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Abstract: The gold abundance in basic rocks, which normally varies between 0.5 and 5 ppb, has
served as a very important indicator in many geoscience studies, including those focused on the
planetary differentiation, redistribution of elements during the crustal process, and ore genesis.
However, because gold is a monoisotopic element that exhibits a nugget effect, it is very difficult to
quantify its ultra-low levels in rocks, which significantly limits our understanding of the origin of gold
and its circulation between the Earth crust, mantle, and core. In this work, we summarize various
sample digestion and combined preconcentration methods for the determination of gold amounts in
rocks. They include fire assay, fire assay combined with Te coprecipitation and instrumental neutron
activation analysis (INAA) or laser ablation inductively coupled plasma mass spectrometry, fusion
combined with Te coprecipitation and anion exchange resins, dry chlorination, wet acid digestion
combined with precipitation, ion exchange resins, solvent extraction, polyurethane foam, extraction
chromatography, novel solid adsorbents, and direct determination by INAA. In addition, the faced
challenges and future perspectives in this field are discussed.
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1. Introduction

Gold is one of the rare elements and precious metals present in the Earth crust with average
concentrations in the igneous, sedimentary, and metamorphic rocks varying between 0.5 and 5 ppb [1].
Proper quantification of the gold abundances in basic rocks is critical for many leading-edge areas
of geoscience, such as planetary differentiation [2–10], redistribution of elements during crustal
processes [11–17], and ore genesis [18–23]. According to the latest results reported by Brenan and
McDonough [10], the metal–silicate partition coefficient of Au is approximately 300, whereas its
minimum values measured for Os and Ir in the same experiments are ~107, which differs from the
former parameter by at least a factor of 104. The authors concluded that not all highly siderophile
elements (HSEs) were affected by the core formation in the same way, and that the abundances of
elements such as osmium and iridium required the addition of a late veneer. As an illustration, Figure 1
shows the metal-silicate partition coefficients plotted as functions of the oxygen fugacity. Fischer-Gödde
et al. analyzed samples of orogenic peridotite massifs and xenoliths, whose Rh and Au contents
revealed the presence of HSEs in the primitive mantle (PM), which differed from that of any known
group of chondrites and could be explained by the contributions from meteoritic components detected
in ancient lunar impact melt rocks [5]. Figure 2 shows the ratio diagrams of Au/Ir vs. 187Os/188Os
and Au/Ir vs. Rh/Ir constructed for the HSEs of the PM and different chondrite classes and groups.
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In addition, as no explorations conducted during the past 50 years detected deep gold deposits in
Earth’s crust, the world is thought to be tottering on the precipice of peak gold [24]. As a result, it is
very important to discover large deposits of gold and meet the production demand in the field of gold
ore genesis. However, the precise determination of ultra-low gold contents in rocks is an extremely
difficult task as compared with detecting other trace elements because gold represents a monoisotopic
element and exhibits a nugget effect. The latter requires the analysis of relatively large amounts of
rocks to obtain meaningful data, which are still characterized by large deviations. Since gold has only
one isotope (197Au), it cannot be quantified by an isotope dilution (ID) method that is very precise for
trace element determination and, therefore, requires a simple analytical method for its quantitative
recovery during pretreatment.
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Although modern analytical techniques such as inductively-coupled plasma mass spectrometry
(ICP-MS), graphite furnace atomic absorption spectroscopy (GFAAS), and instrumental neutron
activation analysis (INAA) are highly sensitive, their use for the direct determination of gold levels in
geological samples is complicated because of the low concentrations of gold and interfering effects
of matrix components. To increase the reliability of gold quantitation methods, the major matrix
components must be separated first, which can be achieved by proper sample preparation and the
preconcentration of gold [25–28].

Sample digestion and/or preconcentration technologies used for the determination of gold as well
as platinum group metals (PGEs) with ppm concentrations were previously reviewed by Perry, Barefoot,
Balcerzak, Pyrzynska, Mokhodoeva, Myasoedova, and their co-authors [25,29–35]; however, methods
for the detection of ultra-low gold levels in rocks (which are considerably more complex than ore-grade
samples) have not been discussed in detail. This review includes the recent significant contributions to
the determination of gold amounts in rocks, especially those focused on sample preparation and the
preconcentration of gold prior to its determination. As of today, almost all distributions and parameters
of gold in geological samples have been determined by fire assay. To validate them and obtain
more data, independent methods such as diisobutyl ketone (DIBK) extraction chromatography and
standardization combined with ID ICP-MS cation exchange resin analysis have been developed [5,36].
However, due to the long procedure or expensive spiking, a simple and reliable technique for measuring
the contents of gold in rocks must be used. In this work, we describe various sample digestion methods
that are often coupled with enrichment techniques and discuss their mutual effects.

2. Dry Digestion Methods

2.1. Fire Assay

Fire assay (FA) and cupellation methods are classical assaying techniques that have been
successfully used for the estimation of gold amounts in ores for many centuries [37]. Furthermore, FA
has always served as the arbitration method of gold measurement that involves not only the digestion
of samples, but also the enrichment of gold and PGEs since it allows the extraction of these precious
metals and their separation from base metals in the matrices. The relatively large sample weights
used for FA can overcome the nugget effect, which represents its significant advantage. However,
the large reagent blanks that result from the large amounts of fluxes introduce significant biases into
the determination of ultra-low gold levels. In addition, the uncertainty of the chemical interactions
between various flux constituents makes the quality of the obtained results highly dependable on the
experience of the analyst.

Lead fire assay (Pb-FA) and nickel sulfide fire assay (NiS-FA) are widely used FA methods. Pb-FA
utilized for the collection of Au, Pt, Pd, and Rh is the application of metallurgy in analysis. A simple
Pb-FA method has been developed in 1994 for the determination of ultra-low Au, Pt, and Pd contents
in rocks by Hall et al. [38]; its limit of detection (LOD) and recovery of gold are 2 ppb and 90%,
respectively. The large relative standard deviations (RSD) of 11–55% are likely caused by the sample
inhomogeneity rather than by the analytical method. This conclusion is in good agreement with
the recoveries of gold ranging from 74–86% at concentrations between 30 and 300 ppb [39]. NiS-FA
can be used to collect both PGEs and gold, but its efficiency for gold determination has been very
low. Juvonen et al. [40] compared NiS-FA with Pb-FA in terms of their collection efficiencies of Au,
Pt, Pd, and Rh and found that the gold recovery of NiS-FA was twice as low as that of Pb-FA at low
gold concentrations. Plessen and Erzinger [41] reported that the gold recovery did not exceed 70%
when NiS-FA was used to analyze rocks. Although the gold recovery of Pb-FA is better than that
of NiS-FA, the environmental pollution and harm to analysts caused by Pb discouraged its further
development [42,43]. However, the bottleneck of the analysis of the low gold contents in rocks by
NiS-FA consists of the high amounts of reagent blanks and low recovery efficiency of gold.
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Many researchers have attempted to solve this problem. In order to lower the reagent blank,
Asif and Parry [44] prepared a mini button by reducing the amount of nickel reagent; however, the
recovery of gold exhibited a significant reduction. Lu et al. [45] found that FA combined with a Te
coprecipitation purification process could lower the NiO blank to 0.24 ppb. In terms of the gold
recovery, two specific directions exist: combining NiS-FA with Te coprecipitation to reduce the loss
during the acid dissolution process and employing a solid direct determination technology (such as
INAA and laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS)) to reduce the
loss and possible pollution in each process following the FA step.

2.1.1. NiS-FA + Te Coprecipitation

As large amounts of gold and small PGEs contents are lost in the acid solution during the
dissolution of the NiS button, a second enrichment step that would not increase the amount of total
dissolved solids must be introduced to improve the gold recovery (especially at low concentrations).
Jackson et al. [46] applied the Te coprecipitation method to gold analysis for the first time and increased
the recovery of gold from ore samples to 90%. Savard et al. [47] obtained the same results for ore
samples, but the recovery remained low for rock samples. In addition, although the sample weight in
this method was as large as 15 g, the RSD amounted to 20–50% (the reason for this phenomenon is not
clearly understood). Oguri et al. [48] obtained high recoveries (>97%) for low gold concentrations by
repeating the NiS-FA procedure under the reduced conditions (produced by graphite powders) and Te
coprecipitation at the optimal conditions corresponding to a temperature of 210 ◦C and time of 75 min.
In order to lower the reagent blank and simplify the process, a semi-open NiS dissolution system
preventing volatile losses was suggested by Gros et al. [49]. In addition, Sun and Sun [50] proposed a
novel NiS-FA method involving Fe, which ensured the self-disintegration of the entire assay button
into powder without its mechanical crush. When some particular samples are used (such as black
shale or samples containing magnetite), conventional NiS-FA is not applicable. Li [51] ignited black
shale samples before the NiS-FA step to eliminate organic matter. Juvonen et al. [52] used potassium
tartrate as a reducing agent to successfully prepare an assay button during the analysis of samples
containing magnetite.

2.1.2. FA + INAA or LA-ICPMS

After a method that used only 0.5 g of nickel was developed (which decreased the button weight to
below 1 g), it enabled the direct analysis of small gold-containing buttons by INAA or LA-ICPMS [44].
Asif et al. [53] proposed a simple method based on NiS-FA and INAA to determine the levels of PGEs
and gold in samples. However, the LOD of gold was 2 ppb, which made this technique unsuitable for
ultra-low gold contents. Bedard and Barnes [54] compared the capacities of FA-ICP-MS and FA-INAA
to determine the gold amounts in geological samples and found that for the specimens rich in gold
both methods performed adequately; however, for the low-concentration samples (crustal rocks),
ICP-MS was preferable. Jarvis et al. [55] established for the first time a method for gold quantitation
based on the combination of NiS-FA with LA-ICP-MS having an LOD of 10 ppb. An ultraviolet
(UV) laser ablation ICP-MS was used to directly analyze the gold contents in NiS-FA buttons by
Jorge et al. [56]. The obtained LOD of gold was as low as 1.7 ppb, and the RSDs were better than
10%. Later, Resano et al. [57,58] ground NiS buttons to obtain more homogeneous samples and used
polyethylene wax as a binder to pelletize the resulting powders (possible interferences were eliminated
by utilizing a double-focusing sector field mass spectrometer). Resano et al. [59], Vanhaecke et al. [60],
and Compernolle et al. [61] discussed the possibility of combining Pb-FA with LA-ICPMS for the
analysis of gold in geological samples. Meanwhile, Compernolle et al. [61] reported the absence of
significant differences between the results obtained by the standard addition, internal standard, and
external standard methods using Pb-FA with LA-ICPMS for gold determination. Table 1 summarizes
various FA digestion methods used in literature studies. Figure 3 illustrates the main stages of the
four techniques for the gold determination by the NiS-FA method described in several works. Here,



Molecules 2019, 24, 1778 5 of 20

number 1 denotes the method that combines NiS-FA alone with ICP-MS according to Plessen and
Erzinger [41]. The polyethylene terephthalate (PET) bottle is used to store the gold solution. Number 2
denotes the technique that combines the NiS-FA method with Te coprecipitation for gold extraction
based on the works of Jackson et al. and Savard et al. [46,47]. Simpler methods that combine NiS-FA
with INAA or LA-ICP-MS are represented by numbers 3 and 4, respectively. They are based on the
approaches developed by Asif et al. and Jorge et al. [53,56].

Table 1. A summary of various FA digestion methods.

Sample
Weight/g Collector/Flux Separation Technique Detection

Technique LOD/ppb Reference

10–30 Pb/Na2CO3, Na2B4O7, SiO2,
flour(C) ICP-MS 2 [38]

50 NiS/Na2CO3, Na2B4O7, CaF2 ICP-MS 0.023 [41]
15 NiS/Na2CO3, Na2B4O7, SiO2 Te coprecipitation ICP-MS 1.69 [46]
15 NiS/Na2CO3, Na2B4O7, SiO2 Te coprecipitation ICP-MS 0.484 [47]

20 NiS/Na2CO3, Na2B4O7, SiO2
duplicate NiS-FA and

Te coprecipitation ICP-MS 0.053 [48]

20 NiS/Na2CO3, Li2B4O7, SiO2 Te coprecipitation ICP-MS 0.33 [49]
10 NiS/Na2CO3, Na2B4O7 INAA 2 [53]

10–15
50

NiS/Na2CO3, Na2B4O7
Pb/Na2CO3, NaOH, Na2B4O7,

SiO2, C

UV-LA-ICP-MS
FS-LA-ICP-MS

1.7
4 [54,60]
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2.2. Fusion

Fusion is an effective sample decomposition method that is mainly used to dissolve acid-insoluble
substances. In the process of fusion, insoluble samples are converted into sodium compounds that are
soluble in water or acids. Fusion is very different from FA, although both techniques are dry digestion
methods. In particular, fusion is just a sample digestion method, whereas FA involves both sample
digestion and gold enrichment, and its ingredients and process are more complicated. Fusion is rarely
used to decompose samples for the determination of gold contents; for this purpose, a sodium peroxide
method is most commonly used. The greatest advantages of this technology include the ability to
effectively decompose sulfide and refractory minerals and a large sample mass (up to 20 g). However,
large contents of sodium peroxide with impurities are difficult to purify, and the contaminations
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resulting from the interaction of the flux with the crucible wall can negatively affect the course of
analysis [62]. Another disadvantage of this method is the formation of gel-like soluble alkaline silicates
during fusion that make the solution difficult to analyze.

Due to the absence of gold enrichment, fusion buttons are not suitable for direct testing (such as
FA), but must be dissolved and treated by other enrichment techniques. The most common combination
technologies utilize ion exchange resins [63,64] and Te co-precipitation [65–67]. A summary of various
fusion digestion methods is presented in Table 2.

Table 2. A summary of various fusion digestion methods.

Sample
Weight/g Crucible Flux Separation

Technique
Detection
Technique LOD/ppb Reference

0.5 zirconium Na2O2 Anion resin GFAAS - [63]

1.0 graphite Na2O2 Anion resin USN-ICP-
TMS+NAA ppt/- [64]

1–20 zirconium Na2O2/NaKCO3/KOH Se-Te
coprecipitation ICP-MS 0.58 [65]

1–20
2

Corundum
Corundum

Na2O2
Na2O2

Te coprecipitation
Te coprecipitation

ICP-MS
ICP-MS

0.007
0.32 [66,67]

2.2.1. Fusion + Anion Exchange Resin

Enzweiler [63] studied the recovery efficiencies of Pt, Pd, and Au from silicate rocks using a
sodium peroxide fusion procedure followed by anion exchange resin separation. The utilized technique
was found to be not very efficient: the recovery of gold was as low as 76% due to the formation of
hydroxychloro compounds in alkaline solution that were not converted to chloro complexes upon
the acidification with HCl that was required for quantitative anion exchange. Later, Dai et al. [64]
combined an extra chlorination step with this technique to oxidize PGEs and gold and thus achieve the
best retention in the anion resin separation process. However, no valuable data were obtained for gold
because of the poor linear regression correlation of the external calibration curve for ICP-MS analysis.

2.2.2. Fusion + Te Coprecipitation

Amosse [65] described a method for the extraction of Pd, Pt, Rh, Ru, Ir, and Au using Se and Te
as carriers in the presence of catalyst KI after the fusion with sodium peroxide, sodium potassium
carbonate, and potassium hydroxide. The catalyst improved the recovery of Ir from 33% to 97.5%,
although it had no effect on the Au recovery efficiency. In order to simply this process, Jin and Zhu [66]
used sodium peroxide fusion and Te coprecipitation to measure the PGE and Au levels in geological
matrices. The procedural reagent blanks and recovery of Au were 0.044 ppb and 80%, respectively.
Qi et al. [67] purified HCl and SnCl2 by Te coprecipitation to further lower the reagent blanks and
achieved a good Au recovery of 96.3%.

2.2.3. Fusion of the Residue Formed after Acid Digestion

Another important application of fusion is the ability to recover all gold from the sample residue
after acid digestion. Totland et al. [68] used the Na2O2 + Na2CO3 mixture and pure Na2O2 to dissolve
the sample residue formed after the HNO3 + HCl + HF + HClO4 microwave digestion process.
Jarvis et al. [69], Tsimbalist et al. [70], and Coedo et al. [71] employed the same method to treat the
acid-insoluble residue formed after the HNO3 + HCl + HF acid digestion. The insoluble residue of
black shale samples produced after BrF3 digestion was melted by KBrF4 [72].

2.3. Dry Chlorination

Chlorine has been the most important gold leaching agent from 1850 to 1900. Afterwards, because
of the higher selectivity and lower price of cyanide, the latter gradually replaced chlorine in the gold
leaching of sulfide ore. Since that time, little research on the chlorination of gold has been conducted. The
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advantages of chlorination include very low procedural reagent blanks, high analytical efficiency, and
large sample weight. However, the low recovery of gold is a drawback of this method. Nesbitt et al. [73]
studied the chlorination mechanism of gold in aqueous solutions and found that the gold particle
size was the main factor affecting it. Perry and Van Loon [74] utilized the chlorination process for the
determination of ultra-low gold contents in rocks for the first time. A gold recovery of 60% was achieved
under the following optimal conditions: 3.5 h, 580 ◦C, 0.5 g NaCl, and 15 g sample powder. Although
the recovery was relatively low, the sensitivity and precision of this technique were comparable or better
than those of the FA method. In order to further improve the data precision, Perry et al. [75] attempted
to increase the sample weight to 250 g to reduce the nugget effect. Furthermore, chlorination was also
used to oxidize PGEs and gold to higher oxidation states that were more strongly absorbed by anion
resins [64].

3. Wet Acid Digestion Methods

Wet acid digestion is a widely used sample preparation technique. It is considered an alternative
to FA for the extraction of PGEs and gold from geological samples. This method has many advantages,
such as simplicity, high speed, low cost, robustness, simple reagent ingredients, low blank, and high
degree of sample universality. However, the sample weight used during acid treatment is usually
below 10 g, which is smaller than that of the dry digestion methods; as a result, the sampling errors
obtained by this technique are large due to the stronger nugget effect. In addition, its efficiency depends
on the ratio of the sample weight to the acid volume.

The best acid for gold extraction is aqua regia (aq. reg.) that can dissolve compounds insoluble in
HCl or HNO3 alone. The addition of HF, NH4F, Br2, KClO3, or H2O2 significantly increases its strength.
HF or NH4F can react with SiO2 to form SiF4 and destroy the silicate structure, which facilitates the
quantificational extraction of gold from geological samples. In many studies [37,39,76–79], it was
found that HSEs could not be quantifiably extracted from rocks without desilication. Br2, KClO3, or
H2O2 can oxide HCl to produce more chlorine gas, which increases the gold solubility. Normally,
an additional preconcentration step must be performed after acid digestion during the analysis of
ultra-low gold contents in rocks. The commonly used enrichment methods use precipitation [26,80–83],
ion exchange resins [5,71,81,84–88], solvent extraction [27,89–98], polyurethane foam (PUF) [99–130],
extraction chromatography [36,131–133], and solid adsorbents [134–137]. Figure 4 shows the common
preconcentration methods utilized with wet acid digestion.
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3.1. Acid Digestion + Precipitation

A method combining acid digestion with Te coprecipitation was originally used in 1978 to measure
the amounts of gold and silver in rocks [80]. Later, Gupta [81] pointed out that Te interfered with the
determination of gold and silver during the atomization step; therefore, this method was not suitable for
quantifying gold and silver, but could be used to measure the contents of other PGEs instead. In order
to prevent the loss of gold during the dissolution of tellurium buttons, acid digestion, Te coprecipitation,
and INNA were utilized to determine the gold contents in rocks [82]. The gold recovery and LOD of
this method were 96% and 0.7 ppb, respectively. Eller et al. [26] used a polytetrafluoroethylene (PTFE)
pressure bomb combined with HNO3, HF, aqua regia, and HClO4 to dissolve rock samples, while Se
coprecipitation was performed to preconcentrate gold. The obtained recovery of Au was greater than
98%. Niskavaara and Kontas [83] combined HF and aqua regia acid digestion with Hg coprecipitation
to determine the concentrations of Au, Pd, Pt, Rh, Ag, Te, and Se in geological samples. The observed
poor precision of gold in the low-concentration samples was likely caused by sample heterogeneity.
Table 3 lists various methods for Au preconcentration.

Table 3. Preconcentration of Au by various precipitation methods.

Sample
Weight/g Digestion Dissolution Separation

Technique
Detection
Technique LOD/ppb Reference

2–5 Teflon beaker HF + aq.reg. Te coprecipitation GFAAS - [81]

0.3–1.3 Teflon beaker HNO3 + HF + HClO4
+ HCl Te coprecipitation INAA 0.7 [82]

0.5–1.5 PTFE bomb HNO3 + HF + aq.reg.
+ HClO4 + HCl Se coprecipitation GFAAS/TXRF 0.2/1.2 [26]

0.5 Borosilicate
tube HCl + HNO3 Hg coprecipitation GFAAS 0.3 [83]

3.2. Acid Digestion + Ion Exchange Resin

• Anion exchange resins
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Since gold exists in the form of AuCl4− complex anions under acidic conditions, when an acidic
solution containing AuCl4− is passed through an anion exchange resin, AuCl4− is adsorbed on the
resin and becomes separated from other basic metals. However, it is difficult to elute the AuCl4−

species strongly adsorbed on the anion resin surface. Barredo and Polo [84] developed a method for
the analysis of Au, Ag, and Cd in rock samples, which were digested with HF, aqua regia, and HClO4,
preconcentrated with Dowex 1-X8 anion resin, and eluted with ammonia solution.

• Cation exchange resins

In contrast to the anion exchange resins, when an acidic solution containing AuCl4− is passed
through a cation exchange resin, gold is transported through the resin column in the form of AuCl4-

complex anions separated from metal cations. Gupta [81,85] compared the enrichment efficiencies of
Dowex 50W-X8 cation exchange resin combined with Te coprecipitation for PGEs and gold. The cation
exchange resin method is recommended for the determination of µg/g levels of gold. Based on the
results reported by Meisel et al. [86] showing that all PGEs exhibit similar chemical behavior in a
chromatographic column, they can be used as the ideal internal standards for the calculation of
Rh concentrations. Fischer et al. [5] used a Carius tube filled with inverse aqua regia to dissolve
rock samples and Eichrom 50W-X8 cation exchange resin to separate Re, Ir, Ru, Pt, Rh, Pd, and
Au from the matrix. The concentrations of monoisotopic Rh and Au elements were calculated by
the standardization to the 101Ru and 193Ir signal intensities, and the Ru and Ir concentrations were
determined by isotope dilution.

• Chelating resins

Chelating resins contain chelating groups that can selectively adsorb gold and separate it from
other matrix elements in solution. They combine the ionization exchange and complexation reactions
and, therefore, exhibit good selectivity and strong binding energies as compared with those of the
ordinary ion exchange resins. Coedo et al. [71] decomposed geological samples by aqua regia and
HF and then separated PGEs and gold using tetraethylenepentamine chelating resin. Wu et al. [87]
used YPA4 chelating resin as both the solid phase extractant and chemical modifier to determine the
Au, Pd, and Pt contents in geological samples by electrothermal vaporization inductively coupled
plasma atomic emission spectrometry (ETV-ICP-AES). The elution of gold from the two chelating
resins mentioned above was performed by ashing.

• Chelate absorption resins

Chelate absorption resins combine the high selectivity of chelating resins with the high adsorption
efficiency of absorption resins. Spheron Thiol 1000 chelate absorption resin was used to extract low gold
levels by Medved et al. [88]. Table 4 summarizes the Au extraction methods using ion exchange resins.

Table 4. Various methods for the preconcentration of Au by ion exchange resins.

Sample
Weight/g Digestion Dissolution Separation

Technique
Detection
Technique LOD/ppb Reference

2 - HNO3 + HCl +
HClO4 + HF

Anion exchange
resin GFAAS 0.2 [84]

5 Teflon beaker HF + aq.reg. + HNO3
+ HCl

Cation exchange
resin GFAAS - [85]

2 Carius
tube/HPA-s HCl + HNO3

Cation exchange
resin ICP-MS - [5]

0.25 Microwave
digestion aq.reg. + HF + HClO4 Chelating resin FI-ICP-MS 1.2 [71]

0.05–1.5 Mild heating HNO3 + HClO4 + HF Chelating resin ETV-ICP-AES 0.075 [87]
5–10 - aq.reg. Chelating sorbent GFAAS 0.5 [88]
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3.3. Acid Digestion + Solvent Extraction/Dispersive Liquid–Liquid Microextraction

Solvent extraction (also called liquid-liquid extraction) is a classical method for Au separation
and preconcentration characterized by the low reagent blank, high enrichment efficiency, and simple
operation. The most widely used solvents for low-level Au determination are methyl isobutyl ketone
(MIBK) and isobutyl methyl ketone (IBMK).

Terashima [89] established a simple method utilizing aqua regia for sample digestion and MIBK
for gold extraction to determine gold concentrations in 60 geological reference materials. As aqua
regia only partially interacted with the samples, Terashima et al. [90] adopted aqua regia and HF for
dissolving the entire gold content. The obtained results were very close to those of INAA. Normally,
the solvent extraction method is used in conjunction with GFAAS. However, the Fe spectral line of
242.4 nm can interfere with the sensitive Au line of 242.8 nm in the determination of Au by GFAAS.
In addition, as the polarities of Au and Fe are close, they are always extracted together by the same
solvent. Therefore, the elimination of iron impurities from the organic phase is the key to the accurate
determination of low gold levels. A two-stage solvent extraction method (using diethyl ether and
MIBK) was proposed by Yokohama et al. to prevent iron interference and effectively concentrate
gold [27]. The results obtained for reference materials were in good agreement with the INAA data.
Ramesh et al. [91] used the Zeeman background correction technology for GFAAS, washed the MIBK
organic phase with a wash solution, and centrifuged it twice for the total removal of iron.

Chattopadhyay and Sahoo [92] used the sequential digestion of HBr-Br2 and aqua regia, sequential
extraction of IBMK and toluene, and Te coprecipitation enrichment method to determine traces of gold
in geological samples. Monteiro et al. [93] examined the stability of gold in IBMK extracts and found
that closed polypropylene containers (with absorbance measurement changes of less than 3%) were
more suitable than both the open polypropylene and closed glass containers over periods of up to 22 h.

As the liquid-liquid extraction method requires the use of large volumes of organic solvents (which
are often toxic), Rezaee et al. [94] introduced a dispersive liquid–liquid microextraction (DLLME)
method that was highly sensitive, efficient, and powerful for the preconcentration and determination
of trace elements. Shamsipur and Ramezani [95] applied the DLLME technology to form an adduct
between Victoria Blue dye and AuCl4− using acetone as a dispersant and chlorobenzene as an
extractant to determine the ultra-trace amounts of gold by GFAAS. Another DLLME method for the
determination of gold traces using dicyclohexylamine as the extractant, acetone as the dispersant, and
chloroform as the extraction solvent was established by Kagaya et al. [96]. Calle et al. [97] applied the
DLLME technology to preconcentrate the ion pairs formed between AuCl4− and [CH3(CH2)3]4N+ in a
microliter-range volume of chlorobenzene using acetone as a disperser solvent for the determination
of ultra-low gold contents. Fazelirad et al. [98] used benzyldimethyltetradecyl ammonium chloride
dihydrate to form an ion pair with AuCl4−, acetone as the dispersant, and 1-hexyl-3-methylimidazolium
hexafluorophosphate ([Hmim][PF6]) ionic solution as the extractant for gold extraction. Table 5 lists
the solvent extraction/dispersive liquid-liquid microextraction methods for Au preconcentration.

Table 5. Methods for the preconcentration of Au by solvent extraction/dispersive liquid-liquid microextraction.

Sample
Weight/g Digestion Dissolution Separation

Technique
Detection
Technique LOD/ppb Reference

0.1–2.0 Borosilicate beaker HNO3 + HCl MIBK GFAAS - [89]
0.5–2.0 Teflon beaker aq.reg. + HF MIBK GFAAS - [90]

1 PFTE beaker HClO4 + HF +
aq.reg.

diethyl ether
+ MIBK GFAAS 0.13 [27]

10 Glass beaker aq.reg. MIBK GFAAS 0.1 [91]
5–10 Borosilicate beaker HBr + Br2 IBMK GFAAS 15 [92]
10 Erlenmeyer flask HCl + HNO3 IBMK GFAAS 0.2 [93]
0.2 - aq.reg. DLLME GFAAS 0.005 [95]

0.003–0.03 Eppednorf vail HNO3 + HCl DLLME GFAAS 1.5 [97]
0.02 - HNO3 + HCl + HF DLLME GFAAS 0.002 [98]
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3.4. Acid Digestion + PUF

PUF was originally used for the selective adsorption of gold from 0.2 M HCl solution in 1970 by
Bowen [99]. After that, this technology has become widely spread, owing to its excellent adsorption
selectivity, high enrichment efficiency, simple operation process, and low analysis cost [100,101].
The mechanism of PUF adsorption may be based on physical adsorption, solvent extraction, or
ion exchange. However, the majority of studies support the solvent extraction-based mechanism.
Gesser [102], Oren [103], Lo and Chow [104], and Jones et al. [105] examined the PUF adsorption of Ga,
Fe, Sn, and Rh, and concluded that PUF was a “solid solvent-extractant”. In addition, a possible cation
chelation mechanism was suggested by Hamon based on the results of his detailed studies on the PUF
adsorption of Co thiocyanate and salts of several organic acids [106]. However, as shown by Wang
et al. [107], the PUF adsorption of gold involved a reduction reaction, indicating that PUF reduced
AuCl4− (+3) to Au (0) followed by its deposition on the foam surface (Figure 5). It can be hypothesized
that the mechanisms of PUF adsorption are not the same for different compounds.
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PUF can be used as a special adsorbent for gold due to its very high selectivity. Schiller [108]
compared the adsorption efficiencies of PbS, Fe(OH)3, Al(OH)3, Dowex 1-X8, and PUF toward gold.
It was found that quantitative recovery of gold could be achieved within 90 min using PbS and PUF.
However, the PUF method is superior to the PbS one in terms of the signal-to-noise ratio during the
testing step. With the continuous optimization of various experimental conditions (including those
for the pretreatment of PUF [109,110], types and concentrations of the acid digestion reagents and
adsorption conditions [111–114], and elution conditions [115,116]), this method has become one of the
main techniques for the enrichment of gold in geological samples [117–121]. To further improve the
selectivity and adsorption capacity of PUF, many researchers coated it with organic reagents (such as
MIBK and TBP) [122–126], bonded chelating ligands to the PUF matrix [127], and functionally modified
it by the ligand coupling [128–130] with the PUF skeleton.

3.5. Acid Digestion + Extraction Chromatography

As extraction chromatography represents a chromatographic method, it exhibits the basic
characteristics of chromatography. Unlike the commonly used chromatographic techniques, in
this method, an inert carrier of organic extractant is supported on the column as the stationary
phase for separation, and a solution of various inorganic acids is utilized as the mobile phase.
This technology combines the high selectivity of extractants in solvent extraction with the effectiveness
of chromatography separation, which significantly reduces the amounts of organic extractants and is
less dangerous and easy to operate. In the 1970s, Pohlandt and Steele [131,132] and Bao [133] began to
use porous silicon and polytrifluorochloroethylene as an inert carrier for tributyl phosphate extractant
to analyze the gold amounts in ore samples and assay grains. Later, Pitcairn and Warwick [36] coated
polyacrylamide resin with DIBK to preconcentrate ultra-low gold contents in rocks. The LOD of this
method was as low as 0.002 ppb.
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3.6. Acid Digestion + Novel Solid Adsorbents

Activated carbon enrichment is a widely used method for gold determination. This technique is
very simple, and its separation effect is very strong during pulp application. However, the common
elution method involves the direct ashing of activated carbon, which causes the loss of gold and
contamination. To solve this problem, a new simple technology was developed by Hassan et al. [134],
in which gold was adsorbed on granular activated carbon followed by graphite GFAAS analysis.
Other carbon materials such as carbon nanotubes were also used for gold extraction. In order to
improve its selectivity and adsorption capacity, Dobrowolski et al. [135] compared the effects of
nitric acid, ethylenediamine, and (3-aminopropyl) triethoxysilane on the modification of carbon
nanotubes. The efficiency of analysis can also be improved using a hybrid adsorbent. Xue et al. [136]
developed an adsorbent composed of cellulose fibers, activated carbon, and anion exchange resin for
the preconcentration and separation of Au, Pd, and Pt in geological samples. Furthermore, in recent
years, magnetic nanoparticles have been widely used in sample extraction due to their unique magnetic
response, large surface area, and chemically modifiable surface. Ye et al. [137] established an on-line
method for the Au, Pd, and Pt determination with 4′-aminobenzo-15-crown-5-ether functionalized
magnetic nanoparticles. The obtained LOD of gold was 0.16 ppb. Table 6 summarizes the Au
preconcentration methods using PUF/extraction chromatography/novel solid absorbents discussed in
this work.

Table 6. Methods for the preconcentration of Au by PUF/extraction chromatography/novel solid absorbents.

Sample
Weight/g Digestion Dissolution Separation Technique Detection

Technique LOD/ppb Reference

10 Polypropylene
beaker aq.reg. PUF GFAAS 0.23 [115]

10–20 - aq.reg. MIBK-loaded PUF GFAAS - [124]

4 Teflon pot HNO3 + HF +
HCl + aq.reg.

DIBK-loaded CG71
resin ICP-MS 0.002 [36]

0.2 Microwave vessel aq.reg. Single granular carbon GFAAS 0.9 [134]

0.5 Microwave vessel aq.reg. Modified carbon
nanotubes

SS-HR-CS-
GFAAS 0.002 [135]

10 PFA vessel aq.reg. hybrid adsorbent GFAAS 0.008 [136]

5–10 Hot-plate aq.reg. magnetic nanoparticles FI-column-
GFAAS 0.16 [137]

4. Direct Determination Methods

INAA is a reliable multi-element analysis method for the direct quantitative analysis of solid
samples. It possesses very high Au sensitivity and is minimally affected by matrix effects. It also
allows avoiding losses and contamination during the pre-treatment stage because no digestion or
pre-enrichment of the sample is required. Constantin used this technique to determine the gold
contents of 82 geochemical reference materials in 2006 and 2009 [28,138] and compared them with
the results obtained by other analytical techniques. Table 7 compares various analytical methods
commonly used for the gold determination in rocks.
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Table 7. Various analytical methods commonly used for the gold determination in rocks.

Sample
Weight/g Dissolution Separation Technique Detection

Technique LOD/ppb Reference

15 NiS/Na2CO3, Na2B4O7,
SiO2

Te coprecipitation ICP-MS 0.484 [47]

1–20 Na2O2 Te coprecipitation ICP-MS 0.007 [66]

0.5–1.5 HNO3 + HF + aq.reg. +
HClO4 + HCl Se coprecipitation GFAAS/TXRF 0.2/1.2 [26]

2 HCl + HNO3 Cation exchange resin ICP-MS - [5]
0.02 HNO3 + HCl + HF DLLME GFAAS 0.002 [98]
10 aq.reg. PUF GFAAS 0.23 [115]
4 HNO3 + HF + HCl + aq.reg. DIBK-loaded CG71 resin ICP-MS 0.002 [36]

0.2 aq.reg. Single granular carbon GFAAS 0.9 [134]
5–10 aq.reg. magnetic nanoparticles FI-column-GFAAS 0.16 [137]
1–3 - - INAA ~0.1 [138]

5. Conclusions and Perspectives

In this review, various sample digestion and combined preconcentration methods for the
determination of ultra-low gold contents in rocks are summarized. Although some breakthroughs
have been achieved in recent years, many important problems remain to be solved, owing to the
heterogeneous distribution of gold in rocks, unknown forms of Au in different types of samples,
and limited knowledge of the stability of gold compounds. These issues can also create promising
opportunities in the study area; thus, future works in this field should focus on the following points:

1. In order to eliminate the nugget effect, the sample weight must be large enough. However, it
leads to low digestion efficiency and requires the use of complex operating procedures. Therefore,
additional studies must be performed to improve the sample representativeness.

2. Normally, the results obtained by the methods described above exhibit large deviations, which
are often attributed to the nugget effect. However, homogeneous reference materials are required
to confirm this conclusion.

3. Although FA can attack the entire rock sample, its relatively large reagent blank makes it difficult
to determine the low gold content precisely. Wet acid digestion can solve this problem, but aqua
regia may partially dissolve the rock samples. The desilication by HF is an effective process;
however, it is inconvenient for the use in high-pressure ashers and Carius tubes and may cause a
severe interference of 181Ta16O into 197Au determination when ICP-MS is utilized. In addition,
the formation of insoluble fluoride compounds may also cause the loss of gold.

4. It should be noted that gold solutions must be analyzed as soon as possible after separation due
to the instability of gold in both the HCl and thiourea media. In addition, the memory effect and
instrument damage caused by their usage are normally large. Therefore, future research works
may focus on the development of suitable media for gold elution and quantitation.
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