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Abstract: Microplastics, which have been frequently detected worldwide, are strong adsorbents
for organic pollutants and may alter their environmental behavior and toxicity in the environment.
To completely state the risk of microplastics and their coexisting organics, the adsorption behavior
of microplastics is a critical issue that needs to be clarified. Thus, the microplastic/water partition
coefficient (log Kd) of organics was investigated by in silico method here. Five log Kd predictive
models were developed for the partition of organics in polyethylene/seawater, polyethylene/freshwater,
polyethylene/pure water, polypropylene/seawater, and polystyrene/seawater. The statistical results
indicate that the established models have good robustness and predictive ability. Analyzing the
descriptors selected by different models finds that hydrophobic interaction is the main adsorption
mechanism, and π−π interaction also plays a crucial role for the microplastics containing benzene
rings. Hydrogen bond basicity and cavity formation energy of compounds can determine their
partition tendency. The distinct crystallinity and aromaticity make different microplastics exhibit
disparate adsorption carrying ability. Environmental medium with high salinity can enhance the
adsorption of organics and microplastics by increasing their induced dipole effect. The models
developed in this study can not only be used to estimate the log Kd values, but also provide some
necessary mechanism information for the further risk studies of microplastics.

Keywords: microplastic; adsorption partition coefficients (log Kd); predictive model;
adsorption mechanism

1. Introduction

Microplastics have become an emerging global environmental pollution problem [1]. They have
been frequently detected in sediments [2,3], organisms [4], seawater [5], freshwater [6], and even in
subpolar waters [7]. Microplastics can exist in the environment for a long time, bringing significant
environmental and ecological risks. For example, microplastics can block the light transmission in
water, which may affect the light absorption of various organisms. More researches proved that
microplastics can be ingested by organisms, causing blockages in the digestive system, which can
lead to inflammation and chronic toxicity [4,8]. In addition to the effects of microplastics themselves,
they also can alter the existent form, regional concentration, environmental persistence, environmental
behavior, ecological risk, etc. of the coexisting pollutants (e.g., organic pollutants) via adsorption.
For example, it has been proven that microplastics can inhibit the dissipation and transformation
of phenanthrene in water and enhance its bioaccumulation in Daphnia magna body [6]. Therefore,
understanding the adsorption interaction between microplastics and organic pollutants is of great
importance to clarify their environmental risk deeply and completely.
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Due to the small particle size (<5 mm) and large specific surface area of microplastics, they can
easily adsorb ambient organic pollutants [9,10]. Generally, the adsorption ability of microplastics
towards organic pollutants can be expressed by the equilibrium coefficient of organic pollutants
partitioning between microplastics and water (Kd) [11]. Previous experimental studies showed that
the values of Kd can be significantly influenced by the properties of microplastics, types of organic
pollutants, conditions of environmental medium, and so on. For example, log Kd (L/kg) values for the
adsorption of aged polystyrene (PS) microplastics in pure water ranged from 1.37 for dichloromethane
to 3.9 for n-hexane [12]. For aliphatic and aromatic organic pollutants, Kd values for different
microplastics increased in the order: polyamide < polyethylene (PE) < polyvinylchloride < PS [13].
The Kd value (PS) of perfluorobutanoic acid in seawater is almost 31 times that of freshwater [14]. Thus,
to reveal the adsorption carrying ability of different microplastics towards huge and ever-increasing
number of organic pollutants in various environmental conditions, a large number of Kd values have
to be determined.

Given the research of microplastics is only in the primary stage, the reported Kd values are far from
meeting the needs of further research [15]. Currently, Kd values are usually acquired via adsorption
experiments. This method always needs a long equilibrium time and strict experimental control,
leading to high cost and time delay. Quantitative structure–property relationship (QSPR) models
can just make up for these shortcomings. Mechanism-based QSPR models, such as polyparameter
linear free energy relationship (pp-LFER) model, can not only provide predictive Kd values efficiently,
but also promote the adsorption mechanism analysis [16–18]. Currently, few Kd predictive models for
microplastics have been reported. However, most of these models were developed only based on the
experimental Kd values obtained in the corresponding studies, and used to analyze the contribution
of individual molecular interactions to overall sorption [12,13]. Therefore, it is still necessary to
develop Kd predictive models based on QSPR for estimating the adsorption carrying ability of
different microplastics towards organic pollutants in various waters, and preliminarily discussing the
adsorption mechanisms.

In this study, we collected Kd values for the three most frequently detected microplastics,
including PE, polypropylene (PP), and PS [19]. Our main purposes were (1) to establish
models for predicting Kd values of polychlorinated biphenyls, chlorobenzenes, polycyclic aromatic
hydrocarbons, antibiotics, aromatic hydrocarbons, aliphatic hydrocarbons, hexachlorocyclohexanes,
and perfluorinated compounds for PE, PP, and PS in seawater, freshwater, and pure water; (2) to explore
the adsorption interaction mechanism; (3) to discuss the effects of microplastic type and environmental
condition on the Kd values.

2. Results and Discussion

2.1. Predictive Models for the Adsorption Ability of PE

The pp-LFER models of log Kd were developed for the partition of organic pollutants between PE
and three types of water (seawater, freshwater, and pure water):

log Kd = (−3.822 ± 0.222) × B + (3.054 ± 0.348) × V + (1.293 ± 0.173) × E + (−1.410 ± 0.684) (1)

log Kd = (−3.302 ± 0.233) × B +(5.594 ± 0.887) × V + (−3.960 ± 1.691) (2)

log Kd = (−2.562 ± 0. 117) × B +(2.895 ± 0.140) × V + (0.902 ± 0.228) (3)

where, B represents for the hydrogen bond accepting ability (basicity), V is the McGowan’s molar
volume and E refers to the excess molar refraction. Models (1)–(3) correspond to the adsorption
in seawater, freshwater, and pure water, respectively. As shown in Williams plot for Model (3)
(Figure S1 in the Supplementary Materials, SM), the absolute standardized predictive residuals (SR)



Molecules 2019, 24, 1784 3 of 13

value of 2,2′,4,5′,6-pentachlorobiphenyl (3.439) is larger than 3. Thus, it is diagnosed as an outlier.
After removing it, Model (4) was yielded for the adsorption of PE in pure water:

log Kd = (−2.594 ± 0.101) × B + (2.940 ± 0.121) × V + (0.864 ± 0.195) (4)

The statistical parameters of Models (1), (2), and (4) are shown in Table 1. For all the three models,
R2 = 0.911, 0.909, and 0.978; Q2 = 0.911, 0.909, and 0.978; and RMSE = 0.677, 0.608, and 0.222, respectively,
suggesting significant goodness of fit statistics and the combination of molecular descriptors can
explain 91%, 91%, and 98% variability of log Kd for the whole dataset, respectively. As shown in
Table S1, all the VIF values (1.065~1.471) are < 10, indicating nonexistence of multicollinearity for the
present models. The fitting plots (Figure 1) illustrate a favorable consistence between the experimental
and predicted log Kd values. The pattern of predictive errors shown in Figure 2 reveals that there is
no dependence on experimental log Kd values and consequently no systematic error for the models,
which is also verified by BIAS = 0.000 (Table 1).

Table 1. Statistical parameters of the regression models and simulated external validation.

N R2 Q2 RMSE BIAS MAE MPE MNE

Model (1) 36 0.911 0.911 0.677 0.000 0.516 2.030 −1.407
Training Set 26 0.907 0.907 0.721 −0.043 0.541 2.030 −1.407
Test Set 10 0.928 0.923 0.583 0.110 0.453 0.982 −0.854

Model (2) 23 0.909 0.909 0.608 0.000 0.450 1.269 −1.453
Training Set 16 0.897 0.897 0.651 0.000 0.482 1.360 −1.371
Test Set 7 0.934 0.932 0.563 0.062 0.439 0.699 −0.827

Model (3) 33 0.963 0.963 0.280 0.000 0.203 0.962 −0.469

Model (4) 32 0.978 0.978 0.222 0.000 0.171 0.588 −0.462
Training Set 23 0.958 0.958 0.297 0.000 0.220 0.587 −0.741
Test Set 9 0.994 0.977 0.251 0.046 0.188 0.523 −0.309

Model (5) 35 0.956 0.956 0.322 0.000 0.237 0.661 −0.757
Training Set 25 0.914 0.914 0.471 0.000 0.371 0.904 −0.880
Test Set 10 0.937 0.896 0.463 0.114 0.378 0.796 −0.601

Model (6) 14 0.990 0.990 0.168 0.000 0.115 0.404 −0.268

Model (7) 28 0.933 0.933 0.507 0.000 0.363 1.471 −0.991
Training Set 20 0.880 0.880 0.655 0.000 0.464 0.802 −1.387
Test Set 8 0.832 0.812 0.981 0.250 0.840 1.3363 −1.152
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Figure 1. Fitting plots of experimental and predicted log Kd by Models (1), (2), and (4). PE, polyethelyne.
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Figure 2. Distributions of prediction errors of log Kd calculated by Models (1), (2), and (4).
PE, polyethelyne.

The statistical parameters of simulated external validation were listed in Table 1. Comparing
with the models developed by the whole dataset, redeveloped pp-LFER models (S1–S3) based on 70%
experimental data and descriptors in Models (1), (2), and (4) show similar regression performance
(including R2, Q2, RMSE, and MAE) and regression coefficients. The results prove that the models are
statistically stable and there is no casual correlation, as the training subsets are randomly assigned.
The predictive performance of each rebuilt model to the corresponding test set (30% subset, shown by
the superscript of b in Table 2) was listed in Table 1, Q2 = 0.923–0.977, RMSE = 0.251–0.583, and MAE =

0.188–0.453, indicating very good predictive quality of the developed pp-LFERs. Moreover, the results
of leave-one-out cross validation (Q2

CV = 0.911–0.917) also reveal a good degree of robustness and
internal predictive goodness [20].

Williams plots were applied to determine the application domain of the regression Models (1),
(2), and (4). The alert value h* were calculated to be 0.333, 0.391, and 0.281, respectively. As shown
in Figure 3, there are five (δ-hexachlorocyclohexane, α-hexachlorocyclohexane, pentachlorobenzene,
dioctyl phthalate, and oxytetracycline), two (ciprofloxacin and sulfadiazine), and two (ethyl benzoate
and oxytetracycline) compounds located at the right side of h* for Models (1), (2), and (4), respectively.
However, they are not diagnosed to be outliers as their absolute SR values are <3. This phenomenon
proves the developed models have excellent generalization capabilities in their descriptor matrix.
It follows that Models (1), (2), and (4) can be used to predict log Kd values for the adsorption of organics
that have similar structures with the chemicals in Table 2 towards PE in seawater, freshwater, and pure
water, respectively.
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Figure 3. Williams plots for the applicability domain of Models (1), (2), and (4). The hi refers to the verse
leverage value. (a): δ-hexachlorocyclohexane, (b): α-hexachlorocyclohexane, (c): pentachlorobenzene,
(d): dioctyl phthalate, (e): oxytetracycline.

For all the three log Kd predictive models for PE in seawater, freshwater, and pure water, hydrogen
bond basicity (B) and McGowan’s molar volume (V) were selected. The experimental log Kd values
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most significantly correlate with B, which yields negative correlation coefficients of B (−3.822, −3.302,
and −2.594) in Models (1), (2), and (4), indicating that the hydrogen bond basicity of organics plays an
important inhibition role in the adsorption of PE. This is because compounds with high hydrogen bond
basicity can easily act as H-bond receptors to form H-Bond with the H atoms in water molecules. Thus,
these organics prefer to dissolve in water rather than be absorbed on the surface of PE. For example,
the structure analysis of compounds listed in Table 2 (structures are shown in Table S2) found that the
compounds (such as dioctyl phthalate, oxytetracycline, trimethoprim, etc.) containing O atoms in the
structure have larger B values and smaller log Kd values.

V can characterize the cavity formation energy and describe the dispersion and hydrophobic
interactions. As water is a highly organized and very cohesive solvent, a large V value indicates the
compound needs high cavity formation energy to dissolve in water [21]. Thus, the organics with large
V values prefer partitioning into the particulate phase and consequently result in large log Kd values.

Especially for the adsorption of PE in seawater, one more descriptor, excess molar refraction (E),
was selected. E is a term accounting for the induction effects (i.e., π and n-electron pair interactions).
The higher E value, the stronger induced dipole interaction occurs between organics and PE. Thus,
these organic compounds tend to be absorbed by PE. Moreover, the high salinity of seawater can
significantly enhance the induced dipole interaction. As a result, E value plays a more important
role in determining the Kd values of chemicals between PE and seawater than freshwater and pure
water. As shown in Table 2, log Kd values in seawater are basically larger than that in freshwater
and pure water. In brief, the distribution behavior of the studied organics between PE and water
is mainly affected by the hydrogen bond basicity and cavity formation effect. Thus, it is inferred
that hydrophobic interaction is an important absorption mechanism. For the adsorption in seawater,
induced dipole effect is another important driving force.

2.2. Predictive Model for the Adsorption Ability of PP in Seawater

Log Kd predictive model for the adsorption of PP in seawater was developed via pp-LFER:

log Kd = (−3.357 ± 0.219) × B + (1.299 ± 0.127) × E + (3.108 ± 0.287) (5)

Statistical parameters of R2, Q2, and RMSE are 0.956, 0.956, and 0.322, respectively, indicating
that Model (5) has significant goodness of fit statistics and it can explain 96% variability for the
whole dataset. As the VIF values for both descriptors are 1.001 (Table S1), the present model has
no multicollinearity. As shown in Figures S2 and S3, good consistence between the experimental
and predicted log Kd values and independence of predictive errors on experimental log Kd values
was observed.

The simulated external validation shows that the regression coefficients (R2 = 0.914, RMSE = 0.471,
and MAE = 0.371) and statistical parameters of the training subset are similar to that of the whole
dataset (Table 1 and Model S4). Thus, Model (5) is statistically stable and there is no casual correlation.
As shown in Table 1, the predictive performance of the new model (Q2 = 0.896, RMSE = 0.463, and
MAE = 0.378) to the test subset proves a high prediction quality of the developed pp-LFER model.
Moreover, Q2

CV value of the leave-one-out cross validation is 0.925, indicating Model (5) has good
robustness and internal predictive ability. The application domain determination based on Williams plot
(Figure S4) shows that there are five compounds (β-hexachlorocyclohexane, γ-hexachlorocyclohexane,
sulfadiazine, trimethoprim, and benzoapyrene) located at the right side of h* (0.257). While, these five
compounds yield absolute SR values < 3, indicating they are not outliers, which further represents
the excellent generalization capability of Model (5) on such chemicals. Thus, Model (5) is applicable
to predict the log Kd values of PE towards the organics with similar structures with the chemicals in
Table 2 in seawater.

As indicated by Model (5), the hydrogen bond basicity (B) and induced dipole effect (E) of organic
compounds also play determining roles for the adsorption carrying ability of PP in seawater. However,
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unlike the log Kd prediction model of PE in seawater, the McGowan’s molar volume (V) representing
the cavity formation energy is not selected in the regression model. As the addition of methyl groups
in the PP structure can reduce the distance between the polymer chains and increase the crystallinity of
the microplastics [22], the difference in cavity formation energy required for organics to be partitioned
in seawater phase and PP phase may be reduced compared to PE, consequently resulting in a negligible
contribution of V in the adsorption of compounds towards PP and lower log Kd values (Table 2).

2.3. Predictive Model for the Adsorption Ability of PS in Seawater

For the adsorption of PS in seawater, there are only 14 compounds that have available Abraham
descriptor values. Basing on the experimental log Kd values of these chemicals, a pp-LFER model
wad developed:

log Kd = (−14.645 ± 2.109) × A + (6.165 ± 0.249) (6)

where, A represents for the hydrogen bond donating ability (acidity). As the statistical parameters
of R2 = 0.990, Q2 = 0.990, and RMSE = 0.168, Model (6) seems to have a significant goodness of fit
statistics. However, the analysis for A, which is the only descriptor selected by Model (6), shows that
most of the A value is 0. Obviously, the high regression performance of this model is spurious. Model
(6) is unavailable for the log Kd prediction. Thus, a new predictive model was established with the
octanol–water partition coefficient (log Kow) [13] and seven quantum chemical descriptors [23]. For the
development of new model, all the collected experimental log Kd values for 28 compounds were used.
The following model was yielded:

log Kd = (4.141 ± 0.371) × π + (0.435 ± 0.070) × log Kow + (−3.050 ± 0.585) (7)

where, π is a unitless quantity which can be calculated by dividing the polarizability by molecular
volume. As shown in Table 1 and Table S1, the obtained statistical parameters can prove the good
regression performance and nonexistence of multicollinearity for Model (7). Meanwhile, the favorable
consistence between the experimental and predicted log Kd values was observed in Figure S5.
The pattern of predictive errors shown in Figure S6 reveals no systematic error for Model (7), which is
also verified by BIAS = 0.000 (Table 1).

Table 2. Experimental and predicted log Kd values of organic compounds and the values of selected
molecular descriptors in Models (1), (2), (4), (5), and (7).

No. Organic Compounds log Kd
a

B V E π log Kow Ref.
Exp. Pred.

For the adsorption of PE in seawater, Model (1)
1 2,4,4′-trichlorobiphenyl 6.150 5.470 0.129 1.670 1.758 [11]
2 2,4′,5-trichlorobiphenyl 6.000 5.481 0.132 1.674 1.766 [11]
3 2,2′,3,5′-tetrachlorobiphenyl b 5.890 5.885 0.150 1.770 1.905 [11]
4 2,2′,5,5′-tetrachlorobiphenyl 5.900 5.894 0.147 1.770 1.903 [11]
5 2,4,4′,5-tetrachlorobiphenyl 6.660 6.026 0.130 1.792 1.903 [11]
6 2,3′,4,4′-tetrachlorobiphenyl 6.690 6.026 0.130 1.792 1.903 [11]
7 2,2′,4,5′,6-pentachlorobiphenyl 6.190 6.442 0.130 1.871 2.038 [11]
8 2,3,3′,4,4′-pentachlorobiphenyl 6.970 6.670 0.110 1.922 2.035 [11]
9 2,3′,4,4′,5-pentachlorobiphenyl 7.000 6.681 0.110 1.919 2.050 [11]
10 3,3′,4,4′,5-pentachlorobiphenyl 7.780 6.841 0.090 1.936 2.075 [11]
11 3,3′,4,4′,5,5′-hexachlorobiphenyl 8.840 7.433 0.070 2.059 2.183 [11]
12 2,2′,3,4,5,6′-hexachlorobiphenyl 6.790 7.085 0.110 1.993 2.188 [11]
13 2,2′,3,4,4′,5′-hexachlorobiphenyl 7.250 7.128 0.110 2.009 2.183 [11]
14 2,2′,4,4′,5,5′-hexachlorobiphenyl 7.650 7.134 0.113 2.015 2.183 [11]
15 2,3,3′,4,4′,5-hexachlorobiphenyl b 7.860 7.318 0.090 2.041 2.196 [11]
16 2,2′,3,3′,4,4′,5-heptachlorobiphenyl 7.940 7.792 0.090 2.138 2.333 [11]
17 2,2′,3,4,4′,5,5′-heptachlorobiphenyl b 7.940 7.725 0.090 2.131 2.298 [11]
18 Dichlorodiphenyltrichloroethane 4.986 7.016 0.180 2.218 1.810 [24]
19 Pentachlorobenzene b 5.220 4.365 0.000 1.328 1.330 [25]
20 Hexachlorobenzene 4.630 4.431 0.130 1.451 1.475 [25]
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Table 2. Cont.

No. Organic Compounds log Kd
a

B V E π log Kow Ref.
Exp. Pred.

21 Phenanthrene 4.470 4.604 0.276 1.454 2.033 [25]
22 Fluoranthene 5.520 5.530 0.247 1.585 2.354 [25]
23 Anthracene b 4.770 4.676 0.272 1.454 2.077 [25]
24 Pyrene b 5.570 5.841 0.282 1.585 2.698 [25]
25 Chrysene b 6.390 6.661 0.325 1.823 2.897 [25]
26 Benzoapyrene 7.170 7.559 0.417 1.954 3.554 [25]
27 Dibenzanthracene b 7.870 8.654 0.462 2.192 3.972 [25]
28 Benzo[g,h,i]perylene 7.610 8.392 0.455 2.084 4.004 [25]
29 Dioctyl phthalate 4.993 5.659 1.088 3.401 0.650 [24]
30 Trimethoprim 0.811 0.786 1.832 2.181 1.962 [26]
31 Sulfadiazine 0.797 1.305 1.370 1.723 2.080 [26]
32 Oxytetracycline 0.623 -0.487 3.500 3.158 3.600 [27]
33 α-Hexachlorocyclohexane b 2.410 2.920 0.620 1.580 1.450 [25]
34 β-Hexachlorocyclohexane 2.040 2.875 0.632 1.580 1.450 [25]
35 γ-Hexachlorocyclohexane 2.330 2.905 0.624 1.580 1.450 [25]
36 δ-Hexachlorocyclohexane b 2.080 3.062 0.583 1.580 1.450 [25]

For the adsorption of PE in freshwater, Model (2)
37 2,4,4′-trichlorobiphenyl b 5.350 4.956 0.129 1.670 [11]
38 2,4′,5-trichlorobiphenyl 5.110 4.969 0.132 1.674 [11]
39 2,2′,3,5′-tetrachlorobiphenyl 4.920 5.446 0.150 1.770 [11]
40 2,2′,5,5′-tetrachlorobiphenyl 5.010 5.456 0.147 1.770 [11]
41 2,4,4′,5-tetrachlorobiphenyl 5.890 5.635 0.130 1.792 [11]
42 2,3′,4,4′-tetrachlorobiphenyl 6.170 5.635 0.130 1.792 [11]
43 3,3′,4,4′-tetrachlorobiphenyl b 6.620 5.825 0.110 1.814 [28]
44 2,2′,4,5,6′-pentachlorobiphenyl 5.610 6.077 0.130 1.871 [11]
45 2,3,3′,4,4′-pentachlorobiphenyl b 6.350 6.429 0.110 1.922 [11]
46 2,3′,4,4′,5-pentachlorobiphenyl 6.360 6.412 0.110 1.919 [11]
47 3,3′,4,4′,5-pentachlorobiphenyl 6.940 6.573 0.090 1.936 [11]
48 2,2′,3,4′,5,6-hexachlorobiphenyl b 6.180 6.826 0.110 1.993 [11]
49 2,2′,3,4,4′,5′-hexachlorobiphenyl 6.890 6.915 0.110 2.009 [11]
50 2,2′,4,4′,5,5′-hexachlorobiphenyl 7.040 6.939 0.113 2.015 [11]
51 2,3,3′,4,4′,5-hexachlorobiphenyl b 7.170 7.160 0.090 2.041 [11]
52 3,3′,4,4′,5,5′-hexachlorobiphenyl 8.780 7.327 0.070 2.059 [11]
53 2,2′,3,4,4′,5-hexachlorobiphenyl 6.920 6.949 0.110 2.015 [28]
54 2,2′,3,4′,5′,6-hexachlorobiphenyl b 6.240 6.826 0.110 1.993 [28]
55 2,2′,3,3′,4,4′,5-heptachlorobiphenyl 7.290 7.703 0.090 2.138 [11]
56 2,2′,3,4,4′,5,5′-heptachlorobiphenyl 7.390 7.664 0.090 2.131 [11]
57 Ciprofloxacin 1.741 0.614 2.520 2.305 [26]
58 Trimethoprim 0.923 2.192 1.832 2.181 [26]
59 Sulfadiazine b 0.792 1.155 1.370 1.723 [26]

For the adsorption of PE in pure water, Model (4)
60 2,2′,5-trichlorobiphenyl 4.900 5.329 0.145 1.648 [29]
61 2,4,4′-trichlorobiphenyl 5.400 5.460 0.129 1.670 [29]
62 2,4′,5-trichlorobiphenyl 5.301 5.442 0.132 1.674 [30]
63 2,2′,4,4′-tetrachlorobiphenyl 5.083 5.671 0.150 1.770 [30]
64 2,2′,5,5′-tetrachlorobiphenyl 5.500 5.701 0.147 1.770 [29]
65 2,2′,3,5-tetrachlorobiphenyl 5.500 5.671 0.150 1.770 [29]
66 2,3′,4,4′-tetrachlorobiphenyl 5.900 5.779 0.130 1.792 [29]
67 2,2′,4,5,5′-pentachlorobiphenyl b 6.200 6.124 0.133 1.893 [29]
68 2,3,3′,4′,6-pentachlorobiphenyl 6.100 6.082 0.130 1.893 [29]
69 2,3′,4,4′,5-pentachlorobiphenyl 6.400 6.206 0.110 1.919 [29]
70 2,3,3′,4,4′-pentachlorobiphenyl 6.300 6.221 0.110 1.922 [29]
71 2,2′,4,4′,5,5′-hexachlorobiphenyl b 6.400 6.507 0.132 2.015 [29]
72 2,2′,3,4,4′,5′-hexachlorobiphenyl 6.600 6.452 0.110 2.009 [29]
73 2,2′,3,3′,4,5-hexachlorobiphenyl b 6.600 6.488 0.110 2.015 [29]
74 2,2′,3,3′,4,4′-hexachlorobiphenyl 6.500 6.488 0.110 2.015 [29]
75 2,2′,3,4′,5,5′,6-heptachlorobiphenyl b 7.100 6.847 0.090 2.116 [29]
76 2,2′,3,4,4′,5,5′-heptachlorobiphenyl 7.000 6.859 0.090 2.131 [29]
77 2,2′,3,3′,4,4′,5-heptachlorobiphenyl b 6.900 6.899 0.090 2.138 [29]
78 Chlorobenzene b 3.080 2.920 0.070 0.839 [13]
79 Benzene 2.190 2.391 0.140 0.716 [13]
80 Toluene 2.910 2.960 0.140 0.857 [13]
81 Ethyl benzoate b 2.810 3.253 0.070 0.839 [13]
82 Naphthalene 3.770 3.308 0.199 1.085 [13]
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Table 2. Cont.

No. Organic Compounds log Kd
a

B V E π log Kow Ref.
Exp. Pred.

83 2-Methylanthracene 5.000 4.704 0.310 1.595 [29]
84 1-methylphenanthrene b 4.700 4.848 0.275 1.595 [29]
85 9,10-Dimethylanthracene 5.300 5.343 0.300 1.736 [29]
86 3,6-dimethylphenanthrene 5.200 5.346 0.290 1.736 [29]
87 Phenanthrene 4.300 4.219 0.276 1.454 [29]
88 Anthracene b 4.300 4.188 0.272 1.454 [29]
89 Oxytetracycline 1.176 1.116 3.500 3.158 [27]
90 Cyclohexane 3.880 3.716 0.000 0.845 [13]
91 Hexane 4.500 4.262 0.000 0.954 [13]

For the adsorption of polypropylene (PP) in seawater, Model (5)
92 2,3-dichlorobiphenyl 4.980 4.450 0.163 1.628 [31]
93 2,4′-dichlorobiphenyl 4.980 4.441 0.166 1.620 [31]
94 2,4,4′-trichlorobiohenyl 5.090 4.904 0.129 1.758 [31]
95 2,2′,5,5′-tetrachlorobiphenyl 5.090 5.152 0.147 1.903 [31]
96 2,2′,3,5′-tetrachlorobiphenyl 5.140 5.143 0.150 1.905 [31]
97 3,3′,4,4′-tetrachlorobiphenyl 5.630 5.368 0.110 1.915 [31]
98 2,3′,4,4-tetrachlorobiphenyl b 5.260 5.249 0.130 1.903 [31]
99 2,3′,4,4′,5-pentachlorobiphenyl 5.710 5.677 0.110 2.050 [31]
100 2,3,3′,4,4′-pentachlorobiphenyl 5.770 5.669 0.110 2.035 [31]
101 2,2′,3,4′,5-pentachlorobiphenyl b 5.510 5.558 0.130 2.045 [31]
102 2,2′,3,5′,6-pentachlorobiphenyl 5.260 5.520 0.130 2.045 [31]
103 2,3,3′,4′,6-pentachlorobiphenyl 5.630 5.558 0.130 2.045 [31]
104 2,2′,4,5,5′-pentachlorobiphenyl 5.510 5.546 0.133 2.043 [31]
105 2,2′,3,3′,4,6′-hexachlorobiphenyl b 6.190 5.935 0.110 2.188 [31]
106 2,3,3′,4,5,6-hexachlorobiphenyl b 6.060 5.979 0.110 2.193 [31]
107 2,2′,4,4′,5,5′-hexachlorobiphenyl 6.190 5.893 0.132 2.183 [31]
108 2,2′,3,4,4′,5-hexachlorobiphenyl 5.770 5.971 0.110 2.185 [31]
109 2,2′,3,3′,4,4′-hexachlorobiphenyl 5.450 5.971 0.110 2.185 [31]
110 2,2′,3,4′,5,5′,6-heptachlorobiphenyl b 5.730 6.360 0.090 2.338 [31]
111 Pentachlorobenzene b 4.500 4.352 0.000 1.330 [25]
112 Hexachlorobenzene 5.010 4.253 0.130 1.475 [25]
113 Phenanthrene 4.000 4.275 0.276 2.033 [25]
114 Fluoranthene b 4.790 4.904 0.247 2.354 [25]
115 Anthracene 4.290 4.330 0.272 2.077 [25]
116 Pyrene 4.800 5.104 0.282 2.698 [25]
117 Chrysene 5.510 5.557 0.325 2.897 [25]
118 Benzoapyrene b 6.100 6.082 0.417 3.554 [25]
119 Dibenzanthracene 7.000 6.733 0.462 3.972 [25]
120 Benzo[g,h,i]perylene 6.690 6.598 0.455 4.004 [25]
121 Trimethoprim 0.594 0.104 1.832 1.962 [26]
122 Sulfadiazine 0.853 1.010 1.370 2.080 [26]
123 α-Hexachlorocyclohexane 2.690 2.763 0.620 1.450 [25]
124 β-Hexachlorocyclohexane b 2.180 2.721 0.632 1.450 [25]
125 γ-Hexachlorocyclohexane b 2.580 2.749 0.624 1.450 [25]
126 δ-Hexachlorocyclohexane 2.230 2.891 0.583 1.450 [25]

For the adsorption of polystyrene (PS) in seawater, Model (7)
127 Pentachlorobenzene 5.280 4.830 1.138 5.220 [25]
128 Hexachlorobenzene b 5.100 5.013 1.204 5.860 [25]
129 Phenanthrene 5.390 5.439 1.518 4.350 [25]
130 Fluoranthene 5.910 5.706 1.553 4.930 [25]
131 Anthracene 5.610 5.749 1.616 4.350 [25]
132 Pyrene 5.840 5.999 1.794 4.930 [25]
133 Chrysene b 6.630 6.154 1.661 5.520 [25]
134 Benzoapyrene b 6.920 6.740 1.924 6.110 [25]
135 Dibenzanthracene 7.520 6.826 1.847 6.700 [25]
136 Benzo[g,h,i]perylene 7.150 7.869 1.388 6.700 [25]
137 4-Fluorobenzoic acid 2.134 3.004 1.074 2.070 [14]
138 Trimethoprim b 0.863 1.403 1.165 0.730 [26]
139 Sulfadiazine 0.833 0.708 1.174 −0.340 [26]
140 α-Hexachlorocyclohexane 3.190 2.849 1.024 4.260 [25]
141 β-Hexachlorocyclohexane 2.630 2.918 1.082 4.260 [25]
142 γ-Hexachlorocyclohexane 3.010 2.987 1.056 4.260 [25]
143 δ-Hexachlorocyclohexane 2.800 2.849 1.004 4.260 [25]
144 Perfluoropentanoic acid 2.412 1.774 0.701 2.810 [14]
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Table 2. Cont.

No. Organic Compounds log Kd
a

B V E π log Kow Ref.
Exp. Pred.

145 Perfluorohexanoic acid b 1.760 1.934 0.698 3.480 [14]
146 Perfluoroheptanoic acid 1.731 2.095 0.708 4.150 [14]
147 Perfluorodecanoic acid 2.669 2.550 0.755 6.150 [14]
148 Pentadecafluorooctanoic acid b 3.220 2.229 0.723 4.810 [14]
149 Heptadecafluorooctanesulfonamide 2.792 2.217 0.789 5.800 [14]
150 Perfluoro-1-octanesulfonyl fluoride b 2.147 3.618 0.721 7.840 [14]
151 Perfluoroundecanoic acid 2.752 2.710 0.748 6.820 [14]
152 Perfluorododecanoic acid 2.720 2.870 0.720 7.490 [14]
153 Pentacosafluorotridecanoic acid 3.162 3.031 0.741 8.160 [14]
154 Perfluorotetradecanoic acid b 3.088 3.191 0.766 8.830 [14]

a The unit of Kd is L/kg; b The compounds used for test subset in simulated external validation.

For the simulated external validation, similar regression coefficients and statistical parameters of
the redeveloped Model S5 based on the training subset (70%) and a comparable statistical result for the
test set (Table 1) were received. Moreover, Q2

CV value (0.906) of the leave-one-out cross validation can
match the acceptable criteria well. All the results demonstrate that Model (7) has high goodness of
robustness and internal predictive ability. As exhibited in the Williams plot (Figure S7), four compounds
(perfluoro-1-octanesulfonyl fluoride, trimethoprim, benzoapyrene, and perfluorotetradecanoic acid)
with |SR| < 3 locate at the right side of h* (0.321), indicating that they are not outliers and that Model (7)
has excellent generalization capability for them. In consequence, Model (7) is suitable for predicting
the adsorption carrying ability (log Kd) of PS for organic pollutants within the application domain
in seawater.

Model (7) selected two molecular descriptors, including dipolarity/polarizability (π) and
octanol–water partition coefficient (log Kow). The experimental log Kd values most significantly
correlate with π (R = 0.803), which yields a positive coefficient (4.141) in the regression model.
The comprehensive analysis of π values (Table 2) and molecular structures (Table S2) showed that the
compound containing more benzene rings in the structure and stronger electron conjugation has a
larger π value. It is inferred that the organics with large aromaticity prefer partitioning into the PS
phase and consequently result in large log Kd values. This is because the introduction of phenyl groups
in the PS structure allows the π−π interaction to enhance the adsorption between organics and PS in
seawater. Compared to the adsorption of PE and PP in seawater, the π−π interactions between the
benzene rings of PS and organic compounds make PS exhibit a higher log Kd value for most organics
(Table 2). The second significant molecular descriptor is log Kow, which represents the hydrophobicity
of organic compounds. The positive correlation coefficient of log Kow (0.435) in Model (7) means that
hydrophobic interaction can enhance the adsorption of organics on PS in seawater. PS containing no
polar groups in the structure is strongly hydrophobic. Thus, hydrophobic interactions can be inferred
to occur between PS and the hydrophobic groups of organics. This is consistent with the results of
the prediction model established by Hüffer et al. based on the log Kow values of the seven organic
compounds [13].

3. Materials and Methods

3.1. Experimental Kd Values

The experimental equilibrium coefficients of organic pollutants partitioning between microplastics
and water (Kd) were collected for PE, PP, and PS. Totally, the Kd values for 36 organic pollutants
partitioning between PE and seawater, 23 organic pollutants partitioning between PE and freshwater,
33 organic pollutants partitioning between PE and pure water, 35 organic pollutants partitioning
between PP and seawater, and 28 organic pollutants partitioning between PS and seawater were
selected and listed in Table 2. The unit of all the Kd values was unified to L/kg, and then Kd was
converted to its logarithmic forms (log Kd). The experimental conditions for these Kd values are
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shown in Table S3. The molecular structures of all organic chemicals are shown in Table S2, including
polychlorinated biphenyls, chlorobenzenes, polycyclic aromatic hydrocarbons, antibiotics, aromatic
hydrocarbons, aliphatic hydrocarbons, hexachlorocyclohexanes, and perfluorinated compounds.

3.2. Molecular Structural Parameters

Polyparameter linear free energy relationships (pp-LFERs) can well predict the partition coefficients
between two condensed phases with five Abraham descriptors, including E, S, A, B, and V [32,33].
Here, E refers to excess molar refraction; S stands for dipolarity/polarizability parameter; A represents
hydrogen bond donating ability (acidity); B represents hydrogen bond accepting ability (basicity); and V
is McGowan’s molar volume with units of cubic centimeters per mole/100. Values of all the pp-LFER
descriptors used in this study are from UFZ-LSER database (http://www.ufz.de/lserd). The average
values of each descriptor are listed in Table S4.

For some special cases where pp-LFER model is impracticable, octanol–water partition coefficient
(log Kow) and seven quantum chemical descriptors were calculated for developing available predictive
model (Table S5). The selected quantum chemical descriptors include molecular mass (Mw), molecular
volume (v’), the most positive atomic charge on a hydrogen atom (qH+), the most negative net charge
on an atom (q−), the ratio of average molecular polarizability and molecular volume (π = α/v’), covalent
acidity (εα = ELUMO − EHOMO-water), and covalent basicity (εβ = ELUMO-water − EHOMO) where EHOMO

refers to the highest occupied molecular orbital energy and ELUMO stands for the lowest unoccupied
molecular orbital energy. The log Kow values were calculated by the EPI Suite software [34]. Quantum
chemical descriptors, including EHOMO, ELUMO, Mw, v, α, qH+, and q− were extracted from the
Gaussian output files. All the molecules were optimized at B3LYP/6-31G(d,p) level using Gaussian 09
program package [35]. All the optimized structures were confirmed to be local minima by vibrational
frequency analyses.

3.3. Model Development and Validation

The frequently used pp-LFERs established by Abraham et al. [36,37] are as follows:

log Kd = eE + sS + aA + bB + vV + c (8)

where e, s, a, b, and v are fitting coefficients, and c is a regression constant. Multiple linear regression
(MLR) [38] with a step-wise algorithm embedded in soft package SPSS 21.0 was applied for variable
filtration and model development. In order to characterize the fitting performance and predictive ability
of the developed pp-LFERs, squared correlation coefficient (R2) and predictive squared correlation
coefficient (Q2) were calculated as described in the previous article [39]. Root-mean-square error
(RMSE) was also calculated to further assess the statistical performance of the established pp-LFER
models. Variance inflating factor (VIF) was computed to estimate the collinearity of parameters.
Calculation details for all statistical parameters are listed in the Text S1.

Simulated external validation and leave-one-out cross validation were performed to estimate the
statistical robustness and predictive power. For the simulated external validation, the data set was
randomly divided into a 70% training set and a 30% test subset (shown in Table 2). The training set
was used to rebuild a model with the same descriptors selected by the whole dataset. Then, the log Kd

values of compounds in the test subset were predicted and evaluated by the rebuilt model. Values of R2,
Q2, and RMSE of the validation were computed to clarify the model performance. Cross validation was
performed with Weka 3.8.0 [40] (University of Waikato, Hamilton, New Zealand). The cross-validated
correlation coefficients (Q2

CV) were calculated to quantify the model robustness.
For the predictive model developed with log Kow and quantum chemical descriptors, the same

establishment and validation strategies were used.

http://www.ufz.de/lserd
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3.4. Outliers and Application Domain

Williams plot with the leverage value (hi) as horizontal coordinate and standardized predictive
residuals (SR) as vertical coordinate, was introduced to visualize the application domain and determine
the outliers as introduced in previous work [41]. The hi values were computed by the Hat-matrix [42].
The compounds with absolute values of SR larger than 3 were designated as outliers and should
be removed. Warning value (h*) is defined as h* = 3p/n [42], in which p and n is the number of
descriptors and compounds in the model, respectively. If hi > h*, the compound is far away from the
descriptor-matrix center. So, the Williams plot also describes the distribution of chemicals in the whole
descriptor matrix.

4. Conclusions

Clarifying the adsorption ability and mechanism of organic pollutants on microplastics in different
aqueous environments is essential for the comprehensive risk assessment of microplastics. In this study,
predictive models were developed for estimating the adsorption carrying ability of PE in seawater,
freshwater, and pure water, PP in seawater, and PS in seawater. The performance of each model was
assessed by different validation strategies and the application domains were defined by Williams plots.
Mechanism analysis found that the hydrogen bond basicity and log Kow, both of which can describe
the hydrophobicity of compounds, play important roles in the adsorption, indicating that hydrophobic
interaction is one of the main adsorption mechanisms. For the microplastics with benzene rings in
structure, π−π interaction is also a key driving force. Besides, both the crystallinity and aromaticity
of microplastics and salinity of aqueous environment can affect the carrying ability of microplastics
towards organic pollutants in various waters. Actually, the adsorption between microplastics and
organic pollutants is quite intricate in natural waters. This study did some preliminary explorations,
and it is expected to provide efficient prediction methods for estimating the adsorption intensity and
mechanism explanations for further research on the behavior and risks of microplastics.
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Parameter values for pp-LFERs. Table S5: Log Kow values and quantum chemical descriptors. Figure S1: Williams
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domain by model (7).
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