Supplementary online Material

Supplemental File S1: Yeast and bacteria strains used in this study.

Strain	Genotype	Source	Experiment	
W202	MATa ura3-1 trp1 Δ 2 leu2-3, 112 his3-11,15	R.	wild type	
W 303	ade2-1 can1-100	Rothstein	who type	
Y1H	MATa ura3-52 his3-200 ade2-101 trp1-901	Clontach	VIU	
Gold	leu2-3, 112 gal4∆ gal80∆ met- MEL1	Ciointechi	1 111	
VDU500	MATα ura3-52 lys2-801 ade2-101 trp1Δ63	[26]	CCP	
111300	$his3\Delta 200 \ leu 2\Delta 1$	[20]	UCK	

Yeast strains used in this study.

Yeast strains created in this study.

Name	Genotype	Created by	Experiment	
SG46	Y1HGold G4 _{IX}	SG	— Y1H	
SG101	Y1HGold G4 _{mut}	SG		
SG386	W303 slx9::TRP1	SG		
SG917	W303 slx9::TRP1 sgs1::HIS3	SG	Growth assay, spot assay	
SG922	W303 sgs1::HIS3	SG		
KP77	W303 <i>pif1-m2</i>	[8]	Spot access	
SP2F4	W303 slx9::TRP1 pif1-m2	SP	spot assay	
SG1010	W303 Slx9-Myc TRP1	SG		
SP2F7	W303 sgs1::HIS3 S1x9-Myc TRP1	SP	ChIP-qPCR	
SG1023	YPH500 sgs1::HIS3	SG		
KW200	YPH500 <i>prb1::</i> control-sequence- <i>LEU2</i>	[28]		
SG1076	YPH500 <i>prb1::</i> control- sequence- <i>LEU2 sgs1::HIS3</i>	SG		
SG431	YPH500 <i>slx9::TRP1</i>	SG		
SG66	YPH500 <i>prb1</i> ::G4 _{IV} - <i>LEU2</i>	SG	GCR	
SG654	YPH500 prb1::G4 _{IV} -LEU2 slx9::TRP1	SG		
KW203	YPH500 <i>prb1</i> ::G-rich- <i>LEU</i> 2	[28]		
SB17	YPH500 <i>prb1</i> ::G-rich- <i>LEU2 slx9::TRP1</i>	SB		
SB21	YPH500 <i>prb1</i> ::control sequence- <i>LEU2 slx9</i> :: <i>TRP1</i>	SB		

Y1H screening strains created in this study. Shown is the bait sequence and the minimal inhibitory concentration of aureobasidin A, which was used in the screening and for the retransformations. G-tracts or C-tracts are in bold, mutations are marked red.

Strain	Bait sequence (5'-3')	AbA [ng/ml]
SG46 bait-G4	$\begin{array}{l} G4 \ chromosome \ IX \ (G4_{IX}): \\ TCCGAAATTTTGATTTGGAGACTGATTTGGAGCCGTACGGTCGGT$	100
SG101 <i>bait-</i> mut- G4	Mutated G4 chromosome IX (mut-G4 _{IX}): TCCGAAATTTTGATTTGGAGACTGATTTGCAGCGTACGGTGCGTAATAACG CAAGCTATCGCGATTGCCGTAGCCCATTAAGGGATAATTCCATTGCCATTG	400

E. coli strains used in this study.

Strain	Genotype	Source	Experiment
DH5a	F^{-} ϕ 80dlacZ Δ M15 endA1 recA1 hsdR17(r_{k}^{-}, m_{k}^{+}) supE44 thi-1 gyrA96(Nal ^r) relA1 Δ (lacZYA- argF)U169 λ^{-}	[64]	Cloning
XL1- Blue	endA1 gyrA96(nal ^R) thi-1 recA1 relA1 lac glnV44 $F'[::Tn10 \text{ proAB}^+ \text{ lacI}^q \Delta(\text{lacZ})M15] \text{ hsdR17}(r_K^- m_K^+)$	Stratagene	Y1H
Rosetta pLysS	F^{-} ompT hsdS _B (r _B ⁻ m _B ⁻) gal dcm (DE3) pLysSRARE (Cam ^R)	Novagen	Slx9 purification

E. coli strains created in this study.

Name	Genotype	Created by	Experiment
SG22	DH5a pAbAi-G4 _{IX}	SG	Y1H
SG70	DH5a pAbAi-G4 _{mut}	SG	Y1H
SG45	DH5α pRS415-G4 _I	SG	GCR
SG43	DH5a pRS415-G4 _{IV}	SG	GCR
SG146	Rosetta pLysS pET28a-SLX9	SG	Slx9 purification

Supplemental File S2: List of G4 folding oligodeoxynucleotides.

Sequences of oligonucleotides used for *in vitro* binding studies. Mutations are marked red, G-tracts of G4 motifs are printed in bold.

Name	Sequence 5'-3'	Use
C4	AAAAAAAAAG GG TACGGT GGG TAATAA GGG AAGGTATC	
G4IX	GGG	
C4	AAAAAAAAAG <mark>C</mark> GTACGGTG <mark>C</mark> GTAATAA <mark>CGC</mark> AAG <mark>C</mark> TATC	
G4 _{mut}	GCG	G4-folding in
C4	AAAAAAAAAGGGGGGAGCTGGGGGTAGATGGGGAATGTGAG	vitro
G4 _{TP}	GG	,
C4	AAAAAAAAAAGGGTAACGGGGAATAAGGGTTCGATTCCG	
G4rDNA	GAGA GGG	
	GACGCTGCCGAATTCTGGCTTGCTAGGACATCTTTGCCC	Control DNA
J adnia	ACGTTGACCCG +	Collutor DINA
usdina	CGGGTCAACGTGGGCAAAGATGTCCTAGCAAGCCAGAAT	structures for in
	TCGGCAGCGTC	<i>vitro</i> binding
	CGGGTCAACGTGGGCAAAGCCAATGCGATCGGCCAGAAT	studies.
bubble	TCGGCAGCGTC +	Sequences from
Dubble	GACGCTGCCGAATTCTGGCTTGCTCGGACATCTTTGCCC	[25]
	ACGTTGACCCG	[55]

	GACGCTGCCGAATTCTGGCTTGCTAGGACATCTTTGCCC
foul	ACGTTGACCCG +
JOFK	CGGGTCAACGTGGGCAAAGATGTCCTAGCAATGTAATCG
	TCTATGACGTC
	GACGCTGCCGAATTCTGGCTTGCTAGGACATCTTTGCCC
	ACGTTGACCCG +
	CGGGTCAACGTGGGCAAAGATGTCCTAGCAATGTAATCG
1 four	TCTATGACGTC +
4-jork	GACGTCATAGACGATTACATTGCTAGGACATGCTGTCTA
	GAGACTATCGC +
	GCGATAGTCTCTAGACAGCATGTCCTAGCAAGCCAGAAT
	TCGGCAGCGTC

Supplemental File S3: List of peaks of ChIP-seq.

Supplemental File S4: List of primers used in this study.

No.	Sequence 5'-3'	Orientation	Feature	
1	ATAAAAGGTAGAAAGAATT	fw	Non-G-rich 1	
	CGGTTTGGCTTGTATTGCC	rev		
2	ATATCAATACATCACACCTG	fw	Non C rich 2	
Ζ	GGAAAAAAGAGCAGCAATAC	rev	Non-G-rich 2	
2	GCTGTCTGGTTAGTCTTCG	fw	C rich 1	
5	CTTCGTACAGACCTTCACCC	rev	G-nch I	
Л	CCACCTACAGATTATAGAAG	fw	G-rich 2	
4	CAAGGTGTATGACGTGCCG	rev		
5	GCTTCAGCCTGGGGTAAC	fw	XIIIb: G4 (Tract3), G4 1	
С	GGCACCATTAGATTCACCAC	rev		
C	AATCCCGTCGCTATGCTC	fw	$\mathbf{V}_{\mathbf{L}} \subset \mathcal{L} (\mathbf{T}_{\mathbf{T}}_{\mathbf{T}_{\mathbf{T}}_{\mathbf{T}}_{\mathbf{T}}_{\mathbf{T}}}}}}}}}}$	
0	CTCCCGGTCTGTTATTTTC	rev	XI: G4 (Tracts), G4 2	
7	ATACGCAGTATGGTGATATC	fw	XV (Tract3) G4 3	
	GTTTATTGCCGATATACCTC	rev		
8	CCCTTATCAAAGCAAATGCG	fw	Control 1	
	GACCACTTGATTGACTAGATC	rev		
0	CGATTATTAGTAGCGCAAAG	fw	Control 2	
9	CTTGTTATATCAATAACATG	rev	Control 2	

Sequences of oligodeoxynucleotides used for conventional ChIP-qPCR experiments.

Sequences of oligodeoxynucleotides for expression quantification by qPCR.

Sequence 5'-3'	Orientation	Use	
TACAGTGCATGTGGTATGAC	fw	European PTC2	
GAGCTATACGATTGGCTATC	rev	Expression RIC2	
ATCGCTAGATACTCCAATGG	fw	Evenession SKD2	
TAAGTGCAGTGATAGGAGAC	rev	Expression SKP2	
GTATCCAGGACTCATTCAAC	fw	European DDD1	
TAGCCTCGACAATAGAGTC	rev	Expression PRB1	
GAAAGGCGAACTACGAGTG	fw	Expression PCD1	

GACCTCAGGATCATGCGG	rev		
AATGGACAGTCCACGAAGC	fw	European TMA 10	
TCTCATCGCCAGGCTTGC	rev	Expression IMAIU	
CCTAGCAAGAGTTGACTGC	fw	European VDV2	
TAGACTGAATCGTCCCTCG	rev	Expression IPK2	
CCGAACGTAGGAGTAGCG	fw	Europasian ICD1	
GTCTGTTGCCAGCACGAG	rev	Expression <i>IGD1</i>	
CTGTTGTACGGCAATATCGA	fw	European VID212C	
TCCAGCCCATTAGGTCATC	rev	Expression <i>ILR312</i> C	
TAGGAGCAGCCCTGTACG	fw	European DDT6	
TCTTGCAACACGTCCATTAC	rev	Expression KK10	
CAGTCAAACTTCCTATCGAG	fw	Expression MDH2	
ACAACACACTTATAACCGGC	rev	Expression <i>MDH2</i>	
CGCTCCTCGTGCTGTCTTCC	fw	Expression Astin	
CAGGGTGTTCTTCTGGGGCAAC	rev	Expression Actin	
CAGACATCAGCGTACTAGG fw			
TGGCATAGTAACCCTTATGC	rev	Expression UIP0	

Supplemental File S5: Supporting information for binding analysis.

Supplemental File 5, Götz et al., 2019

(A) Dotblot. (B) MST: Binding reactions were prepared in PBS supplemented with 400 mM NaCl, 0.5% BSA, and 0.05% Tween-20 in a total volume of 40 μ L. For binding reactions 25 nM 5'Cy5-labeled oligonucleotides (folded G4s and controls) were used (see Supplementary Table S2. Different concentrations of Slx9 ranging from 27.5 μ M to 0.03 nM and a constant concentration of DNA (25 nM) were used. (B,C) MST analysis was performed using standard capillaries from Nanotemper with LED 40%, 40% MST power, on the Monolith NT.115 instrument temperature 24 °C. (B) Slx9 binding to a G4 structure from chromosome IX was tested. (C) Slx9 binding to mutated G4 from chromosome IX. K_d was calculated using the MO Affinity analysis software.

(D,E) CD spectra of folded oligonucleotides $G4_{IX}$ (green) plus the addition of 2 μ M Slx9 and 10 μ M Slx9, respectively. G4 structures show the distinct minimum (243 nm) and maximum (264 nm) peaks indicating the presence of a parallel G4. Upon Slx9 titration changes in

ellipticity between 200 and 300 nm are observed. (E) Zoom of second maxima peak in D. A minor decrease of the G4 peak (green) after Slx9 titration is detected indicating that no or only minor changes on G4 stability occur due to Slx9 binding. CD spectra were recorded on a Jasco J-810 spectropolarimeter at 20°C with parameters as described previously [28].

Supplemental File S6: S1x9 has no G4-mediated effect on genome stability or transcriptional

changes.

Supplemental File 6, Götz et al., 2019

(A) Analysis of gene expression changes in *slx9* Δ strains (grey) compared to WT (black). (B) GCR analysis of *slx9* Δ strains. *slx9* Δ does not influence genome stability. Shown is the change of the GCR rate of the strain compared to wild type without insert at the *PRB1* locus ± standard error. Biological replicates n = 3. Sequences (5'-3') of the inserts at the *PRB1* locus in the GCR strains. Only the relevant part of the insert is depicted.

Control:

 ${\tt CTAATCTTTCAGCGTTGTAAATGTTGGTACCCAAACCCAATTGTCTACAAGTTTCCTTAGC,}$

G-rich

control:

 ${\tt ATGGTGGTCATCTCAGTAGATGTAGAGGTGAAAGTACCGGTCCATGGCTCGGT.}$

Supplemental Methods

Gross chromosomal rearrangement assay

The gross chromosomal rearrangement (GCR) assay was performed as published with minor modifications [54]. Seven colonies per strain were grown for 48 h and cells were plated on different media: YPD (reference plate) and 5-FOA/Canavanine (selective plate). After incubation, the colonies were counted and the GCR rate was determined by fluctuation analysis using FALCOR and the MSS maximum likelihood method [56].

RNA isolation

RNA was isolated mainly according to the manufacturer's protocol. Briefly, cells were grown to an OD_{660} of 0.8 and RNA was isolated using the "High Pure RNA Isolation Kit" (Roche). 10^8 cells in log phase were harvested and lysed with glass beads for 1 min in a FastPrep-24 (MP). RNA was quantified using a spectrophotometer and its quality was assessed on an agarose gel. cDNA was synthesized from 5 µg RNA using Superscript II Reverse Transcriptase (Invitrogen) and oligo(dT) as per the manufacturer's instructions. qPCR was performed with SsoAdvanced SYBR Green Supermix (Bio-Rad) using the primers mentioned in Supplemental File S4.