Conjugated Electron Donor–Acceptor Hybrid Polymeric Carbon Nitride as a Photocatalyst for CO₂Reduction

Asif Hayat ², Mati Ur Rahman ², Iltaf Khan ³, Javid Khan ⁴, Muhammad Sohail ⁵, Humaira Yasmeen ⁶, Shu-yuan Liu ^{7,8,*}, Kezhen Qi ^{1,*} and Wenxiu Lv ¹

- ¹ Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China; 15164052089@163.com
- ² College of Chemistry, Fuzhou University, Fuzhou 350002, China; asifncp11@yahoo.com (A.H.); matiurrahman617@yahoo.com (M.U.R.)
- ³ Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Materials Science, Heilongjiang University, Harbin 158308, China; iltafkhanpakistan@gmail.com
- ⁴ MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Key Laboratory of Environment and Energy Chemistry of Guangdong Higher Education Institutes, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China; javidchemist@yahoo.com
- ⁵ Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; sohailncp@gmail.com
- ⁶ Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; humairanefu@yahoo.com
- ⁷ Department of pharmacology, Shenyang Medical College, Shenyang 110034, China
- ⁸ Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China
- * Correspondence: liushuyuan@symc.edu.cn (S.-y.L.); qkzh2003@aliyun.com (K.Q.)

Academic Editors: Alireza Khataee, Mahdie Safarpour and Sang Woo Joo Received: 18 April 2019; Accepted: date; Published: date

Density Functional Theory analysis

1.1. Materials and methods

The Gaussian 09 [1] software at the B3LYP/6-31G* level and time-dependent density functional theory (TD-DFT) method were used for quantum chemistry calculation. The (CNU-DP_{15.0}) molecule ground state geometries (S_0) were determined from its single crystle structure and the further n_0 geomatery escalition was performed.

1.2. Time-dependent density functional theory (TD-DFT) calculations

The TD-DFT calculation was conducted on Gaussian 09 program according to the previous reported literature previous literature [1]. In order to maintain the corresponding intermolecular locations and their specific molecular configurations, the (S_0) geometries of the CX crystal were achieved from its single crystal structure CX11 and further n_0 geomatery escalition was performed. The geometry optimization based on B3LYP/6-31G (d)² was used to obtained the ground state (S_0) geometries of free CX molecule in vacuum, along with this the combination of TD-B3LYP/6-31G (d)³ give the corresponding ground state geometries the n-th triplet (T_n) and n-th singlet (S_n) states [3].The possible singlet-triplet intersystem crossings (ISC) mechanism was elucidated from Kohn-Sham frontier orbital analysis[2].The major ISC channels are ascribs: the ergy gap of the same transition configuration in S_1 and T_n states should be small while the ratio in all tansition orbital copmosition should be larger.When the energy of S_1 is hogher than T_n , the first element will be considered as predominant. The minor ISC channels findings is vice versa.

Figure S1. Calculated spatial electron distributions of HOMO and LUMO for CNU and

co-polymerized CNU-DP_{15.0}.

Energy level					Oscillator	Dipole	
Triplet (eV)		Singlet (eV)		ALST (ev)	strengths	moment	
CNU sample							
T1	-1.2159	S1	0.3602	1.2871	0.0005		
T2	0.4894	S2	0.295	0.2386	0.0006		
Т3	0.5315	S3	1.8004	0.7629	0.0057	3.6239 D	
T4	0.8139	S4	1.1285	0.1526	0.0098		
T5	1.2747	S5	1.2806	0.2189	0.0067		
T6	1.2592	86 3.1756		1.4194	0.0047		
CNU-DP _{15.0}	sample						
T1	2.0587	S1	2.9174	0.3697	0.0032		
T2	2.2526	S2	2.8424	0.1928	0.0045		
Т3	2.1189	S3	2.7057	0.2878	0.0174	2 1094 D	
T4	2.4280	S4	2.9092	0.1892	0.0521	2.1084 D	
T5	2.8358	S5	2.5228	0.174	0.0412		
T6	2.9894	S6	2.8609	0.1825	0.0005		

Table S1: Electronic excitation transition parameters of CNU and Co-polymerized CNU-DP_{15.0}.

Energy	level				oscillator	dipole
triplet (eV)		singlet (eV)		ALSI (UV)	strengths	moment
T1	2.0659	S 1	3.9628	0.3019	0.0214	
T2	2.0516	S2	3.8792	0.4827	0.0123	
Т3	3.1942	S 3	3.2190	0.3879	0.0129	11 527 0 D
T4	3.9891	S4	3.8584	0.3521	0.0241	11.3279 D
T5	3.8029	S5	3.9008	0.2753	0.0009	
T6	3.8562	S6	3.2575	0.1357	0.0007	

Table S2.Electronic excitation transition parameters of CNU–DP_{15.0}.

Table S3. Calculated values of Mulliken Atomic Charges (a. u.) for CNU–DP $_{15.0}$, DFT/ B3LYP/6-31G method.

Atoms	DFT	Atoms	DFT	Atoms	DFT
1 N	-0.614757	25 C	0.720706	49 C	0.002560
2 C	0.623481	26 N	-0.493512	50 N	0.226075
3 N	-0.196437	27 C	0.634777	51 N	-0.277632
4 C	0.587995	28 N	0.137083	52 N	-0.562150
5 N	-0.584606	29 C	0.627839	53 N	-0.595204
6 C	0.844876	30 N	-0.199201	54 N	-0.568197
7 N	0.203836	31 C	-0.598994	55 H	0.425361
8 C	0.822502	32 N	-0.240069	56 H	0.439019
9 N	-0.167459	33 N	-0.225642	57 H	0.281184
10 C	-0.405567	34 C	-0.174090	58 H	0.406083
11 N	-0.130080	35 N	-0.233759	59 H	0.404105
12 N	-0.208058	36 N	-0.828052	60 H	0.258313
13 C	-0.223623	37 N	-0.612051	61 H	0.225812
14 N	-0.180917	38 N	-0.177084	62 H	0.238946
15 N	-0.332764	39 C	0.737616	63 H	0.240013
16 N	-0.597430	40 N	-0.604536	64 H	0.393123
17 C	-2.345304	41 C	0.878909	65 H	0.381438
18 C	0.188745	42 N	-0.252502	66 H	0.398914
19 C	-1.698785	43 C	-0.229839	67 H	0.402286
20 C	0.292116	44 C	0.998575	68 H	0.308944
21 C	-0.974875	45 N	-0.278052	69 H	0.394509
22 C	0.441097	46 C	-0.196684	70 H	0.536620
23 C	0.335426	47 N	-0.250977	71 H	0.404067
24 N	-0.303845	48 N	-0.169212	72 H	0.401292

Sample	Surface	Band	Pore	Pore	C/N	H ₂ ^[c]	CO ^[d]
	area ^[a]	gap	volume	diameter	molar	evolution	evolution
	(m^2g^{-1})	(eV) ^[b]	(cm ³	(nm)	ratio ^[c]	(µmol	(µmol
			g ⁻¹)			h^{-1})	h ⁻¹)
CNU	39.89	2.53	0.42	28.2	0.63	0.68	2.08
CNU-DP _{5.0}	131.98	2.25	0.46	21.4	0.66	5.93	16.7
CNU-DP _{10.0}	163.64	2.10	0.48	23.9	0.67	6.25	25.5
CNU-DP15.0	214.53	2.05	0.44	25.1	0.68	7.02	31.81
CNU-DP _{20.0}	202.24	2.19	0.46	19.2	0.68	4.98	23.2
CNU-DP _{25.0}	137.06	2.21	0.44	20.8	0.67	5.92	15.05

Table S4.Physicochemical properties of COand H2 evolution during CO2 reduction of as-prepared samples.

[a]Calculated from N₂ absorption-desorption isotherms.

[b] From reference [4]

[c]From elemental analysis spectra.

[d] From CO₂reduction controlled experiments.

Figure S2.N₂ adsorption-desorption isotherms (77 K), (inset) pore size distribution graph, for (a) CNU

and CNU–DP_{10.0} and (b) CNU and CNU–DP_{20.0}samples, respectively.

Figure S3. XPS results of high-resolution spectra of O 1s for CNU and CNU-DP_{15.0}.

Figure S4.XPS results of high-resolution spectra of S 1s for CNU and CNU-DP_{15.0}.

Figure S5. XRD (a) and FTIR (b) for fresh sample and used sample of CNU–DP_{15.0}.

Figure S6.C 1s (a) and N 1s (b) UV-Vis DRS (c) for fresh sample and used sample of CNU–DP_{15.0}.

Element	Atomic (W%)
Ν	55.13
С	48.09
0	5.42
S	0.9

Table S5 The element derived by XPS results.

Sample	Surface	Pore	Pore	C/N	H ₂ ^[c]	CO ^[c]
	area ^[a]	volume	diameter	molar	evolution	evolution
	(m^2g^{-1})	$(cm^3 g^{-1})$	(nm)	ratio ^[b]	$(\mu mol h^{-1})$	$(\mu mol \ h^{-1})$
CNU	39.89	0.42	28.2	0.63	0.68	2.08
CNU-DP _{15.0}	214.53	0.44	25.1	0.68	7.02	31.81
CNU-XT _{15.0}	116.09	0.41	21.9	0.66	8.02	18.9
CNU-CF _{15.0}	112.55	0.45	23.6	0.66	5.48	15.2
CNU-TB _{15.0}	98.62	0.43	19.3	0.65	7.29	12.05

Table S6 Comparison of as-prepared samples with same class of co-monomers having different groups.

[a]Calculated from N₂ absorption-desorption isotherms.

[b]From elemental analysis spectra.

[c] From CO₂reduction controlled experiments.

Table S7. Study of various conditions on controlled experiments^[a].

Entry	CO(µmol)	H ₂ (µmol)	CO+H ₂ (µmol)	Sel.(%) ^[b]
1	31.81	7.02	38.83	81.92
2 ^[c]	n. d ^[d]	n. d	_	_
3 ^[e]	n. d	n. d	_	_
4 ^[f]	n. d	0.76	0.85	_
5 ^[g]	n. d	0.59	_	_
6 ^[h]	n. d	<0.1	< 0.1	_
7 ^[i]	n. d	<0.1	< 0.1	_
8 ^[j]	n. d	<0.1	< 0.1	_
9 ^[k]	n. d	0.30	0.25	-
10 ^[1]	1.49	0.62	3.41	_
11 ^[m]	3.01	1.57	3.50	-

[a] Reaction conditions: CNU-DP $_{15.0}$ (30mg), bpy (15mg), COCl₂ (1µmol), TEOA (1mL), solvent

(MeCN 6mL), and λ >420nm, 30°C,1 h.

- **[b]** Selectivity= $n_{(CO)}/n_{(CO+H2)} \times 100$.
- [c] Without CNU–DP_{15.0}
- [d] Not determined.
- [e] In dark.
- [f] Using Ar, instead of CO₂.
- [g] Without TEOA.

[h] Without bpy.

[i] Without CoCl₂.

[j] Without bpy and CoCl₂.

[k] Using N₂ instead of CO₂.

[I]Using of lactic acid as a sacrificial agent instead of TEOA.

[m] Using formic acid as a sacrificial agent instead of TEOA.

Figure S7. (a) Utiilizing CNU–DP_{15.0} photocatalyst by using different volumetric ratio of water and acetonitrile (b) same class of monomer having different groups for the generation of CO and H_2 under

visible light.

References

1. Yang, Z.; Mao, Z.; Zhang, X.; Ou, D.; Mu, Y.; Zhang, Y.; Zhao, C.; Liu, S.; Chi, Z.; Xu, J., Intermolecular Electronic Coupling of Organic Units for Efficient Persistent Room - Temperature Phosphorescence. *Angewandte Chemie International Edition* **2016**, *55* (6), 2181-2185.

2. Hertwig, R. H.; Koch, W., On the parameterization of the local correlation functional. What is Becke-3-LYP? *Chemical Physics Letters* **1997**, *268* (5-6), 345-351.

3. Bauernschmitt, R.; Ahlrichs, R., Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. *Chemical Physics Letters* **1996**, *256* (4-5), 454-464.

4. Rahman, M. U.; Wei, M.; Xie, F.; Khan, M., Efficient Dye-Sensitized Solar Cells Composed of Nanostructural ZnO Doped with Ti. *Catalysts* **2019**, *9* (3), 273.