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Abstract: Out-of-hospital sudden cardiac arrest is a major public health problem with an overall
survival of less than 5%. Upon cardiac arrest, cessation of coronary blood flow rapidly leads to intense
myocardial ischemia and activation of the sarcolemmal Na+-H+ exchanger isoform-1 (NHE-1). NHE-1
activation drives Na+ into cardiomyocytes in exchange for H+ with its exchange rate intensified
upon reperfusion during the resuscitation effort. Na+ accumulates in the cytosol driving Ca2+ entry
through the Na+-Ca2+ exchanger, eventually causing cytosolic and mitochondrial Ca2+ overload
and worsening myocardial injury by compromising mitochondrial bioenergetic function. We have
reported clinically relevant myocardial effects elicited by NHE-1 inhibitors given during resuscitation
in animal models of ventricular fibrillation (VF). These effects include: (a) preservation of left
ventricular distensibility enabling hemodynamically more effective chest compressions, (b) return of
cardiac activity with greater electrical stability reducing post-resuscitation episodes of VF, (c) less
post-resuscitation myocardial dysfunction, and (d) attenuation of adverse myocardial effects of
epinephrine; all contributing to improved survival in animal models. Mechanistically, NHE-1
inhibition reduces adverse effects stemming from Na+–driven cytosolic and mitochondrial Ca2+

overload. We believe the preclinical work herein discussed provides a persuasive rationale for
examining the potential role of NHE-1 inhibitors for cardiac resuscitation in humans.

Keywords: cardiopulmonary resuscitation; energy metabolism; ischemia; mitochondria; myocardium;
reperfusion injury; sodium calcium exchanger; sudden cardiac arrest; ventricular function

1. Introduction

Out-of-hospital sudden cardiac arrest is a major public health problem worldwide with close
to 360,000 cases assessed every year by Emergency Medical Services (EMS) in the United States.
In approximately half of these cases, cardiopulmonary resuscitation (CPR) is attempted, and of these
only 9% survive the episode and return to their pre-arrest condition with adequate neurological
function [1]. Efforts to improve survival emphasize early recognition of cardiac arrest, activation of the
EMS system, delivery of high-quality CPR, and optimal post-resuscitation care. The disappointing
outcome occurs despite a highly organized and widespread effort to deliver these interventions
promptly and efficiently.

The crucial first step in the resuscitation effort is the restoration of cardiac activity, which depends
largely on the ability of CPR to generate sufficient coronary blood flow to ameliorate myocardial
ischemia and establish the metabolic conditions required for the return of an electrically organized and
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mechanically effective cardiac activity. However, conventional CPR is unable to generate more than
10% to 20% of the coronary blood flow [2–4], constraining the resuscitation effort to proceed without
reversing but only mitigating the severity of myocardial ischemia [2,4–6]. Moreover, this minimal
blood flow reintroduces oxygenated blood to an ischemic myocardium triggering what is known as
reperfusion injury, further accentuating the severity of ischemic injury. Mitochondria are at the center
of reperfusion injury, with their bioenergetic function affected primarily by the generation of reactive
oxygen species and by Ca2+ overload followed by eventual opening of the mitochondrial permeability
transition pore and collapse of the proton-motive force required for ATP synthesis [7–10].

We have conducted preclinical research on various animal models of cardiac arrest focusing for
the past two decades on the hypothesis that resuscitation outcomes can be improved by interventions
able to attenuate myocardial reperfusion injury. We have examined various strategies [5,6,10–27] and
so far identified erythropoietin [18,23,24] and inhibitors of the sodium-hydrogen exchanger isoform 1
(NHE-1) [5,6,11–17,19–22,27] as promising interventions.

The present review is focused on our work exploring the myocardial effects of NHE-1 inhibitors
during cardiac resuscitation discussing mechanisms and physiological effects that we propose are
relevant for clinical translation.
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Figure 1. Putative topologic model of an 815-amino acid Na+-H+ exchanger isoform-1. Depicted are 12 
transmembrane-spanning segments and a 315-amino acid cytoplasmic hydrophilic carboxyl terminus 
domain (COOH). The transmembrane domain includes the intracellular H+-sensor site, the functional 
ion exchange site, and the site where inhibitors bind. The cytoplasmic domain includes sites for 
regulation via phosphorylation-dependent (P) and phosphorylation-independent mechanisms. 
Depicted are CaM-A and CaM-B representing high- and low-affinity binding sites for the Ca2+ binding 
protein calmodulin and CHP, denoting calcineurin homologous protein. Not shown are additional 
regulatory sites in the cytoplasmic domain for the extracellular signal regulated kinase (ERK1/2), p38 
mitogen-activated protein kinase (MAPK), ribosomal S6 kinase (RSK), RhoA kinase, and the tyrosine 
kinase 2 (Pyk2). 

2. Rationale for Targeting NHE-1 during Cardiac Resuscitation 

NHE-1 is a member of a large family of NHE exchangers [28]. NHE-1 is the so-called 
housekeeping isoform and is ubiquitously expressed in plasma membrane of most tissues [29–31]. 

Figure 1. Putative topologic model of an 815-amino acid Na+-H+ exchanger isoform-1. Depicted
are 12 transmembrane-spanning segments and a 315-amino acid cytoplasmic hydrophilic carboxyl
terminus domain (COOH). The transmembrane domain includes the intracellular H+-sensor site, the
functional ion exchange site, and the site where inhibitors bind. The cytoplasmic domain includes
sites for regulation via phosphorylation-dependent (P) and phosphorylation-independent mechanisms.
Depicted are CaM-A and CaM-B representing high- and low-affinity binding sites for the Ca2+ binding
protein calmodulin and CHP, denoting calcineurin homologous protein. Not shown are additional
regulatory sites in the cytoplasmic domain for the extracellular signal regulated kinase (ERK1/2), p38
mitogen-activated protein kinase (MAPK), ribosomal S6 kinase (RSK), RhoA kinase, and the tyrosine
kinase 2 (Pyk2).

2. Rationale for Targeting NHE-1 during Cardiac Resuscitation

NHE-1 is a member of a large family of NHE exchangers [28]. NHE-1 is the so-called housekeeping
isoform and is ubiquitously expressed in plasma membrane of most tissues [29–31]. NHE-1 is the
primary, if not the only, isoform expressed in mammalian cardiomyocytes [32]. It has 815 amino
acids with ~500 forming a 12 transmembrane spanning domain responsible for the Na+-H+ exchange
and the remaining 315 amino acids forming a cytoplasmic domain containing various regulatory
sites (Figure 1). NHE-1 is activated by intracellular acidosis promoting an allosterically regulated



Molecules 2019, 24, 1765 3 of 15

electroneutral Na+-H+ exchange that enables exit of intracellular H+ in exchange for extracellular
Na+ [31,33]. When cardiac arrest occurs, cessation of blood flow prompts tissue ischemia with rapid
development of intracellular acidosis, which is particularly intense in the heart given its high metabolic
rate [34–36]. Thus, the exit of H+ is accompanied by the entry of Na+ to cardiomyocytes. During the
ensuing resuscitation effort, the reperfusion that accompanies the resuscitation effort washes-out H+

accumulated in the extracellular space (i.e., during the preceding no-flow interval of cardiac arrest) and
intensifies the Na+-H+ exchange along with the corresponding cytosolic Na+ entry [12,27,31,37]. Yet,
the extrusion of Na+ from the cytosol during ischemia is limited consequent to inhibition of the Na+-K+

pump [38]. As result, there is progressive and prominent Na+ accumulation in the cytosol [31,39,40].
Additional Na+ may enter the cytosol through Na+ channels and the Na+-HCO3

− co-transporter
(Figure 2).
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Figure 2. Rendition of a cardiomyocyte during ischemia and reperfusion depicting Na+-induced
cytosolic and mitochondrial Ca2+ overload consequent to ischemia generating intracellular acidosis
while the Na+-K+ pump is inhibited. Ch, channel; NBC, Na+-HCO3

− co-transporter; NCX, Na+-Ca2+

exchanger; NHE-1, sodium– hydrogen exchanger isoform-1.

The cytosolic Na+ overload, in turn, decreases cytosolic Ca2+ exit through the Na+-Ca2+ exchanger
and eventually causes cytosolic Ca2+ influx through reverse mode operation of the exchanger leading
to cytosolic Ca2+ overload [41] and subsequent mitochondrial Ca2+ entry (Figure 2); a process which
involves the mitochondrial Ca2+ uniporter with the mitochondrial Na+-Ca2+ exchanger involved in
Ca2+ efflux [42]. Mitochondria can buffer large amounts of Ca2+ in its matrix. Yet, when this buffering
capacity is overwhelmed, free mitochondrial Ca2+ rises eventually saturating the mitochondrial
Na+-Ca2+ exchanger leading to detrimental mitochondrial Ca2+ overload [42]. Excess mitochondrial
Ca2+ worsens cell injury in part by compromising oxidative phosphorylation, releasing pro-apoptotic
factors, and by lowering the threshold for opening of the mitochondrial permeability transition
pore [10,20,43].

3. Functional Effects of NHE-1 Inhibition during Cardiac Resuscitation

Our laboratory [5,6,11–17,19–22,27], and a few others [44–48], have provided robust preclinical
support for a potential beneficial effects of NHE-1 inhibition during cardiac resuscitation, showing
myocardial effects that—if translated to humans during cardiac resuscitation—could markedly increase
the rate of successful resuscitation and subsequent survival with adequate neurological function.
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3.1. Effects on Left Ventricular Distensibility during VF-Induced Cardiac Arrest

Left ventricular distensibility is important for adequate preload. During cardiac resuscitation, left
ventricular distensibility gradually declines compromising the ability of cardiac compression to generate
forward blood flow [49]. Our NHE-1 work started in an isolated rat heart model of ventricular fibrillation
(VF) that we had developed to simulate sudden cardiac arrest and resuscitation [50]. The NHE-1
inhibitor cariporide was infused to yield a 10 mmol/L concentration in the coronary circuit during
the interval of simulated cardiac resuscitation [11]. Cariporide markedly attenuated left ventricular
pressure increases during the interval of simulated resuscitation, indicative of NHE-1 inhibition
preventing reductions in left ventricular distensibility. Following defibrillation and restoration of
cardiac activity, the beneficial effect of cariporide on left ventricular distensibility persisted preventing
a leftward shift of the end-diastolic pressure-volume curve. These observations prompted work in an
intact rat model of VF and close-chest resuscitation [11] and subsequently in a translationally more
relevant swine model of VF and closed-chest CPR [14]. In the swine experiments, cariporide given
in bolus dose of 3 mg/kg immediately before starting chest compression had an impressive effect on
left ventricular distensibility during CPR evidenced by preservation of left ventricular cavity size and
wall thickness (Figure 3A,B). The preservation of left ventricular distensibility had a hemodynamically
favorable effect during chest compression preventing the decline of coronary perfusion pressure
as it occurred in control animals (Figure 3B). Coronary perfusion pressure drives coronary blood
flow and therefore the effect of NHE-1 inhibition preserving left ventricular distensibility and the
coronary perfusion pressure resulted in a higher resuscitability rate compared to controls (8/8 vs. 2/8;
p < 0.05) [14].
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from Ayoub et al. [14]). 

Figure 3. (A) Left ventricular wall thickening during chest compression (CC) in an NaCl-treated
pig (upper frames) but not in a cariporide-treated pig (lower frames), measured by transesophageal
echocardiography at the end of diastole at baseline and between chest compressions (CC) at 2 and
8 min of CPR. (B) Progressive decreases in the coronary perfusion pressure (CPP) coincident with
progressive left ventricular (LV) wall thickening in NaCl-treated pigs but not in cariporide-treated
pigs. NaCl or cariporide (drug, 3 mg/kg) was given immediately before starting chest compression.
Mean ± SEM. * p < 0.05, † p < 0.001 vs. cariporide by one-way ANOVA (Reproduced with permission
from Ayoub et al. [14]).

The preceding observations supported the concept that a more distensible left ventricle would
allow a larger volume of blood to fill the left ventricular cavity before each chest compression resulting
in a large volume of blood to be ejected during compression. This effect would be expected to
enhance the hemodynamic efficacy of chest compression and—in turn—explain the increased coronary
perfusion pressure and higher resuscitability observed in the swine model [14]. To further explore
this potential mechanism, we conducted studies in an intact rat model of VF and CPR. We measured
cardiac output along with regional organ blood flows using fluorescent microspheres during chest
compression while varying the depth of chest compression during resuscitation from VF [5].
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Figure 4. Leftward shift of the flow-depth relationship during chest compression elicited by cariporide
in rats during VF. Rats were randomized to receive a bolus of cariporide or NaCl before starting chest
compression. The first symbol represents data from series 1 and the second symbol from series 2.
For paired organs, triangles denote right and squares left. Values are mean ± SEM; * p < 0.05 vs. NaCl
by one-way ANOVA in series 2; † p < 0.01 vs. series 1 within each treatment group by one-way ANOVA
(Adapted with permission from Kolarova et al. [5]).

We conducted two series of experiments in which rats were subjected to 10 min of untreated
VF followed by 8 min of chest compression before attempting defibrillation with the compression
depth adjusted to maintain an aortic diastolic pressure between 26 and 28 mmHg in the first series and
between 36 and 38 mmHg in the second series. Within each series, rats were randomized to receive a
bolus of cariporide (3 mg/kg) or NaCl 0.9% (vehicle-control) before starting chest compression.

In rats that received cariporide, higher cardiac output and higher organ blood flows (including
heart and brain) were observed for a given compression depth (Figure 4). Thus, as hypothesized,
cariporide shifted the relationship between blood flow and compression depth to the left as a result
of maintaining left ventricular distensibility, confirming a novel concept in resuscitation whereby a
pharmacological intervention could increase the hemodynamic efficacy of chest compression.

Leveraging on this blood flow effect, we anticipated a positive interaction between NHE-1
inhibitors and vasopressor agents; i.e., for a higher blood flow generated by chest compressions in
the presence of an NHE-1 inhibitor, the same increase in peripheral vascular resistance elicited by
a particular vasopressor agent would be expected to generate a higher blood pressure and a higher
coronary perfusion pressure aiding successful resuscitation. This effect, however, presumes that NHE-1
inhibitors lack or have minimal vasodilatory effects. We examined this interaction in our rat model of
VF and chest compression [17]. We conducted two series of 16 experiments each, using epinephrine in
one series and vasopressin in the other. Within each series, rats were randomized to receive a bolus of
cariporide (3 mg/kg) or NaCl 0.9% (vehicle-control) immediately before starting chest compression
with the vasopressor agents (epinephrine, 150 µg/kg or vasopressin, 8 U/kg) given as bolus doses
at minimum intervals of 2 min to maintain the aortic diastolic pressure above 25 mmHg during
chest compression. A significantly higher coronary perfusion pressure was generated when either
vasopressor agent was given in rats that had received cariporide (Figure 5A). This favorable effect of
cariporide reduced the number of vasopressor doses required and promoted higher resuscitation rates
(Figure 5B).
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Figure 5. (A) Coronary perfusion pressure during chest compression in rats that received epinephrine
(upper panel) or vasopressin (lower panel). Within each series, 16 rats were randomized to receive
immediately before starting chest compression a 3 mg/kg bolus of cariporide or 0.9 % NaCl. With
cariporide several rats experienced spontaneous defibrillation. The numbers in brackets indicate rat
that remained in ventricular fibrillation. * p < 0.05 vs. NaCl by one-way ANOVA. (B) Combined
data from both the epinephrine and vasopressin series in rats randomized to cariporide (n = 16) or
NaCl (n = 16). CPPmean = Coronary perfusion pressure averaged through min 3 and 8 of chest
compression. * p < 0.05 vs. NaCl by Fisher’s exact test; † p < 0.005, ‡ p < 0.0005 vs. NaCl by one-way
ANOVA. (C) Aortic pressure during in situ perfusion. The vasopressor dose was given as a bolus at two
minutes of low-flow perfusion. Either cariporide or 0.9% NaCl was infused throughout the low-flow
perfusion state in both epinephrine (n = 8) and vasopressin (n = 8) series (adapted with permission
from Kolarova et al. [17]).

We then examined whether cariporide had a direct vascular effect. For this purpose, in a similar
rat model, we cannulated and perfused in situ the descending aorta with a Krebs-Henseleit solution at
a flow rate titrated to generate an aortic pressure between 30 and 35 mmHg. This flow corresponded
to ~20 mL/min. In addition, a 0.9% NaCl solution containing cariporide was infused and compared
to NaCl control. Bolus administration of either epinephrine or vasopressin elicited—as expected—a
transient aortic pressure increase of magnitude close to 80 mmHg. The effect was the same in the
presence or absence of cariporide when vasopressin was administered but of smaller but not statistically
significant magnitude when epinephrine was administered (Figure 5C). Thus, these studies did not
support a direct vascular effect of cariporide.

These effects on coronary perfusion pressure are important. If translated clinically, they could be
highly impactful because only small increases in coronary perfusion pressure are required to have a
significant effect on resuscitability [3].

3.2. Effects on Ventricular Fibrillation, Defibrillation, and Post-Resuscitation Electrical Stability

In our intact rat model of VF and chest compression, spontaneous defibrillation frequently occurs
after 7 to 9 min of chest compression in animals treated with cariporide but not in control animals [11].
This phenomenon was also reported by Wann et al. in a similar rat model of VF [51]. However,
this effect has not been reported in larger animal models. Small size hearts—as in rats—handle VF
differently. When electrically induced, prolonged electrical stimulation is required (e.g., ~3 min in
rats) before self-sustained VF can be induced; otherwise VF reverts spontaneously to an organized
rhythm. Small hearts enable a fibrillatory front to travel a much shorter distance such that its leading
edge typically finds its trailing edge in refractory period precluding the reentry of the fibrillatory front
required to maintain VF. Yet, after a period of myocardial ischemia; e.g., 3 min, conduction velocity
slows down allowing the trailing edge to come off it refractory period enabling the arriving leading edge
of the fibrillatory front to depolarize the myocardium leading to self-sustained VF [52]. Spontaneous
defibrillation in our rat model is typically preceded by increases in the amplitude and frequency of the
VF waveform [11,15,51]; an effect that is associated with improved myocardial energy state [36]. Thus,
spontaneous defibrillation in the presence of cariporide in our rat model most likely reflects a beneficial
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effect of cariporide on myocardial energy metabolism; an effect we subsequently demonstrated in a
larger animal model and is discussed later [6]. Another prominent effect observed in the presence of
cariporide is suppression of ventricular ectopic activity and episodes of refibrillation post-resuscitation;
an effect that typically occurs clinically during the early post-resuscitation period and is responsible
for re-arrest [11,14,16,21]. In a swine model, this effect was associated with preservation of the action
potential duration [14]; an effect that would reduce the risk of reentry [21]. Clinical translation of this
effect would be highly impactful in preventing re-arrests in out-of-hospital cardiac arrest victims who
are initially resuscitated and are in route to a hospital.

3.3. Effects on Post-Resuscitation Myocardial Function

Despite full restoration of coronary blood flow after the return of spontaneous circulation, variable
degrees of left ventricular systolic dysfunction commonly occur. This phenomenon—known as
myocardial stunning—is reversible. However, reversibility may take hours or days and contingent
on its severity may compromise hemodynamic function and survival [53–55]. Diastolic dysfunction
also occurs in the post-resuscitation period [11,14] and is linked to the same pathophysiological
abnormalities responsible for decreased distensibility; namely, diastolic Ca2+ overload and energy
deficit precluding full relaxation of cardiomyocytes. Administration of NHE-1 inhibitors during CPR
in our animal models consistently lessens post-resuscitation left ventricular systolic and diastolic
dysfunction. Figure 6 shows lesser left ventricular dysfunction with better hemodynamic function in
20 pigs randomized to receive a bolus of cariporide (3 mg/kg) or vehicle control after 6 min of untreated
VF coincident with the start of chest compression [21], and in another study of 16 pigs randomized
to receive a bolus of zoniporide (3 mg/kg) or vehicle control after 8 min of untreated VF coincident
with the start of resuscitation using extracorporeal circulation [6]. Improved post-resuscitation
myocardial function associated with NHE-1 inhibition leads to improved survival during the early
post-resuscitation interval [13,22]. However, not all NHE-1 inhibitors seem to have the same effect.
In a rat model of VF and conventional CPR, cariporide was more effective in improving short term
survival than the newer compound AVE4454B [22] (Figure 7).
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Figure 6. Baseline (BL) and post-resuscitation (PR) left ventricular and hemodynamic function.
Numbers in brackets indicate sample size. Values are mean ± SEM. (A) Closed-chest swine model of VF
and conventional cardiopulmonary resuscitation in which 20 pigs were randomized to receive cariporide
or NaCl control during resuscitation from VF. * p < 0.05; † p < 0.001 vs. control by one-way ANOVA
(adapted with permission from Ayoub et al. [21]). (B) Open-chest swine model of VF and resuscitation
by extracorporeal circulation in which 16 pigs were randomized to receive zoniporide or NaCl control
during resuscitation from VF. * p < 0.05, † p < 0.01 vs. NaCl. In both series administration of the NHE-1
inhibitor during cardiopulmonary resuscitation had a marked beneficial effect on post-resuscitation
myocardial function (adapted with permission from Ayoub et al. [6]).
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Figure 7. Survival curves in rats that received cariporide, AVE4454B, or control solution at the start of
chest compression during resuscitation from VF. Shown are survival curves for all rats and survival
curves only for rats that had return of spontaneous circulation (ROSC) after defibrillation (Shocks).
Top graphs depict survival for the individual interventions. Bottom graphs depict survival for the
cariporide and AVE4454B groups combined (NHE-1 Inhibition). ∗ p < 0.01 vs. control by Gehan-Breslow
analysis using Holm-Sidak’s test for multiple comparisons; † p = 0.01 vs. control by Gehan-Breslow
analysis (adapted with permission from Radhakrishnan et al. [22]).

The beneficial myocardial effects of NHE-1 inhibitors have also been observed when given after
return of spontaneous circulation. Lin et al. used a piglet model of asphyxial cardiac arrest and
administered the NHE-1 inhibitor sabiporide 15 min after return of spontaneous circulation reporting
a beneficial effect on left ventricular ejection fraction and hemodynamic function [48].

3.4. Amelioration of Adverse Epinephrine Effects

The rationale for routine epinephrine administration during cardiac resuscitation is to increase the
coronary perfusion pressure and thereby coronary blood flow by promoting peripheral vasoconstriction
given the limited capability of chest compression to generate adequate systemic blood flow. Thus,
epinephrine increases the aortic blood pressure, which is the main driver of coronary perfusion.
The vasoconstrictive effect of epinephrine is mediated through α1- and α2-adrenoceptors. However,
epinephrine also activates β1- and β2-adrenoceptors. These α1-, β1-, and β2-adrenoceptors increase
myocardial oxygen consumption; an undesirable effect during cardiac resuscitation when the heart is
ischemic [2,56,57]. In a recent large randomized clinical trial, epinephrine increased by fourfold the
rate of initial resuscitation; however, greater post-resuscitation deaths and worse neurologic outcome
precluded the early beneficial effect of epinephrine to be sustained over time [58]. Our work suggests
that some of the adverse effects of epinephrine may be neutralized by NHE-1 inhibition. In a swine
model of VF and closed-chest resuscitation, the use of cariporide in a resuscitation protocol that included
use of epinephrine resulted in higher resuscitation rates, fewer episodes of VF post-resuscitation, and
lesser post-resuscitation myocardial dysfunction [16].

4. Cellular Mechanisms of the Observed Functional Benefits

As shown in Figure 2, activation of NHE-1 during ischemia and reperfusion have two immediate
effects; i.e., H+ exit attenuating intracellular acidosis and Na+ entry leading to cytosolic and
mitochondrial Ca2+ overload given the inability of the Na+-K+ pump to extrude Na+ from the cytosol.
As also shown in Figure 2, other ports of entry exist for Na+, including Na+ channels—expected to
open during VF (consequent to action potential activation).
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Figure 8. Left ventricular intracellular Na+ ([Na+]i), mitochondrial Ca2+ ([Ca2+]m), and cTnI (C) at
baseline (BL), at 15 min of untreated VF, at 15 min of VF with chest compression during the last 5 min
(VF/CC), and at 60 min post-resuscitation (PR). Black bars denote control rats and white bars denote
rats treated with Na+-limiting interventions. Also shown are the effects of individual Na+-limiting
interventions. A, AVE4454B and lidocaine vehicle; L, lidocaine and AVE4454B vehicle; and A/L,
AVE4454 and lidocaine. Mean ± SEM. ∗ p < 0.05 vs. BL by Kruskal-Wallis one-way ANOVA on
ranks using Dunn’s Method for multiple comparisons; † p < 0.05 vs. control by Student’s t-test in
PR groups; #two-way ANOVA using time factor (VF/CC vs. PR) and treatment factor (control vs.
Na+-limiting interventions) was significant for treatment factor (p = 0.013) for [Na+]i and for both,
time factor (p = 0.045) and treatment factor (p = 0.021) for ([Ca2+]m. Also shown is an attenuation of
post-resuscitation cTnI increased with the Na+-limiting interventions (∗ p < 0.05 vs. control by Student’s
t-test) and an inverse relationship between cardiac work index (CWI) and cTnI levels (r = 0.58, n = 24,
p < 0.01) (adapted with permission from Wang et al. [19]). Please confirm if it is necessary to explain #
in the figure.

The cytosolic and mitochondrial Ca2+ overload adversely affects myocardial function by
compromising mitochondrial bioenergetic function (i.e., ability to regenerate ATP in the presence of
oxygen) and by precluding relaxation of cardiomyocytes. This last effect results from the alluded
cytosolic Ca2+ overload and also from the inability of the energy-requiring sarcoplasmic reticulum
Ca2+-ATPase to pump Ca2+ from the cytosol into the sarcoplasmic reticulum as part of the normal
cardiomyocyte Ca2+ cycling. Altogether, these effects explain the left ventricular wall thickening with
reduction in cavity size (i.e., decreased distensibility) during VF and post resuscitation left ventricular
systolic and diastolic dysfunction. In a series of experiments, discussed below, we documented
the actions of NHE-1 inhibitors attenuating these abnormalities and the corresponding functional
effects. We first used our rat model of VF and closed-chest resuscitation to examine the effects of
NHE-1 inhibition and Na+ channel blockade—interventions collectively referred to as “Na+-limiting
interventions”—on intracellular Na+ content, mitochondrial Ca2+ content, cardiac function, and plasma
levels of cardio-specific troponin I (cTnI) [19]. Measurements were made in hearts harvested at baseline,
at 15 min of untreated VF, at 15 min of VF with chest compressions provided during the last 5 min
of VF, and at 60 min post-resuscitation. Rats from the latter two time-events were randomized to
receive a Na+-limiting intervention immediately before starting chest compression or vehicle control.
The Na+-limiting interventions included the NHE-1 inhibitor AVE4454B (1 mg/kg), lidocaine (5 mg/kg),
and the combination of AVE4454B and lidocaine.

As shown in Figure 8, limiting sarcolemmal Na+ entry attenuated increases in cytosolic Na+ and
mitochondrial Ca2+ overload during chest compression and the post-resuscitation period. This effect
was associated with attenuation of post-resuscitation cTnI increase with the level inversely proportional
to cardiac work. In a previous study using an isolated perfused rat heart model we reported that
VF contributed independently to left ventricular Na+ overload and speculated that the fibrillatory
activity—by opening of Na+ channels—could have been the contributing mechanism [12].
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Figure 9. Myocardial measurements in pigs randomly assigned to receive 3 mg/kg of zoniporide or
0.9% NaCl control after 8 min of untreated ventricular fibrillation (VF) before starting extracorporeal
circulation (ECC). Measurements were obtained at baseline (BL), during VF at ECC 4 and 8 min, and
post-resuscitation (PR). Each group had eight pigs at baseline. Numbers in brackets indicate when
sample size decreased from the initial eight or preceding ones. Shown are the ratio between myocardial
phosphocreatine and creatine (pCr/Cr), myocardial lactate content, and (in the inset) the relationship
between lactate and pCr/Cr ratio at ECC 8 min. The regression line represents an exponential decay
function (R2 = 0.63, p < 0.001). Mean ± SEM; * p < 0.05, ‡ p < 0.001 vs. control by Student’s t-test
(adapted with permission from Ayoub et al. [6]).

We also used an open-chest pig model of electrically-induced VF and extracorporeal circulation to
study the effects of inhibiting NHE-1 on myocardial energy metabolism under conditions of controlled
coronary perfusion pressure [6]. For this study, VF was induced by epicardial delivery of an alternating
current and left untreated for 8 min. After this interval, extracorporeal circulation was started and
the extracorporeal blood flow adjusted to maintain a coronary perfusion pressure at 10 mmHg for
10 min before attempting defibrillation. The target coronary perfusion pressure was chosen to mimic
the low coronary perfusion pressure generated by closed-chest resuscitation. Two groups of eight pigs
each were randomized to receive the NHE-1 inhibitor zoniporide (3 mg/kg) or vehicle control as a
right atrial bolus immediately before starting extracorporeal circulation. Similar to previous studies
using the NHE-1 inhibitor cariporide [14], zoniporide also prevented reductions in left ventricular
distensibility during the interval of VF and extracorporeal circulation, which in control pigs was
characterized by progressive reductions in cavity size and progressive thickening of the left ventricular
wall. Importantly, these effects occurred without changes in coronary blood flow or coronary vascular
resistance indicating that the favorable myocardial effects of NHE-1 inhibition during resuscitation are
not likely to be mediated through increases in blood flow and oxygen availability.

As shown in Figure 9, myocardial tissue measurements indicated that administration of zoniporide
prevented progressive loss of oxidative phosphorylation during the interval of simulated resuscitation.
This effect was evidenced by a higher phosphocreatine-to-creatine (pCr/Cr) ratio, higher ATP/ADP
ratio, and lesser increases in adenosine in animals treated with zoniporide. These metabolic benefits
are consistent with the regeneration of ADP into ATP by mitochondria instead of downstream
degradation to adenosine, with the newly formed ATP being used to regenerate creatine phosphate; all
indicative of preserved mitochondrial bioenergetic function [6]. These changes were accompanied
by amelioration of myocardial lactate increases, attaining levels which were inversely proportional
to the pCr/Cr ratio at 8 min of VF and extracorporeal circulation (Figure 9), suggesting a shift away
from anaerobic metabolism consequent to preservation of mitochondrial bioenergetic function in pigs
treated with zoniporide.

These energy effects are consistent with NHE-1 inhibition protecting mitochondrial bioenergetic
function—probably as a result of limiting mitochondrial Ca2+ overload—and supportive of the concept
that preservation of left ventricular distensibility during resuscitation is likely to stem from lesser
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cytosolic and mitochondrial Ca2+ overload, correspondingly impacting cardiomyocyte relaxation and
energy generation.

An additional consideration particularly relevant to cardiac resuscitation is the effect that changes
in extracellular pH have on reperfusion injury after NHE-1 activation. We recently reported in our rat
model if VF and closed-chest resuscitation a profound detrimental myocardial effect caused by the
systemic administration of a buffer solution immediately after return of spontaneous circulation [27].
The buffer solution increased blood pH to ~7.70 units worsening post-resuscitation myocardial
dysfunction and reducing survival. There was also a prominent increase in plasma cytochrome
c, which is a mitochondrial protein responsible for the transfer of electrons from complex III to
complex IV of the electron transport chain. Its release to the plasma is associated with the severity
of myocardial injury after cardiac arrest [43,59]. Buffer administration was also associated with
lactatemia attaining levels substantially higher than expected from cardiac arrest. We attributed these
effects to intensification of the Na+-H+ exchange upon buffering of the extracellular pH with the
adverse myocardial effect consequent to intensification of the Na+–driven cytosolic and mitochondrial
Ca2+ overload. The excessive lactatemia is best explained by acceleration of the glycolytic pathway
after buffer administration and attenuation of the intracellular acidosis given the pH-dependency
of phosphofructokinase activity, which is the rate-limit enzyme of the glycolytic pathway [60–62].
Concomitant mitochondrial bioenergetic dysfunction precluding pyruvate utilization would contribute
to the intensity of the observed lactatemia. All these effects were markedly attenuated when the
NHE-1 inhibitor zoniporide was given (during CPR) before administration of the buffer solution.
These observations are clinically relevant as the administration of sodium bicarbonate during pediatric
cardiac resuscitation has been associated with worsened survival [63,64].

5. Clinical Translation of NHE-1 Inhibitors

Only a handful of studies—sponsored by pharmaceutical companies—have been conducted
examining the effects of NHE-1 inhibition in humans. These studies, however, have examined
conditions other than cardiac arrest including effects in patients undergoing coronary interventions
for acute myocardial infarction [65–67] and during coronary artery bypass surgery (CABG) [66,68].
The studies in acute myocardial infarction were collectively inconclusive, with only one study showing
myocardial benefits [65]. Of the studies in patients undergoing CABG, the EXPEDITION trial [68]
demonstrated a prominent myocardial protective effect of cariporide reducing the incidence of
post-operative myocardial infarction from 18.9% in the placebo group to 14.4% in the cariporide group
with high statistical significance. Unfortunately, and unexpectedly, patients who received cariporide
had a higher incidence of occlusive strokes. This adverse effect had not been reported in any of the
other clinical trials or in animal models and is presumed to be unrelated to the mode of action but
to its mode of administration—high dose and prolonged infusion [68,69]. The unexpected adverse
effect observed in the EXPEDITION trial dampened the enthusiasm for further clinical development of
NHE-1 inhibitors for cardiovascular conditions including cardiac resuscitation. Yet, the findings herein
discussed, and the cardiac effect reported in the EXPEDITION trial, are highly supportive of potential
clinically relevant effects of NHE-1 inhibitors.

6. Conclusions

We propose that the preclinical findings herein discussed are relevant to cardiac resuscitation in
humans given the highly phylogenetically conserved nature of NHE-1, its physiological role, and its
pathophysiological significance during ischemia and reperfusion. Functionally, preservation of left
ventricular distensibility during CPR, greater electrical stability upon return of spontaneous circulation,
attenuation of post-resuscitation myocardial dysfunction, and amelioration of the adverse effects or
epinephrine are all highly desirable effects expected to improve outcome from cardiac arrest. Clinical
studies determining the extent to which these effects can be translated to humans during cardiac
resuscitation are eagerly awaited.
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