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Abstract: Atherosclerosis is the pathological basis of cardiovascular disease, whilst endothelial
dysfunction (ED) plays a primary role in the occurrence and development of atherosclerosis.
Simvastatin has been shown to possess significant anti-atherosclerosis activity. In this study, we
evaluated the protective effect of simvastatin on endothelial cells under oxidative stress and elucidated
its underlying mechanisms. Simvastatin was found to attenuate H2O2-induced human umbilical
vein endothelial cells (HUVECs) dysfunction and inhibit the Wnt/β-catenin pathway; however,
when this pathway was activated by lithium chloride, endothelial dysfunction was clearly enhanced.
Further investigation revealed that simvastatin did not alter the expression or phosphorylation
of LRP6, but reduced intracellular cholesterol deposition and inhibited endoplasmic reticulum
(ER) stress. Inducing ER stress with tunicamycin activated the Wnt/β-catenin pathway, whereas
reducing ER stress with 4-phenylbutyric acid inhibited it. We hypothesize that simvastatin does not
affect transmembrane signal transduction in the Wnt/β-catenin pathway, but inhibits ER stress by
reducing intracellular cholesterol accumulation, which blocks intracellular signal transduction in the
Wnt/β-catenin pathway and ameliorates endothelial dysfunction.

Keywords: endothelial cell dysfunction; endoplasmic reticulum stress; simvastatin; Wnt/β-catenin
pathway

1. Introduction

Globally, the incidence and mortality rates of cardiovascular diseases remain very high [1].
Atherosclerosis (AS) is an important contributor towards the development cardiovascular and
cerebrovascular diseases, whilst endothelial cell (EC) dysfunction plays a crucial role in the development
of AS, since the overexpression of adhesion molecules and the release of inflammatory factors promote
the formation of foam cells from macrophages [2]. Many studies have shown that oxidative stress is an
important factor in EC dysfunction, as reactive oxygen species are small signaling molecules that play
important roles in the regulation of biological processes and cellular functions [3]. When intracellular
reactive oxygen species levels exceed the cell tolerance limit, the excess reactive oxygen species
attack the mitochondrial membrane, leading to mitochondrial dysfunction and EC dysfunction [4,5].
Therefore, the mechanisms of oxidative stress-induced EC dysfunction urgently require further study.

Molecules 2019, 24, 1782; doi:10.3390/molecules24091782 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
http://www.mdpi.com/1420-3049/24/9/1782?type=check_update&version=1
http://dx.doi.org/10.3390/molecules24091782
http://www.mdpi.com/journal/molecules


Molecules 2019, 24, 1782 2 of 14

Simvastatin is a common hypolipidemic drug that inhibits hydroxymethylglutaryl coenzyme A
(HMG-COA) reductase activity and thus endogenous cholesterol synthesis [6]. Numerous studies have
shown that simvastatin inhibits AS via various mechanisms. For example, simvastatin suppresses
atherosclerotic lesion formation in ApoE KO mice by down-regulating CD36 and calpain-1, thus
reducing inflammation [7]. In clinical trials, simvastatin significantly reduced the circulating levels
of total cholesterol, LDL-C, VLDL-C, and LDL-C, which are considered risk factors for AS [8–10].
Although simvastatin is recognized for its anti-arterial AS effects, the specific mechanism underlying
its effects on oxidative stress-induced EC dysfunction remains unclear.

The classical Wnt/β-catenin pathway is highly conserved and is involved in multiple physiological
processes, including embryonic development and organ formation [11]. For example, knocking out
the embryonic β-catenin gene in animal models has been shown to inhibit mesoderm formation [12].
Moreover, abnormal activation or inhibition of the Wnt/β-catenin pathway has been associated with
the occurrence of various diseases, including cancers and Parkinson’s disease [11]. In recent years,
an increasing number of reports have shown that this pathway is associated with EC dysfunction
and AS [13,14]. For example, Wnt-5a protein expression was significantly up-regulated during AS
development and was positively correlated with AS severity in animal experiments and human
endarterectomy samples [15,16]. However, Ma et al. showed that the Wnt/β-catenin pathway can
be suppressed by pigment epithelium-derived factor (PEDF), which reduces oxidative stress and
endothelial injury [17]. Furthermore, our previous studies have shown that activating the Wnt/β-catenin
pathway promotes H2O2-induced endothelial dysfunction [18].

The endoplasmic reticulum (ER) is an organelle found in eukaryotic cells. Hyperlipidemia,
oxidative stress, and calcium imbalance can all disrupt ER homeostasis and lead to ER stress [19,20].
To restore ER homeostasis, the chaperone protein, GRP78, dissociates from PERK, IRE1, and ATF6,
activating downstream signaling pathways which reduce cell inflammation and apoptosis [21,22].
ER stress is also involved in AS development; the upregulated expression of key ER stress molecules
(GRP78, p-IRE1, ATF6, and CHOP) has been reported in the plaques of ApoE KO mice [23,24].
In addition, studies have shown that numerous atherogenic risk factors can activate ER stress in the
initial stages of AS, thus contributing to EC dysfunction and the progression of AS [25,26].

Simvastatin, the Wnt/β-catenin pathway, and ER stress clearly affect AS development; however,
the links between these factors and EC dysfunction are unclear. We hypothesized that simvastatin
reduces H2O2-induced EC dysfunction via the Wnt/β-catenin pathway and ER stress. To investigate
this, we treated human umbilical vein endothelial cells (HUVECs) with simvastatin and measured the
subsequent levels of EC dysfunction, Wnt/β-catenin signaling, and ER stress.

2. Results

2.1. Effects of Simvastatin on the Viability of HUVECs

To investigate the effects of simvastatin, HUVECs were exposed to different doses of the drug
to determine its optimal concentration. As shown in Figure 1, increasing the concentration of
simvastatin from 0 to 0.2 µmol/L decreased Bax and β-catenin expression and LDH levels in a
dose-dependent manner and increased Bcl-2 expression. At simvastatin doses above 0.2 µmol/L,
increasing the concentration increased Bax, β-catenin expression and LDH levels and decreased
Bcl-2 expression. Therefore, the protective effect of simvastatin on HUVECs and its inhibition of
Wnt/β-catenin signaling were most significant at 0.2 µmol/L (p < 0.001, n = 3) and this concentration
was used in all future experiments.



Molecules 2019, 24, 1782 3 of 14Molecules 2019, 24, x 3 of 14 

 

 

Figure 1. Effects of simvastatin on the viability of HUVECs. (a) The expressions of Bax, Bcl-2 and β-
catenin in protein levels were analyzed by western blot analysis. (b) LDH level was measured. * p < 
0.05 or ** p < 0.001 versus 0 group, n = 3. 

2.2. Simvastatin Attenuates Oxidative Stress-Induced Endothelial Cell Dysfunction by Inhibiting the Wnt/β-
Catenin Pathway 

To evaluate the protective effect of simvastatin on HUVECs under oxidative stress, cell viability 
and the expression of Bax and Bcl-2 were measured. In the Li group, cell viability and Bcl-2 expression 
were 35% and 37% lower than that in the C group, respectively (Figure 2a), whilst in the Sim group, 
they were 32% and 34% higher than that in the C group, respectively. As expected, cell viability and 
Bcl-2 expression were lower in the Li+Sim group than in the Sim group (Figure 2a, p < 0.05, n = 3 or 
6) but higher than in the Li group (Figure 2b, p < 0.001, n = 3 or 6), whilst the opposite result was 
observed for Bax expression (Figure 2b, p < 0.001, n = 3). 

Figure 1. Effects of simvastatin on the viability of HUVECs. (a) The expressions of Bax, Bcl-2 and
β-catenin in protein levels were analyzed by western blot analysis. (b) LDH level was measured.
* p < 0.05 or ** p < 0.001 versus 0 group, n = 3.

2.2. Simvastatin Attenuates Oxidative Stress-Induced Endothelial Cell Dysfunction by Inhibiting the
Wnt/β-Catenin Pathway

To evaluate the protective effect of simvastatin on HUVECs under oxidative stress, cell viability
and the expression of Bax and Bcl-2 were measured. In the Li group, cell viability and Bcl-2 expression
were 35% and 37% lower than that in the C group, respectively (Figure 2a), whilst in the Sim group,
they were 32% and 34% higher than that in the C group, respectively. As expected, cell viability and
Bcl-2 expression were lower in the Li+Sim group than in the Sim group (Figure 2a, p < 0.05, n = 3 or
6) but higher than in the Li group (Figure 2b, p < 0.001, n = 3 or 6), whilst the opposite result was
observed for Bax expression (Figure 2b, p < 0.001, n = 3).

LDH levels in the medium and intracellular MDA concentration and SOD activity were also
determined. LDH levels and MDA concentration were 23% and 35% higher in the Li group, and 20%
and 38% lower in the Sim group than in the C group, respectively. LDH levels and MDA concentration
in the Li+Sim group were lower than those in the Li group (Figure 2c, p < 0.05, n = 3) but higher than
those in the Sim group (Figure 2d, p < 0.001, n = 3). SOD activity was 43% lower in the Li group and
53% higher in the Sim group than in the C group (Figure 2e, p < 0.001, n = 3), and was higher in the
Li+Sim group than in the Li group, but lower in the Li+Sim group than in the Sim group (Figure 2e,
p < 0.001, n = 3).
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Figure 2. Simvastatin attenuates the dysfunction of endothelial cells under oxidative stress by 
inhibiting the Wnt/β-catenin pathway. (a) The viability of each group was measured by MTT assay 
(b) The protein levels of Bax and Bcl-2 (c) LDH level, (d) MDA content and (e) SOD activity were 
measured. * p < 0.05 or ** p < 0.001 versus C group; # p < 0.05 or ## p < 0.001 versus Li+Sim group, n = 
3 or 6. C, HUVECs treated with H2O2; Li, C group treated with LiCl; Sim, C group treated with 
simvastatin; Li+Sim, C group treated with simvastatin and LiCl. 

LDH levels in the medium and intracellular MDA concentration and SOD activity were also 
determined. LDH levels and MDA concentration were 23% and 35% higher in the Li group, and 20% 
and 38% lower in the Sim group than in the C group, respectively. LDH levels and MDA 
concentration in the Li+Sim group were lower than those in the Li group (Figure 2c, p < 0.05, n = 3) 
but higher than those in the Sim group (Figure 2d, p < 0.001, n = 3). SOD activity was 43% lower in 
the Li group and 53% higher in the Sim group than in the C group (Figure 2e, p < 0.001, n = 3), and 
was higher in the Li+Sim group than in the Li group, but lower in the Li+Sim group than in the Sim 
group (Figure 2e, p < 0.001, n = 3). 

2.3. Simvastatin Reduces Endothelial Cell Adhesion by Inhibiting the Wnt/β-Catenin Pathway 

Figure 2. Simvastatin attenuates the dysfunction of endothelial cells under oxidative stress by inhibiting
the Wnt/β-catenin pathway. (a) The viability of each group was measured by MTT assay (b) The protein
levels of Bax and Bcl-2 (c) LDH level, (d) MDA content and (e) SOD activity were measured. * p < 0.05
or ** p < 0.001 versus C group; # p < 0.05 or ## p < 0.001 versus Li+Sim group, n = 3 or 6. C, HUVECs
treated with H2O2; Li, C group treated with LiCl; Sim, C group treated with simvastatin; Li+Sim, C
group treated with simvastatin and LiCl.
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2.3. Simvastatin Reduces Endothelial Cell Adhesion by Inhibiting the Wnt/β-Catenin Pathway

The ability of the HUVECs to adhere to THP-1 cells was assessed by counting the number of
THP-1 cells adhered to the HUVECs. As shown in Figure 3a, the number of THP-1 cells adhered
to HUVECs in the Sim group was 16% lower than that in the C group (p < 0.001, n = 3). When the
Wnt/β-catenin pathway was activated by LiCl, the adhesion ability of HUVECs increased by 48%
(Figure 3a, p < 0.001, n = 3), and was higher in the Li+Sim group than in the Sim group yet lower
than in the Li group (Figure 3a, p < 0.05 or 0.001, n = 3). The levels of adhesion molecule expression
can affect the adhesion ability of HUVECs. As shown in Figure 3b, VCAM-1, ICAM-1, and MCP-1
expression was 24%, 31%, and 20% lower in the Sim group (p < 0.05, n = 3) and 25%, 44%, and 38%
higher in the Li group (p < 0.05, n = 3) than in the C group, respectively. In the Li+Sim group, the
expression of all of the adhesion molecules was lower and higher than that in the Li and Sim groups,
respectively (Figure 3b, p < 0.05, n = 3). Taken together, these results indicate that simvastatin reduced
the adhesion ability of HUVECs by inhibiting the Wnt/β-catenin pathway.

Molecules 2019, 24, x 5 of 14 

 

The ability of the HUVECs to adhere to THP-1 cells was assessed by counting the number of 
THP-1 cells adhered to the HUVECs. As shown in Figure 3a, the number of THP-1 cells adhered to 
HUVECs in the Sim group was 16% lower than that in the C group (p < 0.001, n = 3). When the Wnt/β-
catenin pathway was activated by LiCl, the adhesion ability of HUVECs increased by 48% (Figure 3a, 
p < 0.001, n = 3), and was higher in the Li+Sim group than in the Sim group yet lower than in the Li 
group (Figure 3a, p < 0.05 or 0.001, n = 3). The levels of adhesion molecule expression can affect the 
adhesion ability of HUVECs. As shown in Figure 3b, VCAM-1, ICAM-1, and MCP-1 expression was 
24%, 31%, and 20% lower in the Sim group (p < 0.05, n = 3) and 25%, 44%, and 38% higher in the Li 
group (p < 0.05, n = 3) than in the C group, respectively. In the Li+Sim group, the expression of all of 
the adhesion molecules was lower and higher than that in the Li and Sim groups, respectively (Figure 
3b, p < 0.05, n = 3). Taken together, these results indicate that simvastatin reduced the adhesion ability 
of HUVECs by inhibiting the Wnt/β-catenin pathway. 

2.4. Simvastatin Inhibits ER Stress via the Wnt/β-Catenin Pathway 

Under oxidative stress, simvastatin can reduce the injury and adhesion of HUVECs. To 
investigate the possible underlying mechanisms, the levels of β-catenin and phosphorylated β-
catenin were determined by western blotting analysis (Figure 4a, p < 0.05 or 0.001, n = 3). β-catenin 
protein expression was 34% higher and 20% lower in the Li and Sim groups, respectively, compared 
to that in the C group. In addition, phospho-β-catenin levels 30% lower and 16% higher in the Li and 
Sim groups, respectively, compared to that in the C group. The levels of phosphorylated β-catenin in 
the Li+Sim group were lower than those in the Sim group but higher than those in the Li group. 

 

Figure 3. Simvastatin reduces the adhesion ability of HUVECs by inhibiting the Wnt/β-catenin 
pathway. (a) Adhesion rate of each group (b) Expressions of adhesion molecules in protein level. * p 
< 0.05 or ** p < 0.001 versus C group; # p < 0.05 or ## p < 0.001 versus Li+Sim group, n = 3. C, HUVECs 
treated with H2O2; Li, C group treated with LiCl; Sim, C group treated with simvastatin, Li+Sim, C 
group treated with simvastatin and LiCl. 

LDL receptor-related protein 6 (LRP6) is a coreceptor of the Wnt/β-catenin pathway, and its 
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transmembrane signaling transduction in the Wnt/β-catenin signaling pathway. To determine 
whether simvastatin inhibits the Wnt/β-catenin pathway via lipid rafts, western blotting was 
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levels in the Li and Sim groups did not significantly differ from those in the control group (p > 0.05, 

Figure 3. Simvastatin reduces the adhesion ability of HUVECs by inhibiting the Wnt/β-catenin pathway.
(a) Adhesion rate of each group (b) Expressions of adhesion molecules in protein level. * p < 0.05 or
** p < 0.001 versus C group; # p < 0.05 or ## p < 0.001 versus Li+Sim group, n = 3. C, HUVECs treated
with H2O2; Li, C group treated with LiCl; Sim, C group treated with simvastatin, Li+Sim, C group
treated with simvastatin and LiCl.

2.4. Simvastatin Inhibits ER Stress via the Wnt/β-Catenin Pathway

Under oxidative stress, simvastatin can reduce the injury and adhesion of HUVECs. To investigate
the possible underlying mechanisms, the levels of β-catenin and phosphorylated β-catenin were
determined by western blotting analysis (Figure 4a, p < 0.05 or 0.001, n = 3). β-catenin protein
expression was 34% higher and 20% lower in the Li and Sim groups, respectively, compared to that
in the C group. In addition, phospho-β-catenin levels 30% lower and 16% higher in the Li and Sim
groups, respectively, compared to that in the C group. The levels of phosphorylated β-catenin in the
Li+Sim group were lower than those in the Sim group but higher than those in the Li group.
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Figure 4. Simvastatin inhibits ER stress by inhibiting the Wnt/β-catenin pathway. The expressions
of (a) β-catenin, phospho-β-catenin (b) LRP6, phospho-LRP6 (c) GRP78, ATF6 and CHOP in protein
levels. * p < 0.05 or ** p < 0.001 versus C group; # p < 0.05 or ## p < 0.001 versus Li+Sim group, n = 3. C,
HUVECs treated with H2O2; Li, C group treated with LiCl; Sim, C group treated with simvastatin;
Li+Sim, C group treated with simvastatin and LiCl.

LDL receptor-related protein 6 (LRP6) is a coreceptor of the Wnt/β-catenin pathway, and its
phosphorylation activates the downstream Wnt/β-catenin pathway [27]. Lipid rafts can affect
transmembrane signaling transduction in the Wnt/β-catenin signaling pathway. To determine whether
simvastatin inhibits the Wnt/β-catenin pathway via lipid rafts, western blotting was performed to
measure the levels of LRP6 and phosphorylated LRP6. As shown in Figure 4b, their levels in the Li
and Sim groups did not significantly differ from those in the control group (p > 0.05, n = 3). Likewise,
total and phosphorylated LRP6 levels in the Li+Sim group were not significantly different from those
in either the Li or Sim groups (Figure 4b, p > 0.05, n = 3).

GRP78, ATF6, and CHOP are three key molecules in ER stress. In the Li group, GRP78, ATF6,
and CHOP expression was increased by 29%, 61%, and 47%, respectively, compared to that in the
C group (Figure 4c, p < 0.05 or 0.001, n = 3), indicating that ER stress may be activated by the
Wnt/β-catenin pathway.
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In addition, GRP78, ATF6, and CHOP expression levels in the Sim group were 27%, 19%, and 24%
lower, respectively, than those in the C group (Figure 4c, p < 0.05 or 0.001, n = 3), whilst in the Li+Sim
group, their expression was significantly lower than those in the Li group, but higher than those in the
Sim group (Figure 4c, p < 0.05 or 0.001, n = 3). These results indicate that simvastatin inhibits ER stress
and that the Wnt/β-catenin pathway affects ER stress.

2.5. Endoplasmic Reticulum Stress Affects the Wnt/β-Catenin Pathway

Tunicamycin is an ER stress activator, whereas 4-PBA is an ER stress inhibitor. As shown in
Figure 5a, β-catenin expression increased by 48% and decreased by 20% after tunicamycin and 4-PBA
treatment, respectively (p < 0.001, n = 3); however, phosphorylated β-catenin levels decreased by 24%
and increased by 30% after tunicamycin and 4-PBA treatment, respectively (p < 0.001, n = 3). GRP78,
ATF6, and CHOP expression increased by 58%, 76%, and 42%, respectively, after tunicamycin treatment,
but decreased by 42%, 53%, and 26%, respectively, after 4-PBA treatment (Figure 5b, p < 0.001, n = 3).
Thus, endoplasmic reticulum stress affects the Wnt/β-catenin pathway.
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2.6. Simvastatin Reduces the Deposition of Cholesterol in the Cytoplasm

To explore the possible mechanism underlying the inhibition of ER stress by simvastatin,
intracellular cholesterol was measured by Filipin staining, as fluorescence intensity is proportional to
intracellular cholesterol content. As shown in Figure 6, the cholesterol content was 25% higher in the
Li group (p < 0.001, n = 3) and 35% lower in the Sim group (p < 0.001, n = 3) than in the C group, whilst
it was significantly lower in the Li+Sim group than that in the Li group and higher than that in the Sim
group (p < 0.05 or 0.001, n = 3).
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Figure 6. Simvastatin reduces the deposition of cholesterol in the cytoplasm. The intracellular
cholesterol was measured by Filipin staining. ** p < 0.001 versus C group; # p < 0.05 or ## p < 0.001
versus Li+Sim group, n = 3. C, HUVECs treated with H2O2; Li, C group treated with LiCl; Sim, C
group treated with simvastatin; Li+Sim, C group treated with simvastatin and LiCl.

3. Discussion

Simvastatin treatment reduces the risk of cardiovascular events and cardiovascular disease-related
deaths, predominantly by decreasing intracellular and circulating cholesterol levels [7–10]; however,
the role of simvastatin in ECs remains unclear. In this study, we found that low simvastatin doses
increased the viability of HUVECs while high doses reduced their viability. Moreover, we found that
low-dose simvastatin treatment blocked the Wnt/β-catenin pathway, whereas higher doses re-activated
the pathway (Figure 1). Previous studies have shown that the activation of this pathway induces EC
dysfunction [17,18]. These results suggest that low-dose simvastatin treatment may reduce HUVEC
dysfunction by inhibiting the Wnt/β-catenin pathway.

To determine whether simvastatin could reduce Wnt/β-catenin pathway-induced EC dysfunction,
LiCl was used to activate this pathway in HUVECs. LiCl inhibited the phosphorylation of
cytoplasmic β-catenin, confirming Wnt/β-catenin pathway activation (Figure 4a). Reduced β-catenin
phosphorylation prevents its degradation, leading to cytoplasmic accumulation and translocation into
the nucleus. As expected, LiCl increased EC dysfunction (Figures 2 and 3), further confirming that
simvastatin regulates the Wnt/β-catenin pathway; we propose that simvastatin exerts a protective
effect by inhibiting the Wnt/β-catenin pathway via β-catenin phosphorylation (Figure 4), leading to its
degradation and reduced nuclear translocation.
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Cholesterol is one of the main components of lipid rafts, which are involved in numerous cellular
and signal transduction processes since many receptors and signal transduction-related proteins are
localized in or associated with them [28]. For example, transmembrane signal transduction via the LPS
receptor (TLR4) and TGF-β receptors is associated with and dependent upon lipid rafts [29,30]. LRP6
plays a vital role in mediating Wnt/β-catenin signal transduction, and its distribution in lipid rafts
facilitates Wnt/β-catenin signaling [31–33]. Methyl-β-cyclodextrin can downregulate the expression
of LRP6 and β-catenin by depleting cholesterol levels and disrupting the structure of lipid rafts.
Furthermore, increased cholesterol levels increase clonogenic potential and upregulate the expression
of LRP6 and β-catenin [34]. In this study, simvastatin was used to inhibit cholesterol biosynthesis.
Figure 6 shows that intracellular cholesterol levels were decreased by simvastatin treatment; however,
the expression and phosphorylation of LRP6 were not significantly affected (Figure 4b). These results
suggest that simvastatin did not affect signaling upstream of the Wnt/β-catenin pathway.

ER stress occurs when the morphology and function of the ER are altered as a result of endogenous
or exogenous stimuli, and may lead to the accumulation of misfolded proteins in the ER. During ER
stress, the expression of GRP78, CHOP, and ATF6 increases [21]. Recent studies have shown that the
Wnt/β-catenin pathway can affect ER stress; in cancer cells, inhibition of the Wnt/β-catenin pathway
induces ER stress, which then leads to apoptosis [35,36]. Furthermore, Zhang et al. proposed that
inhibiting the Wnt/β-catenin pathway and β-catenin degradation reverses the inhibition of ATF6
by LEF1, resulting in ATF6-induced ER stress in preadipocytes [37]. This pathway is negatively
correlated with ER stress in preadipocytes; however, we observed contradictory results in HUVECs.
Simvastatin blocked the activation of ER stress and the Wnt/β-catenin pathway while LiCl activated
the pathway and increased the expression of ER stress-related proteins (ATF6, GRP78, and CHOP;
Figure 4c), indicating that the Wnt/β-catenin pathway is positively correlated with ER stress in HUVECs.
Although these results contradict one another, the Wnt/β-catenin pathway is clearly an important
regulator of ER stress. In this study, simvastatin did not block transmembrane signal transduction in
the Wnt/β-catenin pathway as it did not alter the expression or phosphorylation of LRP6 (Figure 4b),
indicating that the Wnt/β-catenin pathway did not inhibit ER stress. Some studies believed that
changes in ER lipid composition under cholesterol overload may disrupt ER membrane functions and
cause an accumulation of misfolded and unfolded ER proteins, which can trigger ER stress [38–41].
Therefore, we propose that simvastatin blocks ER stress by inhibiting HMG-COA reductase, thus
reducing intracellular cholesterol accumulation in HUVECs (Figure 6).

To further investigate the mechanism underlying the inhibition of the Wnt/β-catenin pathway
by simvastatin, HUVECs were treated with tunicamycin (an ER stress activator) or 4-PBA (an ER
stress inhibitor). When ER stress was induced by tunicamycin, total β-catenin levels increased and
phosphorylated β-catenin levels decreased. When ER stress was inhibited by 4-PBA, total β-catenin
levels decreased and phosphorylated β-catenin levels increased (Figure 5). Therefore, we concluded
that simvastatin inhibited the Wnt/β-catenin pathway by inhibiting ER stress, since simvastatin did
not affect the expression or phosphorylation of LRP6.

Altogether, our results show that simvastatin did not affect transmembrane signal transduction in
the Wnt/β-catenin pathway, but inhibited ER stress by reducing intracellular cholesterol accumulation,
which blocked intracellular signal transduction in the Wnt/β-catenin pathway and reduced endothelial
dysfunction (Figure 7).
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LRP6 is localized to the cell membrane, and it is phosphorylated after it accumulates in the lipid raft
which contributes to activate intracellular signal transduction in the Wnt/β-catenin pathway and then
induce ER stress and endothelial dysfunction. Simvastatin can block intracellular cholesterol synthesis,
which depresses endoplasmic reticulum stress and endothelial dysfunction, but does not further affect
the phosphorylation of LRP6 by affecting lipid rafts. Therefore, although, simvastatin does not affect
transmembrane signal transduction in the Wnt/β-catenin pathway, but blocks intracellular signal
transduction in the Wnt/β-catenin pathway by attenuating the ER stress.

4. Materials and Methods

4.1. Cell Culture and Treatment

HUVECs were purchased from the Cell Bank of the Type Culture Collection of the Chinese
Academy of Sciences (Shanghai, China) and were cultured in DMEM containing penicillin (100 U/mL),
streptomycin (0.1 mg/mL), and 10% fetal calf serum at 37 ◦C in an incubator containing 5% CO2. THP-1
cells (Cell Bank of the Type Culture Collection of the Chinese Academy of Sciences) were cultured in
RPMI-1640 and incubated under the same conditions as the HUVECs.

4.2. Grouping and Dosing

To determine the optimal simvastatin concentration, HUVECs were cultured in 6-well plates.
When the cells reached 70% confluence they were treated with different doses of simvastatin (0, 0.1,
0.2, 0.4, or 0.8 µmol/L) for 24 h. The lactate dehydrogenase (LDH) level in the medium and β-catenin,
Bax, and Bcl-2 protein levels were then quantified. To determine whether simvastatin had a protective
effect on endothelial cells under oxidative stress and to identify the underlying mechanism, HUVECs
were treated with either lithium chloride (LiCl), simvastatin, or both. HUVECs were divided into
the following four groups: C, treated with H2O2; Li, treated with LiCl + H2O2; Sim, treated with
simvastatin + H2O2; and Li+Sim, treated with simvastatin + LiCl + H2O2. After cells reached 70%
confluence, simvastatin (0.2 µmol/L) was added to the Sim and Li+Sim groups. Two hours later, LiCl
(20 µmol/L) was added to the Li and Li+Sim groups. After 24 h, 500 µmol/L H2O2 was added to the
C, Li, Sim, and Li+Sim groups. Then after another 24 h, the cells were collected for further analysis.
To investigate whether the Wnt/β-catenin pathway affected ER stress, HUVECs were treated with
tunicamycin (10 µmol/L, Tun group) or 4-phenylbutyric acid (10 mmol/L, 4-PBA group). The protein
expression of β-catenin, phospho-β-catenin, and the ER stress-related molecules, GRP78, ATF6, and
CHOP, was measured.
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4.3. Measurement of LDH Levels in the Medium and Intracellular SOD Activity and MDA Concentration

The LDH level in the culture medium and the intracellular SOD activity and MDA concentration can
reflect EC dysfunction. After the HUVECs were treated as described above, the medium was collected
from the six-well plate and its LDH level was measured using a commercially available kit. The cells from
the six-well plate were digested with trypsin, collected, disrupted using ultrasound, and centrifuged at
10,000 rpm for 10 min at 4 ◦C. The SOD activity and MDA concentration of the resulting supernatant
were measured using a commercially available kit according to the manufacturer’s instructions.

4.4. Measurement of Adhesion Ability of HUVECs to THP-1 Cells

HUVECs were cultured in 24-well plates as described above. After incubation with H2O2 for
24 h, THP-1 cells (1 × 105 cells/well) were added. After 2 h, the medium in each well was removed
and unattached THP-1 cells were washed away with PBS. The number of THP-1 cells adhered to the
HUVECs was counted using a microscope (magnification, ×20; Olympus IX71; Olympus Corporation,
Tokyo, Japan).

4.5. Western Blotting Analysis

To measure protein expression levels, cells were lysed and total protein was collected. Samples
were then boiled in protein loading buffer at 100 ◦C for 5 min. Total proteins were extracted from the
cells, subjected to 8–12% SDS-PAGE, and transferred to polyvinyl fluoride microporous membranes.
Membranes were blocked with 5% skim milk or 5% bovine serum albumin, dissolved in Tris-buffered
saline/Tween 20 (TBST) for 1 h, and incubated at 4 ◦C overnight with primary antibodies (human
apoptosis-associated proteins Bcl-2 and Bax; adhesion-associated proteins ICAM-1, VCAM-1 and
MCP-1; Wnt/β-catenin pathway-associated proteins β-catenin, phosphorylated β-catenin, LRP6, and
phosphorylated LRP6; key molecules of ER stress GRP78, ATF6, and CHOP; and GAPDH) at a 1:1000
dilution. Membranes were then washed three times with TBST and incubated with a secondary
antibody for 1 h at room temperature. After washing three times, an enhanced chemiluminescent
reagent was added to the membrane and the blot was visualized using an autoradiography system
(Chemiluminescence Imaging System; version 5.1; Bio-Rad Laboratories, Inc., Hercules, CA, USA).
Each set of experiments was performed three times.

4.6. Measurement of Cell Viability by MTT Assay

To determine the effect of simvastatin on the viability of HUVECs under oxidative stress, they
were seeded onto 96-well plates at a density of 1 × 105 cells/well and cultured as described above. Next,
20 µL of MTT (5 mg/mL) was added to each well, the cells were incubated at 37 ◦C for 4 h, the medium
was removed, and 200 µL of dimethyl sulfoxide was added to each well to dissolve the blue precipitate.
The absorbance was measured at 490 nm using a microplate reader (Thermo Fisher Scientific, Inc.,
Waltham, MA, USA). A total of 6 wells were measured per group and the experiment was performed
three times.

4.7. Filipin Staining

2.5 × 104 cells were cultured in the 24-well plate after the glass lips were added. When HUVECs
reached 70% confluence in the 24-well plate, the four cell groups were treated with different drugs, as
described above. The medium in each well was then removed and the cells were washed three times
with PBS. After being fixed with 4% paraformaldehyde for 30 min, the cells were washed with PBS
three more times, 1.5 mg/mL of glycine was added to each well, and the cells were incubated in the
glycine solution for 10 min. Finally, 500 µL of Filipin (0.05 mg/mL Filipin in PBS) was added to each
well, incubated for 2 h, then the fluorescence intensity of each group was observed using a fluorescence
microscope (magnification, ×10; Olympus IX71). The experiment was performed three times [42].
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4.8. Statistical Analysis

The data were analyzed using the statistical software, SPSS 22.0 (IBM Corp., Armonk, NY, USA).
Significant differences between the groups were determined using one-way analysis of variance. All
results represent at least 3 independent experiments. Differences with p values < 0.05 were considered
statistically significant.

5. Conclusions

Simvastatin did not affect transmembrane signal transduction in the Wnt/β-catenin pathway, but
inhibited ER stress by reducing intracellular cholesterol accumulation, which blocked intracellular
signal transduction in the Wnt/β-catenin pathway and reduced endothelial dysfunction.
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