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Abstract: Caspase 8 is a central player in the apoptotic cell death pathway and is also essential
for cytokine processing. The critical role of this protease in cell death pathways has generated
research interest because its activation has also been linked with neural cell death. Thus, blocking
the activity of caspase 8 is considered a potential therapy for neurodegenerative diseases. To extend
the repertoire of caspase 8 inhibitors, we employed several computational approaches to identify
potential caspase 8 inhibitors. Based on the structural information of reported inhibitors, we designed
several individual and consensus pharmacophore models and then screened the ZINC database,
which contains 105,480 compounds. Screening generated 5332 candidates, but after applying stringent
criteria only two candidate compounds, ZINC19370490 and ZINC04534268, were evaluated by
molecular dynamics simulations and subjected to Molecular Mechanics/Poisson Boltzmann Surface
Area (MM-PBSA) analysis. These compounds were stable throughout simulations and interacted
with targeted protein by forming hydrogen and van der Waal bonds. MM-PBSA analysis showed that
these compounds were comparable or better than reported caspase 8 inhibitors. Furthermore, their
physical properties were found to be acceptable, and they are non-toxic according to the ADMET
online server. We suggest that the inhibitory efficacies of ZINC19370490 and ZINC04534268 be
subjected to experimental validation.

Keywords: caspase 8; ligand; pharmacophore; neurodegeneration; virtual screening

1. Introduction

Neurological disorders (NDs) are usually due to structural and/or functional losses of neurons and
eventually neuronal death [1]. Literally, hundreds of neurological/neurodegenerative diseases have
been identified, but some like Alzheimer’s disease (AD) and Parkinson’s disease (PD) are very well
known and have devastating impacts in modern society. NDs tend to share some characteristics such
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as memory loss and the aggregation of abnormal proteins [2]. Neuronal death is the main characteristic
of major NDs, and apoptosis is considered a possible mechanism of neuronal death in the majority
of NDs [3]. Furthermore, abnormal or excessive neuron apoptosis eventually lead to a number of
incurable diseases including AD, PD, Huntington’s disease (HD), and stroke [4,5]. The genes that
crucially contribute to AD (β-amyloid precursor protein (APP), and presenilin-1 and -2) have been
demonstrated to regulate apoptosis, which intimates dysregulation of apoptosis plays a notable role in
triggering the neuronal loss in AD [6].

Caspases are the main executioners of apoptosis and are usually proteolytic in nature [7]. Caspases
constitute a distinctive set of proteases (cysteine aspartate-specific) with the specific substrate and
biological functions [8,9]. They are categorized as ‘inflammatory’ or ‘apoptotic’ on the basis of their
functions and pro-domain structures and may further be categorized as initiator (caspase 2, 8, 9, and
10) or effector caspases (caspase 3, 6, and caspase 7) [10,11]. Caspases have been identified in the
brains of AD patients, and caspases 1, 2, 3, 5, 6, 7, 8 and 9 have all been reported to be transcriptionally
up-regulated in AD [12]. Several studies, including neuropathologic and clinical imaging observations,
indicate that stimulated microglia (the monocyte-derived macrophage-like resident immune cells of the
central nervous system) are primarily responsible for the pathogeneses of a number of NDs, including
AD, PD, and multiple sclerosis [13–15]. Activated microglia release neurotoxic pro-inflammatory
factors [16], and accumulated evidence indicates caspases (especially, caspase 3/7 and caspase 8) are
key regulators of microglial activation [14,17]. Furthermore, neuroinflammation in the brains of AD
and PD patients is attributed to the presence of activated microglia [15,17]. Thus, it has been suggested
the identification of potent caspase inhibitors might prove to be a potent strategy for identifying
neuroprotective agents for the treatment of several NDs [18,19].

Caspase 8 is involved in apoptosis and cytokine processing. The latter represents an initial step of
the apoptotic cascade, which initiates proteolytic stimulation of downstream caspases and proceeds
to apoptosis [20]. Activated caspase 8 has been detected in the AD brain, and its activation has been
posited to be due to the stimulation of receptors in the ‘death-receptor pathway’ [21]. Furthermore, the
stimulation of caspase 8 in activated microglia prevents their committing to necroptosis. Consequently,
the identification of effective caspase 8 inhibitors might protect neurons by selectively killing or
blocking the activities of activated microglia [22,23].

Activated caspase 8 has been detected within insoluble elements in HD brains [24], and
reported to be significantly up-regulated in cerebrospinal fluid in amyotrophic lateral sclerosis
(ALS) [25]. In addition, activated caspase 8 levels are significantly elevated in patients suffering from
Dentatorubralpallidoluysian atrophy (DRPLA), a rare ND with a genetic pathology of polyglutamine
(CAG) repeats [23,24]. In this study, we applied state of art in silico approaches, that is, pharmacophore
modeling, virtual screening, molecular dynamics, molecular docking simulations, and MM-PBSA
analysis in an attempt to discover potential caspase 8 inhibitors.

2. Results and Discussion

Due to the small activity range differences between training set compounds, we used the HipHop
protocol for pharmacophore generation. We assumed that the most active ligand(s) in the training set
would bind in the same manner with the active site of caspase 8. We assessed the common features
essential for binding using the HipHop module in Catalyst software. The six-molecule training set was
used to generate pharmacophore models based on common chemical features (Figure 1).
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Figure 1. Structures of the training set compounds used for pharmacophore generation [26]. 

2.1. Pharmacophore Modeling: 3D Pharmacophore Generation 

Ten pharmacophore models (hypotheses) were generated with a rank score ranging from 
152.441 to 150.863 (Table 1). The resulting 10 hypotheses contained seven features viz. five hydrogen 
bond acceptor-lipid (H), one ring aromatic (R), and one hydrophobic (Z) common to all 10 
hypotheses. Of these 10 hypotheses, Hypo-1 (Figure 2A) was selected as it mapped all features of the 
most active molecule in the six-compound training set. Two out of five H functions maps on the five 
oxygen with different –OH and C=O functions of the most active compound (NP-LHED-AOMK) 
(Figure 2B) from the training set, while the R function was mapped to one of the ring aromatic and 
hydrogen bond donor functions. The NH group from the amino acid linkage supported the 
remaining single hydrogen donor functionality. One benzene ring from LHED and LTED was 
mapped for the R function of this pharmacophore model (Figure 2C). 

Table 1. The characteristics of the generated pharmacophore model. 
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Figure 1. Structures of the training set compounds used for pharmacophore generation [26].

2.1. Pharmacophore Modeling: 3D Pharmacophore Generation

Ten pharmacophore models (hypotheses) were generated with a rank score ranging from 152.441
to 150.863 (Table 1). The resulting 10 hypotheses contained seven features viz. five hydrogen bond
acceptor-lipid (H), one ring aromatic (R), and one hydrophobic (Z) common to all 10 hypotheses. Of
these 10 hypotheses, Hypo-1 (Figure 2A) was selected as it mapped all features of the most active
molecule in the six-compound training set. Two out of five H functions maps on the five oxygen with
different –OH and C=O functions of the most active compound (NP-LHED-AOMK) (Figure 2B) from
the training set, while the R function was mapped to one of the ring aromatic and hydrogen bond
donor functions. The NH group from the amino acid linkage supported the remaining single hydrogen
donor functionality. One benzene ring from LHED and LTED was mapped for the R function of this
pharmacophore model (Figure 2C).

Table 1. The characteristics of the generated pharmacophore model.

9 Features Rank Direct Hit Partial Hit Max Fit

01 RDHHHHH 152.441 111111 000000 7
02 RZHHHHH 152.286 111111 000000 7
03 RZHHHHH 152.086 111111 000000 7
04 RZHHHHH 152.058 111111 000000 7
05 RZHHHHH 151.770 111111 000000 7
06 RZHHHHH 151.719 111111 000000 7
07 RZHHHHH 151.511 111111 000000 7
08 RZHHHHH 151.147 111111 000000 7
09 RZHHHHH 151.017 111111 000000 7
10 RZHHHHH 150.863 111111 000000 7

(R, ring aromatic; D, hydrogen bond donor; H, hydrogen bond acceptor; Z, hydrophobic group and P, positive
ionisable. Direct hit; all the features of the hypothesis are mapped. Direct hit = 1 means yes and Direct hit = 0 is no.
Partial hit; partial mapping of the hypothesis. Partial hit = 1 means yes and Partial hit = 0 means no.).



Molecules 2019, 24, 1827 4 of 11Molecules 2019, 24, x 4 of 11 

 

 

Figure 2. Pharmacophore mapping of compounds (A) Pharmacophore model developed using the 
training set compounds. (B) Mapping of the most active compound NP-LHED-AOMK from the 
training set compounds. (C) Pharmacophore mapping of the least active compound NP-LTED-AMPK 
on pharmacophore. The color represents R, ring aromatic (Orange); D, hydrogen bond donor (Purple); 
A, hydrogen bond acceptor; H (Green), hydrophobic group and P, positive ionisable (Red). 
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ZINC database, which contained 105,480 molecules, using the ‘Best Flexible Search’ option in DS 2.5. 
A hit list of 5332 compounds matched the query (Hypo1). Further filtration based on fit values of >3.5 
and physiochemical screening resulted in 76 hits. These hits were subjected to visual inspection for 
proper alignments with Hypo-1, and finally, after performing molecular docking, 10 hits were 
retrieved from the ZINC database (Table 2). The final selection from this set of 10 hits was made using 
Moldock and Re-rank scores and resulted in the selection of two compounds (ZINC19370490 and 
ZINC04534268) for further study. 
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Figure 2. Pharmacophore mapping of compounds (A) Pharmacophore model developed using the
training set compounds. (B) Mapping of the most active compound NP-LHED-AOMK from the
training set compounds. (C) Pharmacophore mapping of the least active compound NP-LTED-AMPK
on pharmacophore. The color represents R, ring aromatic (Orange); D, hydrogen bond donor (Purple);
A, hydrogen bond acceptor; H (Green), hydrophobic group and P, positive ionisable (Red).

In the direct hit mask, (1) every feature of the training set molecules were mapped; (0) indicates
one or more features were not mapped. In the partial hit mask, (0) indicates every feature of the training
set molecules were mapped; (1) indicates one or more features were not mapped. Z; Hydrophobic (Z),
H; Hydrogen bond acceptor (H), R; Ring aromatic (R).

2.2. Pharmacophore-Based Virtual Screening (PBVS)

The validated hypothesis (pharmacophore model) Hypo-1, was used as a query to screen the
ZINC database, which contained 105,480 molecules, using the ‘Best Flexible Search’ option in DS 2.5.
A hit list of 5332 compounds matched the query (Hypo1). Further filtration based on fit values of
>3.5 and physiochemical screening resulted in 76 hits. These hits were subjected to visual inspection
for proper alignments with Hypo-1, and finally, after performing molecular docking, 10 hits were
retrieved from the ZINC database (Table 2). The final selection from this set of 10 hits was made using
Moldock and Re-rank scores and resulted in the selection of two compounds (ZINC19370490 and
ZINC04534268) for further study.
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Table 2. Functions resulted from docking of top 10 prioritized compounds.

Ligand MolDock Score Rerank Score Docking Score Similarity Fit Value

ZINC00959167 −79.5965 −68.8523 −328.308 −247.343 4.999

ZINC01234548 −109.655 −94.2736 −362.447 −248.796 4.79982

ZINC09212678 −80.7085 −69.2156 −328.066 −246.039 4.89982

ZINC01301026 −72.0231 −58.011 −342.572 −265.101 4.99982

ZINC03830398 −76.8326 −60.6093 −345.951 −270.038 4.922

ZINC06143162 −88.6888 −65.8386 −339.951 −250.383 4.4982

ZINC14671560 −97.5435 −77.8008 −377.247 −280.961 4.482

ZINC04534268 −116.417 −94.1023 −440.055 −309.038 4.9482

ZINC19370490 −138.402 −117.46 −480.995 −329.518 4.682

ZINC02775438 −91.4008 −67.6985 −406.978 −311.933 4.621

2.3. Molecular Dynamics Simulation and Molecular Docking

Molecular dynamics simulation of caspase 8 was performed for 20 ns using GROMOS96 53a6
force field. We analyzed the binding efficiencies of ZINC19370490 and ZINC04534268 with caspase
8 for different times (0 ns, 5 ns, 10 ns, 15 ns, and 20 ns). These selected compounds were further
tested to confirm their binding affinities. A different scoring function (the gold fitness score) was
used to reconfirm their binding affinities with caspase 8. This function scores the binding efficacies
of receptor-ligand complexes, and in the present study were used to predict binding affinity [27,28].
The binding efficiencies of both compounds were determined and additional poses were created based
on gold fitness scores. The binding efficacies of ZINC19370490 and ZINC04534268 with caspase 8 at
different time intervals are shown in Tables 3 and 4.

Table 3. Efficacy of ZINC19370490 against caspase 8 at different time intervals and the active site
residues involved in the binding.

Time
Period

Gold Fitness
Score

Residues

Hydrogen Bond Hydrophobic Interaction

0 ns 53.78 R179, Q283, Y290, S339, R341, N381 R179, C285, S339, Y340, R341
5 ns 53.30 R179, K292, R341 R179, Y290, K292, Y340, R341, P343
10 ns 54.06 R341 R179, N180, Y290, V338, Y340, R341

15 ns 58.12 R179, R341, N342, G346, N381E C285, T333, V338, S339, Y340, R341,
E345, G346, T347, W348, N381E, Q385

20 ns 51.50 R179 H237, C285, V338, Y340

Table 4. Binding efficacy of ZINC04534268 against caspase 8 at different time intervals and the active
site residues involved in the binding.

Time
Period

Gold Fitness
Score

Residues

Hydrogen Bond Hydrophobic Interaction

0 ns 60.48 R179, S236, C285, R341 H237, C285, S339, Y340, R341, D381B, K381D,
5 ns 52.37 R179 R179, H237, C285, V338, R341, P343, N381E,

10 ns 55.96 S339, R341 R179, H237, C285, Y290, K292, S339, Y340, R341

15 ns 57.52 A332, R341, G383 R179, N180, G181, D185, Q283, Y340, R341,
G346, T347, D381A, N381E, G383, Q385,

20 ns 58.68 R179, H237 S175J, H237, C285, G287, D288, Y290, V338,
Y340, R341, P343,
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We found both compounds bound effectively to the active site of caspase 8. The detailed binding
mechanisms of the two compounds were further investigated by analyzing binding poses using
PyMOL [29]. Figures 3 and 4 depict binding between ZINC19370490 or ZINC04534268 and the active
site of caspase 8 at 0 ns, 5 ns, 10 ns, 15 ns, and 20 ns. R179, Y340, R341 and C285 residues in the active
site of caspase 8 were found to be most involved in the binding of both compounds. The roles of
these key residues have been also described elsewhere [30], and concur with our finding regarding
the importance of these residues in the active site. Roles of other important amino acids were also
revealed by the present study (Tables 3 and 4). Summarizing, we found caspase 8 tends to form stable
complexes with ZINC19370490 and ZINC04534268.
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2.4. Thermodynamics Analysis

Thermodynamic analysis produced encouraging results, as binding free energies of ZINC19370490
and ZINC04534268 were either comparable or better than those of previously reported caspase 8
ligands [26] (Table 5). Thermodynamic parameters are important for drug design as they determine
the relative binding strengths of protein and non-protein entities. Our MM-PBSA analysis showed
the values of different parameters for ZINC19370490 and ZINC04534268 were comparable to those of
existing molecules. In addition, we analyzed the solvation free energies of the two proteins to evaluate
their water binding affinities, which is a critical consideration when designing molecular therapies.
Interestingly, this analysis revealed ligand-binding sites exhibited both positive and negative solvation
free energy regions/residues. The number of residues that avoid solvation is in general higher as
compared to those that prefer to be soluble. The ligand-binding site of caspase 8 is surrounded by
polar residues that pose a barrier to ligand binding.

Table 5. MM-PBSA values (binding free energies) of different ligands with caspase 8. Each value
represents the average value calculated from the last 100 snapshots. SASA, solvent accessible surface
area; SAV, solvent accessible volume. The standard deviations are given in parenthesis.

Ligand Electrostatic Polar
Solvation Van der Waal SASA SAV Binding Free

Energy (KJ/mol)

Z-IETD-FMK −81.44 (33.4) −4.98 (4.5) −121.622 (15.2) −14.52 (1.25) −159.2 (9.5) −382.524 (29.45)

Z-IETD-FMK −155.45 (30.5) 58.326 (10.5) −140.4 (8.45) −17.90 (2.58) −198.5 (6.47) −453.924 (45.98)

Z-LEHD-FMK −58.45 (21.25) 212.670 (12.36) −108.45 (19.585) −19.07 (2.04) −169.7 (7.8) −143.08 (29.704)

NP-DEVD_AOMK −53.11 (48.90) 80.37 (4.80) −109. 48 (5.08) −13.09 (1.08) −117.9 (6.24) −106.99 (34.19)

NP-LETD-AOMK −145.48 (46.2) 254.051 (15.66) −314. 94 (18.56) −17.6 (1.69) −178.56 (9.4) −401.93 (26.78)

NP-LEHD AOMK −58.67 (45.09) 198.07 (12.360) −265.98 (14.8) −11.04 (2.05) −164.5 (2.63) −302.12 (41.29)

ZINC19370490 −154.45 (4.22) 109.45 (29.07) −190.07 (26.6) −19.05 (2.44) −180.56 (4.5) −434.68 (39.45)

ZINC04534268 −225.64 (79.82) 76.697 (9.14) −217.56 (78.2) −17.89 (1.99) −88.67 (2.6) −484.063 (31.08)

2.5. Physical Properties of Ligands

The physical properties of these ZINC19370490 and ZINC04534268 were found to be compatible
with the implementation of pre-clinical studies (Table 6). Lack of cytochrome P family inhibition is
a good indicator of a long circulation half-life, low skin permeability reduces the risk of skin-related
injuries, and low gut absorption can be enhanced by techniques such as nanoparticle encapsulation [31].
ZINC19370490 and ZINC04534268 are also non-toxic according to the ADMET online server (https:
//preadmet.bmdrc.kr/toxicity/).

Table 6. General properties of ZINC04534268 and ZINC19370490.

Properties ZINC04534268 ZINC19370490

GI absorption Low Low

BBB permeant No No

P-gp substrate No Yes

CYP1A2 inhibitor No No

CYP2C19 inhibitor No No

CYP2C9 inhibitor No No

CYP2D6 inhibitor No No

CYP3A4 inhibitor No No

LogKp(skin permeation) −6.67 cm/s −14.17 cm/s

https://preadmet.bmdrc.kr/toxicity/
https://preadmet.bmdrc.kr/toxicity/
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3. Materials and Methods

3.1. Common Feature Pharmacophore Model

Based on our previous studies on approaches to indirect drug design [32,33] and in the field of
neurodegenerative disease [33] we decided to focus on caspase 8 inhibitors. Molecules reported in
the literature were collated [26], but biological activity data did not exhibit the required 3 log unit
variation necessary to develop a quantitative pharmacophore model using the Hypogen module in
Catalyst software. Accordingly, we built a common feature pharmacophore ‘HipHop’ model using six
structurally diverse compounds with different inhibitory activities (training set, Figure 1).

3.2. Common Feature Pharmacophore Generation

The set of six diverse compounds with maximum activity at the dose of 250µm were used as
the training set (Figure 1). Pharmacophore generation protocol was performed using the HipHop
algorithm of Catalyst employed in Discovery Studio 2.0 (DS 2.5) [34]. All training set compounds
were drawn/built using ISIS Draw 2.5 and imported into DS 2.5 windows. The CHARMm force field
was applied to optimize training set compounds [35]. The conformations of these compounds were
generated using the ‘diverse conformation generation’ protocol of DS 2.5 using default parameters
(principal value = 2, maximum omit feature = 0). Accordingly, the most active compound was assigned
a score of 1 and moderately and less active compounds were assigned a score of 0. The ‘Feature
Mapping’ protocol was run to detect common features in the training set.

3.3. Pharmacophore-Based Virtual Screening (PBVS)

The PBVS approach was used to identify probable inhibitors of caspase 8. The validated model of
pharmacophore (Hypo-1) was used as a query to search for compounds in the ZINC database using
‘Best flexible search’ option in DS 2.5. Resulting hits were screened based on fit values of >3.5 and this
was followed by additional screening using physiochemical properties. In addition, these hits were
subjected to visual inspection for proper alignments with Hypo-1 and finally subjected to molecular
docking, after completing the virtual screening process the 10 most potent hits were retrieved from
the ZINC database. Two of these 10 hits were selected based on Moldock score and re-rank scores for
further study.

3.4. Molecular Docking Studies

Molecular docking was performed using the MolDock module in Molegro Virtual Docker (MVD)
software [36]. The scoring function of molecular docking in MolDock is based on piecewise linear
potentials (PLPs) [37]. A re-ranking method was applied to the highest ranked poses to increase the
accuracy of docking. The search algorithm ‘MolDock SE’ was applied to this analysis, and population
size of 50 and a maximum number of iterations of 1500 were set as parameters. Other parameters
were kept as default with the number of runs as 10. Since MVD relies on an evolutionary algorithm,
repeated docking runs do not result in precisely the same poses and interactions. To address this
intrinsic arbitrariness, three successive runs were performed and the best three poses were used to
visualize further interactions.

3.5. Molecular Dynamics Simulation

The Gromacs 4.6.7 suite was utilized to perform MD simulations [38] with the 53a6 parameter set
of gromos96 force field [39]. A dodecahedron box was selected to immerse the protein and SPC216
water model was used to fill the box [40] that extended to at least 1.2 nm from the edge of the protein.
Na+ and Cl− counter ions were added to neutralize the system up to a physiological salt concentration
of 100mM. After solvation and neutralization steps, system was minimized energetically using the
steepest-descent method to remove steric clashes between atoms. In addition, the MD simulations
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were run under NPT (Constant number of particles, pressure and temperature) conditions with the use
of Berendsen’s coupling algorithm for maintaining constant temperature and pressure. The LINCS
algorithm [41] was used to constrain the lengths of all bonds and water molecules were restrained using
the SETTLE algorithm [42]. The particle mesh Ewald (PME) was used to treat long-range electrostatic
interaction [43]. A 10 Å cut-off was employed for the van der Waals interactions. The MD simulation
time-step was 2 fs and coordinates were saved every 2ps. The PRODRG server was used for the
parameterization and generation of topology for each ligand [44].

3.6. Thermodynamic Analysis

Protein-ligand binding free energies were calculated to monitor the binding intensities of
ligands to caspase 8 using MM-PBSA. For the MM-PBSA calculations, the system was prepared
by adding hydrogens, and partial charges on ligands were calculated using the theory utilized
in the AM1-BCC model. Calculations were performed using AMBERTOOLS16. Solvation free
energies and decomposition into individual amino acids were calculated using ProWave web server
(https://www.prowave.org/). The physical properties of ligands were calculated using PreADMET [45]
and SwissADME [46].

4. Conclusions

Common feature-based pharmacophore modelling and structure-based docking study were
applied to identify novel caspase 8 inhibitors. A pharmacophore model (Hypo-1) was developed and
validated and used as a filtering tool to screen the ZINC database. After a series of screenings followed
by visual inspection and molecular docking of selected compounds, the two most potent compounds
were subjected to molecular docking with caspase 8 at different time intervals (0 ns, 5 ns, 10 ns, 15 ns,
and 20 ns) to obtain deeper insight of their binding efficacies.

The binding free energies of these two compounds were comparable or better than those
of previously described caspase 8 inhibitors and satisfied most drug candidate criteria. Using a
combination of pharmacophore modeling, virtual screening, molecular docking, and finally molecular
dynamics simulations of these two proteins at different time intervals and their binding affinities, we
conclude that ZINC19370490 and ZINC04534268 be viewed as potential lead compounds.
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