by methyl orange transformation into a hydrazine derivative [32]:

(CH3)2NC6H4N = NC6H4SO−3 + 2H+ + 2e− → (CH3)2NC6H4NHNHC6H4SO−3 (3)

The obtained hydrazine derivative is unstable in the absence of UV radiation, and, as a consequence,
in the absence of the reducing agent (W+5). After turning the UV irradiation off, hydrazine derivative
disproportionate to form methyl orange, its acidic form can be traced in the optical absorption
spectra [33]:

2(CH3)2NC6H4NHNHC6H4SO−3 → (CH3)2NC6H4N
= NC6H4SO−3 + (CH3)2NC6H4NH2 + H2NC6H4SO−3

(4)

The reductive photodegradation of methyl orange is also confirmed by the absence of the influence
of isopropyl alcohol (IPA) on the photodegradation rate. IPA is one of the most widely used inhibitors of
photocatalytic processes, due to its reaction with hydroxyl radicals [34]. Figure 11a shows time-resolved
methyl orange absorption spectra during methyl orange photodecomposition by WO3@PVP sols
both in deionized water and in a 20% IPA solution. For the photocatalytic decomposition of MO
in water, the discoloration rate was 0.46 g−1

·s−1, whereas in the 20% IPA solution, the rate was
0.42 g−1

·s−1, which corresponded to a decrease in the photodegradation constant by 9%. A minor
difference in the reaction rates shows that hydroxyl radicals did not take part in the discoloration
process. Thus, the experiment with IPA showed that oxidizing agents did not contribute to the
photocatalytic degradation of the organic dye.
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Figure 11. (a) Time dependence of methyl orange concentration during WO3@PVP-assisted
photocatalytic decomposition in water and in IPA solution. The light area of the plot, UV light
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blue concentration upon UV irradiation in the presence of WO3@PVP (sample Na_1) or in the presence
of WO3@PVP (sample Na_1) and 1 µM HAuCl4.
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The reducing mechanism of photocatalytic activity of WO3@PVP nanoparticles was additionally
confirmed by the introduction of HAuCl4 in the reaction mixture. Here, the reduction of HAuCl4 and
the formation of gold nanoparticles was a competitive process and contributed to the organic dye
discoloration rate [34]. Since the gold nanoparticles cause plasmon resonance effect, their absorption
may interfere with the absorption of the methyl orange. Therefore, in the corresponding photocatalytic
experiments, we used a methylene blue dye (MB) as a model organic dye.

Time dependences of MB concentration in the presence of individual WO3@PVP or a mixture
of WO3@PVP and HAuCl4 are presented in Figure 11b. The data show that the introduction of
HAuCl4 (1 µM) inhibited the discoloration process caused by the WO3@PVP sol. The constant
of the photodegradation process in the presence of WO3@PVP and HAuCl4 was only 8% of the
rate of MB discoloration in the presence of bare WO3@PVP nanoparticles. This experiment also
confirmed the proposed reducing mechanism of organic dyes’ discoloration in the presence of
WO3@PVP nanoparticles.

Analysis of the time dependence of the MO concentration showed an increase in the rate of
discoloration with an increase in NaCl concentration (Figure 12). In a 0.1 M NaCl solution, the MO
discoloration rate for the Na_3 sample increased from 0.46 s−1

·g−1 to 0.48 s−1
·g−1, and in a 1 M NaCl

solution it increased to 0.66 s−1
·g−1. As mentioned above, the increase in sodium concentration led to

the formation of much more stable sodium tungsten bronzes and, subsequently, to the enhancement of
the photochromic properties. The higher fraction of W+5 associated with the increased concentration
of sodium cations resulted in an increase in the rate of photoreductive discoloration of methyl orange.

Molecules 2020, 25, 154 11 of 16 

 

discoloration in the presence of bare WO3@PVP nanoparticles. This experiment also confirmed the 
proposed reducing mechanism of organic dyes’ discoloration in the presence of WO3@PVP 
nanoparticles. 

  
(a) (b) 

Figure 11. (a) Time dependence of methyl orange concentration during WO3@PVP-assisted 
photocatalytic decomposition in water and in IPA solution. The light area of the plot, UV light is 
switched on; the dark area of the plot, UV light is switched off. (b) Time dependences of methylene 
blue concentration upon UV irradiation in the presence of WO3@PVP (sample Na_1) or in the presence 
of WO3@PVP (sample Na_1) and 1 μM HAuCl4. 

Analysis of the time dependence of the MO concentration showed an increase in the rate of 
discoloration with an increase in NaCl concentration (Figure 12). In a 0.1 M NaCl solution, the MO 
discoloration rate for the Na_3 sample increased from 0.46 s−1·g−1 to 0.48 s−1·g−1, and in a 1 M NaCl 
solution it increased to 0.66 s−1·g−1. As mentioned above, the increase in sodium concentration led to 
the formation of much more stable sodium tungsten bronzes and, subsequently, to the enhancement 
of the photochromic properties. The higher fraction of W+5 associated with the increased 
concentration of sodium cations resulted in an increase in the rate of photoreductive discoloration of 
methyl orange. 

 
Figure 12. Comparison of the time dependences of methyl orange photodegradation by the Na_3 
WO3@PVP sol at different NaCl concentrations. 

Due to their high photoreduction ability, obtained WO3@PVP samples can be used as active 
photooxidation protectors. Thus, methyl orange discoloration rate by the Aeroxide P25 commercial 
photocatalyst (TiO2, 25% rutile, 75% anatase) depended on the concentration of the Na_3 sol. As can 

Figure 12. Comparison of the time dependences of methyl orange photodegradation by the Na_3
WO3@PVP sol at different NaCl concentrations.

Due to their high photoreduction ability, obtained WO3@PVP samples can be used as active
photooxidation protectors. Thus, methyl orange discoloration rate by the Aeroxide P25 commercial
photocatalyst (TiO2, 25% rutile, 75% anatase) depended on the concentration of the Na_3 sol. As can
be seen from Figure 13, the increase in WO3 concentration led to the decrease in the methyl orange
photocatalytic decomposition rate, which was associated with the photoreduction of hydroxyl radicals
formed upon UV irradiation of TiO2. Here, the main mechanism of photodegradation was still the
oxidative decomposition of methyl orange. The further increase in WO3 content resulted in the increase
in the discoloration rate, due to the predominance of photoreductive processes on WO3 particles.
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reaction induced by a TiO2 photocatalyst.

3. Materials and Methods

3.1. Materials

Sodium tungstate dihydrate (Na2WO4 ≥ 99%, Sigma-Aldrich, Darmstadt, Germany), ammonium
metatungstate hydrate ((NH4)6H2W12O40·xH2O ≥ 99%, Sigma-Aldrich), polyvinylpyrrolidone
(PVP K-30, average mol. wt. 40,000), HCl, NaOH, NaCl (99%, Sigma-Aldrich), methyl orange
(MO, C14H14N3NaO3S, Arcos), cation exchange resin (Amberlite IR120, Supelco Inc., Bellefonte, PA,
USA), and TiO2 (Aeroxide® P25, ≥99.5%, Evonik, Essen, Germany) were used as received.

3.2. Preparation of Sols

Hydrated tungsten oxide nanoparticles stabilized with PVP were synthesized by a wet chemistry
technique. The first series of samples was obtained by the method reported earlier [18]. Briefly, tungstic
acid was synthesized by an ion-exchange technique using sodium tungstate (Na2WO4) solution and
strongly acidic cation exchange resin (Amberlite IR120). Ion-exchange resin was swelled in water and
loaded into a 200 mL glass column. Then, 100 mL of 0.05 M sodium tungstate solution was passed
through the column dropwise. After that 1, 2, or 4 g of PVP was added to the obtained eluent to prepare
Na_1, Na_2, and Na_3 samples, correspondently. The solution was transferred to the flask and stirred
for 4 h under 80 ◦C. The thus formed sol turned out to be stable, while a precipitate was formed after
several hours when the ion-exchange procedure was performed without the addition of PVP.

Using ammonium metatungstate instead of sodium tungstate, samples NH_1, NH_2, and NH_3
were obtained.

The second series of samples was prepared without the use of the ion-exchange resin. To 100 mL
of 0.05 M sodium tungstate solution or 0.05 M ammonium metatungstate solution, 4 g of PVP were
added, then the pH value was adjusted to 1, 5, or 7, using 0.1 M HCl or NaOH, which were added
dropwise. Thus prepared solutions were stirred for 4 h at 80 ◦C to obtain the sols. The samples were
marked M(N)x, where symbol M designated the samples synthesized from ammonium metatungstate,
symbol N designated the samples synthesized from sodium tungstate, and x indicated an approximate
pH value of the solution.
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3.3. Characterization

3.3.1. XRD

X-ray diffraction (XRD) patterns were recorded using a Rigaku D/MAX 2500 diffractometer
(θ/2θ Bragg-Brentano reflection geometry) with a scintillation counter. All the measurements
were performed with CuKα1,2 radiation generated on a rotating Cu anode (50 kV, 250 mA) and
monochromatized by a curved graphite [002] monochromator placed at the reflected beam. The XRD
patterns were collected in the 1.5–20◦ 2θ range with a 0.02◦ step and at least 5 s/step. To reduce
the undesirable background intensity, all dried samples were investigated on monocrystalline [510]
Si holders.

3.3.2. SAXS

Small-angle and wide-angle X-ray scattering experiments were performed at the SWING beamline
of synchrotron SOLEIL (Saint Aubin, France). To measure scattering from 5 × 10−3 to 3 Å−1,
the sample-to-detector distances were 0.5–2 m. The patterns were recorded with a two-dimensional
EigerX 4-M detector (Dectris, Baden, Switzerland). The synchrotron radiation wavelength was
λ = 0.775 Å. The investigated samples were placed in capillaries with a diameter of 1.5 mm and were
sealed by paraffin wax. Scattering patterns of an empty capillary and a capillary filled with MilliQ
water were recorded for intensity background subtraction. Data processing of the recorded 2D images
was performed by FOXTROT software (version 3.2.7, SOLEIL, France) [35].

3.3.3. TEM

TEM images were acquired using a charge-coupled device (CCD) camera, Ultra Scan 4000
(Gatan, Gatan, Pleasanton, CA, USA), installed in a transmission electron microscope, Zeiss Libra
200 FE operated at 200 kV. The samples were applied to a copper grid covered with lacey carbon.

3.3.4. FTIR

The FTIR spectra of the samples were recorded on a Bruker ALPHA spectrometer, in a range of
400–4000 cm−1, in attenuated total reflectance mode. To avoid solvent effect, WO3 sols were dried at 50
◦C for 3 h.

3.3.5. Photochromic and Photocatalytic Measurements

Photochromic and photocatalytic experiments were carried out in the flow-type measuring
system. WO3@PVP sols were irradiated using a high-pressure mercury lamp with a power of 5.5 W.
The complete scheme of the setup is described elsewhere [36]. The suspension absorption spectra were
measured using an HRX-2000 xenon lamp, an Ocean Optics QE65000 spectrophotometer, and Ocean
Optics fiber optics. The pH was controlled using an ESC-10314/7 combined electrode. The scheme of
the experimental setup is presented in Figure S1.

In the typical experiment, 1 mL of the WO3 sol was added to 25 mL of deionized water, and after
that the obtained solution was transferred in the measuring setup.

The study of organic dyes’ discoloration in the presence of WO3@PVP sols and in the
WO3@PVP-TiO2 system was carried out under similar conditions. Methyl orange solution was
used as a model dye. NaCl solutions of different concentrations were used to determine the effect of
sodium concentration on the photodegradation rate. Photocatalytic decomposition of methyl orange
in the presence of WO3@PVP-TiO2 was analyzed in a phosphate buffer solution at a fixed pH value of
6.86. In the photocatalytic experiments, the discoloration rate of MO was determined as the first-order
reaction:

ln
(

C
C0

)
= −K1t (5)
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The discoloration rate (K1) was evaluated as the slope of the time dependence of MO relative
concentration in semilogarithmic scale [37–40]. In all the cases, an approximation by a first-order
reaction Equation (5) resulted in an R2 factor higher than 0.97.

Optical absorption spectra were recorded at intervals of 3 s. Absorption spectra were processed
using Python software, using scipy and matplotlib libraries [41,42].

4. Conclusions

In our work, we focused our attention on the cation effect on the structure and photochromic
properties of the WO3@PVP aqueous sols. WO3@PVP (polyvinylpyrrolidone) photochromic aqueous
sols can only be prepared by slight acidifying of sodium tungstate solutions, while acidifying of
ammonium metatungstate solutions results in nonphotochromic sols. The most probable reason for
this effect is the high stability of polytungstate anions. In turn, drying of the sols (both synthesized from
sodium tungstate and ammonium metatungstate) resulted in photochromic films due to the formation
of tungsten oxide nanoparticles. An increase in PVP content resulted in a decrease in photochromic
properties of the materials due to the formation of larger WO3 nanoparticles.

The presence of sodium cations in WO3@PVP materials favored formation of reduced tungsten
species (W+5) upon UV irradiation, strongly affecting their photochromic and photocatalytic properties.
This effect was probably due to the formation of stable Na-tungsten bronzes. When the WO3@PVP
sols were synthesized using an ion-exchange method, which allowed minimizing sodium content in
the sols, they demonstrated far less photochromic activity.

Finally, we proposed an experimental approach, which allowed us to establish photoprotective
properties of WO3@PVP sols in photocatalytic reactions. Due to their photoreductive properties,
photochromic sols of tungsten oxide can act as effective photoprotectors in photooxidation processes.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/25/1/154/s1,
Figure S1: A scheme of the set-up used for photochromic measurements, Figure S2: Appearance of dried sols
before and after UV irradiation.
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