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Abstract: Type 2 diabetic patients possess a two to four-fold-increased risk for cardiovascular diseases
(CVD). Hyperglycemia, oxidative stress associated with endothelial dysfunction and dyslipidemia
are regarded as pro-atherogenic mechanisms of CVD. In this study, high-fat diet-induced diabetic
and non-diabetic vervet monkeys were treated with 90 mg/kg of aspalathin-rich green rooibos extract
(Afriplex GRT) for 28 days, followed by a 1-month wash-out period. Supplementation showed
improvements in both the intravenous glucose tolerance test (IVGTT) glycemic area under curve
(AUC) and total cholesterol (due to a decrease of the low-density lipoprotein [LDL]) values in diabetics,
while non-diabetic monkeys benefited from an increase in high-density lipoprotein (HDL) levels.
No variation of plasma coenzyme Q10 (CoQ10) were found, suggesting that the LDL-lowering effect
of Afriplex GRT could be related to its ability to modulate the mevalonate pathway differently from
statins. Concerning the plasma oxidative status, a decrease in percentage of oxidized CoQ10 and
circulating oxidized LDL (ox-LDL) levels after supplementation was observed in diabetics. Finally,
the direct correlation between the amount of oxidized LDL and total LDL concentration, and the
inverse correlation between ox-LDL and plasma CoQ10 levels, detected in the diabetic monkeys
highlighted the potential cardiovascular protective role of green rooibos extract. Taken together,
these findings suggest that Afriplex GRT could counteract hyperglycemia, oxidative stress and
dyslipidemia, thereby lowering fundamental cardiovascular risk factors associated with diabetes.

Keywords: type 2 diabetes; cardiovascular risk factors; antidiabetic activity; aspalathin-enriched
green rooibos extract; coenzyme Q10
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1. Introduction

Diabetes mellitus is a global pandemic afflicting 425 million adults worldwide, with trends
suggesting the rate will continue to rise, reaching 642 million in 2040 [1]. Almost 90% of diabetic
patients are affected by the lifestyle-related sub-type, type 2 diabetes (T2DM) [2], a progressive
metabolic disease characterized by insulin resistance and eventual functional failure of pancreatic beta
cells [3].

It is known that T2DM is associated with higher cardiovascular morbidity and mortality.
In particular, type 2 diabetic patients have a two to four-fold increased risk of incident coronary
heart disease, ischemic stroke and a 1.5 to 3.6-fold increase in mortality [4].

Hyperglycemia is a key cardiovascular risk factor for patients with type 2 diabetes [5]. Increased
glucose flux through the polyol pathway, intracellular formation of advanced glycation end products
(AGE) and increased expression of its receptors [5], as well as activation of protein kinase C (PKC) [6]
and increased glucose flux through the hexosamine pathway [6–8] represent the five pro-atherogenic
mechanisms of diabetes associated with hyperglycemia. Several lines of evidence indicate that
these mechanisms are activated by mitochondrial reactive oxygen species (ROS) overproduction [9],
produced by proton leakage at the mitochondrial electron transport chain, resulting in increased
production of superoxide [10]. In turn, these mechanisms ultimately lead to further increases of free
radical formation. Moreover, increased oxidative stress underlies endothelial dysfunction, caused
by decreased bioavailability of nitric oxide (NO), a critical signaling molecule mediating vasoactive
activity. In fact, high levels of ROS promotes NO oxidation, leading to the production of peroxynitrite,
a highly reactive molecule responsible for extensive oxidative damage in the endothelium [11].

Besides hyperglycemia and oxidative stress, diabetic dyslipidemia—characterized by elevated
plasma triglyceride concentrations, low-density lipoprotein (LDL) concentrations, and reduced high
density lipoprotein (HDL) levels—represents one of the most common cardiovascular risk factors, with
a prevalence of 72–85% in T2DM [12,13].

Further, macrophages have no affinity for non-oxidized LDL; even at high concentrations,
non-oxidized LDL has little or no atherogenic-promoting properties. However, oxidized LDL
contributes to the atherogenic processes in the arterial wall, driven by inflammation and the formation
of lipid-laden foam cells that lead to plaque formation [14].

Accordingly, in order to prevent its oxidation, low plasma LDL levels should be maintained,
particularly in clinical conditions characterized by elevated oxidative stress—such as in diabetes.
Therefore, guidelines for primary and secondary prevention of cardiovascular disease in diabetes
include hypocholesterolemic therapies for the reduction of plasma LDL [15]. Pharmacological targets
endorsed by the American Diabetic Association refer to LDL plasma levels below 100 mg/dL in the
primary prevention of individuals with diabetes [16], compared to 130 mg/dL in non-diabetic patients.

The Old World non-human primate species Chlorocebus aethiops (vervet monkey), endemic
to Southern Africa, shares the same subfamily with the macaque (Cercopithecinae) and are
phylogenetically close to humans [17]. Vervet monkeys are omnivorous and readily consume
experimental diets, including high-fat diets, which has proven to be particularly useful for
cardiovascular and metabolic disease research [18–24]. In particular, LDL concentrations correlate
with the type and amount of fat in the diet [25]. A strong correlation was established within
our vervet colony between dietary lipid intake, LDL cholesterol and atherogenic aortic lipid
deposition [26]. An inherent susceptibility of this species to cholesterolemia and development
of atherosclerotic lesions that correspond to the human classification types I–VII has also been
confirmed [22,26]. In addition, these vervet monkeys are responsive to both dietary and pharmacological
intervention strategies [18,21–24,27,28]. Although the normal plasma LDL:HDL ratio is lower in vervet
monkeys [29,30] compared to humans [31], their LDL responses to Westernized human diets are similar
and therefore relevant to this study [19].

Aspalathus linearis, also known as rooibos, is a shrub-like leguminous bush native to the
Western and Northern Cape regions of South Africa. Commercially, rooibos is processed to produce
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unfermented (green) or fermented (red) rooibos. While fermentation results in oxidation of the plant
polyphenols, leading to a decrease in the total antioxidant content, they remain preserved in green
rooibos—particularly aspalathin, which represents the major bioactive compound [32].

In addition to its proven antioxidant properties, several studies demonstrated that
rooibos tea has important anticancer [33], antihemolytic [34], antimutagenic [35,36] and
anti-inflammatory [37] properties.

In the last years, many in vitro and ex vivo studies have focused on the antidiabetic effects of
rooibos. In particular, Mazibuko et al. [38] confirmed the capacity of rooibos to reduce insulin resistance
in C2C12 muscle cells, while other studies demonstrated a hypoglycemic effect of aspalathin in different
murine type 2 diabetic models [39,40]. Finally, Kamakura et al. [41] used an aspalathin-rich green
rooibos extract to promote glucose uptake in L6 myotubes and to counteract the increase in fasting
blood glucose levels in type 2 diabetic model KK-Ay mice. The antidiabetic activity of rooibos is
attributed to both the ability of aspalathin to increase GLUT 4 translocation to the plasma membrane
via adenosine 5′ monophosphate-activated protein kinase (AMPK) and activation of Akt in skeletal
muscle [38,41], and to reduce the gene expression of hepatic enzymes related to glucose production
and lipogenesis [40].

Apart from a limited human study by Marnewick et al. [42], showing that consumption of rooibos
tea (six cups/day) by participants at increased cardiovascular risk significantly decreased serum LDL
and triglycerides and lowered plasma markers of lipid peroxidation, the effects of rooibos on other
cardiovascular risk factors associated with diabetic pathology have been not studied.

This study aimed to evaluate the biological activity of standardized, pharmaceutical-grade,
aspalathin-rich green rooibos extract (Afriplex, GRT) containing 12.8% aspalathin in improving the
oxidative status and lipid profile of high-fat diet-fed diabetic and healthy non-human primates
(Chlorocebus pygerythrus).

2. Results

2.1. Lipid Profile

Diabetic vervet monkeys showed significantly elevated plasma total cholesterol levels in
comparison to normal monkeys (+164%; p < 0.01) at baseline, but also following treatment (14 days
+101%; 28 days +123%; after wash-out +136%, p < 0.01) (Figure 1A). This is mainly due to different
amounts of LDL (Figure 1B) between both experimental groups. Conversely, HDL levels are significantly
different only at the start of the study (non-diabetics 1.59 ± 0.16 mmol/L, diabetics 2.44 ± 0.21 mmol/L;
p = 0.010) (Figure 1C).

Two weeks of treatment with Afriplex GRT was sufficient to significantly decrease plasma LDL
levels (baseline 6.64± 1.31 mmol/L; 14 days 5.27± 0.91 mmol/L, p = 0.015) (Figure 1B) and, consequently,
total cholesterol (Figure 1A) (baseline 9.25 ± 1.11 mmol/L; 14 days 7.84 ± 0.73 mmol/L, p = 0.02) in
diabetic monkeys. Moreover, after 4 weeks of treatment, LDL levels of diabetic monkeys remained
unchanged (Figure 1B), while the total cholesterol significantly increased in comparison following 2
weeks treatment (Figure 1A) (+8%, p = 0.032). This is probably related to an increase, although not
significant, of HDL levels in the same experimental group (Figure 1C) (+69%, p = 0.2).

In relation to non-diabetic vervet monkeys, total cholesterol and LDL levels remained unchanged
at each experimental point (Figure 1A,B), while 4 weeks treatment promoted a highly significant
increase of plasma HDL content in comparison with baseline (+118%, p = 0.012) and after 2 weeks of
treatment (+90%, p = 0.008) (Figure 1C).

Summarizing, both diabetic and non-diabetic vervet monkeys showed a significant decrease
in LDL:HDL ratio after supplementation with Afriplex GRT (Figure 1D), reducing the significant
difference showed at baseline (non-diabetics 1.00 ± 0.12; diabetics 3.62 ± 0.97, p = 0.04). After the
4 weeks of wash-out, these values tended to revert back to the baseline level (Figure 1A–D).
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In contrast, plasma triglyceride content remained unchanged in both studied populations
(Figure 1E).Molecules 2019, 24, x FOR PEER REVIEW 4 of 19 
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weeks wash-out in non-diabetic (black) and diabetic (grey) vervet monkeys. * p < 0.05, ** p < 0.01 
comparing different time points within each experimental group (a = baseline, b = 2 weeks-treatment, 
c = 4 weeks-treatment); # p < 0.05 and ## p < 0.01 comparing both population groups for the same 
experimental point. a = baseline, b = 2 weeks-treatment, c = 4 weeks-treatment. 
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0.04, respectively), while, in terms of fasting glucagon level, the difference recorded did not reach 
statistical significance (Figure 2C). Afriplex GRT did not affect the insulin or glucagon levels; despite 
this, after 2 weeks of treatment, Afriplex GRT had a noticeable hypoglycemic effect in the diabetic 
group, resulting in a significant decline of glycemia that persisted also after the wash-out period. 
More importantly, after 4 weeks of Afriplex GRT treatment, blood glycemia was reduced both in 
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Figure 1. Plasma total cholesterol (A), LDL (B), HDL (C) (mmol/L), LDL/HDL ratio (D) and triglyceride
(mmol/L) (E) at baseline, after 2 and 4 weeks of Afriplex GRT treatment, and following 4 weeks wash-out
in non-diabetic (black) and diabetic (grey) vervet monkeys. * p < 0.05, ** p < 0.01 comparing different
time points within each experimental group (a = baseline, b = 2 weeks-treatment, c = 4 weeks-treatment);
# p < 0.05 and ## p < 0.01 comparing both population groups for the same experimental point. a =

baseline, b = 2 weeks-treatment, c = 4 weeks-treatment.

2.2. Glycemic Parameters

In order to evaluate insulin-response, fasting glucagon and glycemia levels, an intravenous
glucose tolerance test (IVGTT) and a glucose-stimulated insulin secretion test (GSIST) were used.

As demonstrated in Figure 2A,B, at baseline diabetic animals showed significantly higher levels of
glycaemia and insulin with respect to the non-diabetic monkeys (+63%, p = 0.03 and +125%, p = 0.04,
respectively), while, in terms of fasting glucagon level, the difference recorded did not reach statistical
significance (Figure 2C). Afriplex GRT did not affect the insulin or glucagon levels; despite this, after 2
weeks of treatment, Afriplex GRT had a noticeable hypoglycemic effect in the diabetic group, resulting
in a significant decline of glycemia that persisted also after the wash-out period. More importantly,
after 4 weeks of Afriplex GRT treatment, blood glycemia was reduced both in comparison to the
baseline (from 487 ± 12 to 416 ± 4, p = 0.04) and the 2-weeks treatment (468 ± 7 to 416 ± 4, p = 0.03),
also in the non-diabetic group.
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Figure 2. Intravenous glucose tolerance test (area under curve: AUC) (A), glucose stimulated insulin
secretion test (AUC) (B) and fasting glucagon (pg/mL) (C) at baseline, after 2 and 4 weeks of Afriplex GRT
treatment, and following 4 weeks wash-out in non-diabetic (black) and diabetic (grey) vervet monkeys.
* p < 0.05, ** p < 0.01 comparing different experimental time points for each group; # p < 0.05 comparing
both population groups for the same experimental time point. a = baseline, b = 2 weeks-treatment.

2.3. Total Plasma Coenzyme Q10 (CoQ10) Level and Oxidative Status

CoQ10 plasma content was assessed in order to evaluate if the lipid-lowering effect of Afriplex
GRT, highlighted in the diabetic group, also influenced CoQ10 synthesis via the mevalonate pathway.
Interestingly, treatment did not produce any variation in plasma CoQ10 content in the diabetic monkeys,
while non-diabetic monkeys showed a trend towards a decline in plasma CoQ10, which was restored
after the wash-out period (Figure 3A).

Percentage of oxidized CoQ10 was also evaluated as a plasma oxidative marker in the monkeys.
At baseline, the diabetic group showed a trend towards significantly higher levels of oxidized CoQ10

in comparison to the non-diabetics (Figure 3B) (non-diabetics 6.40% ± 0.01; diabetics 11.10% ± 0.02,
p = 0.08). However, after Afriplex GRT treatment, the diabetic monkeys showed a significant decrease
in the percentage of oxidized CoQ10; this effect also persisted after the wash-out period (Figure 3B).
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Figure 3. Plasma CoQ10/Cholesterol levels (nmol/mmol) (A), and % oxidized CoQ10/total (B) at baseline,
after 2 and 4 weeks of Afriplex GRT treatment, and following 4 weeks wash-out in non-diabetic (black)
and diabetic (grey) vervet monkeys. * p < 0.05 comparing different experimental points for each group.
a = baseline, b = 2 weeks-treatment.

2.4. Circulating Oxidized LDL

Circulating oxidized LDL (ox-LDL) was measured in plasma using an enzyme-linked
immunosorbent assay (ELISA) kit. The diabetic monkeys showed significantly higher ox-LDL
levels at each experimental time point, in comparison with the non-diabetic monkeys (Figure 4A).
After 4 weeks of treatment, the diabetic monkeys showed a trend towards a decrease in this parameter
(baseline 67.2 ± 14.8 U/L; 4-week treatment 53.8 ± 14.3 U/L), which returned to the baseline level after
wash-out. However, a significant positive correlation was observed between ox-LDL and total LDL (R2
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= 0.388, p = 0.017) (Figure 4B), while a significant inverse correlation was observed between oxidized
LDL and lipoprotein CoQ10 content (mM CoQ/nM cholesterol) (R2 = 0.529, p = 0.002) (Figure 4C) in
the diabetic monkey group.
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Figure 4. Plasma oxidized LDL level (U/L) (A) at baseline, after 2 and 4 weeks of Afriplex GRT
treatment, and following 1 month-wash-out in non-diabetic (black) and diabetic (grey) vervet monkeys.
Correlation between plasma oxidized LDL level and both total LDL (B) and CoQ10/Chol level (C)
in diabetic monkeys in baseline, after 4 weeks of supplementation and wash-out period. * p < 0.05
comparing different experimental points for each group; # p < 0.05 ## p < 0.01 comparing both groups
for the same experimental time point. b = 4 weeks-treatment.

3. Discussion

The present study focused on the effects of standardized pharmaceutical grade aspalathin-rich
green rooibos extract (Afriplex GRT) in counteracting selected cardiovascular risk factors underlying
diabetic pathology. Specifically, gluco-lipidic and oxidative indexes in high-fat diet-fed diabetic and
non-diabetic vervet monkeys (Chlorocebus pygerythrus) were assessed prior to the onset of treatment
(baseline), and after 2 and 4 weeks of treatment with 90 mg/kg of body weight of Afriplex GRT extract
containing ca. 12.8% aspalathin. Moreover, analysis was repeated following 4 weeks of wash-out.

Clinically, the high-fat diet induced insulin resistance, glucose intolerance and, in susceptible
monkeys, diabetic changes to the pancreatic islets; including reduced beta-cell mass and islet-associated
amyloid deposits, exacerbating parameters for cardiovascular risk [43]. Although the monkeys on the
high-fat diet (HFD) did not develop overt obesity in this colony, they displayed glucose intolerance with
associated hyperinsulinemia and hyperglucagonemia, consistent with T2DM. In relation to glycemic
parameters, a significant decrease of glycaemia was observed after just 2 weeks of treatment with
Afriplex GRT and this effect persisted after 4 weeks of wash-out without any dietary interventions.
It is important to note that there were no significant changes in the total calorie intake for the monkeys
on their respective diets during the course of the study when compared to data recorded prior to the
commencement of the study. This data, observed for the first time in non-human primates, confirms
the hypoglycemic potential of green rooibos extract and its major phenolic compound, aspalathin,
previously demonstrated in different murine type 2 diabetic models [39–41]. Additionally, the treatment
effects were similar for males and females.

Interestingly however, insulin and glucagon levels remained unchanged in both the diabetic
and non-diabetic animals. These results highlight that the potential antidiabetic role of Afriplex GRT
could predominantly be related to an increase in insulin sensitivity, through promotion of glucose
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uptake, rather than its ability to stimulate the synthesis or secretion of the respective hormones. In this
regard, Kamakura et al. [41] showed that the stimulatory effect of aspalathin on insulin secretion was
less potent than the effect on glucose uptake in L6 myotubes; L6 myotubes responded to aspalathin
concentrations 100 times lower than that which was effective in the beta cells.

In this study, besides the confirmatory effects on glucose usage in diabetic models, and in line
with other reports in the literature, we also showed a marked improvement on the plasma lipid
profile. In both the diabetic and non-diabetic vervet monkeys, the LDL:HDL ratio, a cardiovascular risk
indicator with greater predictive value than isolated indexes used independently, were improved [44].
Vervet monkeys on a high-fat diet have an inherent susceptibility to developing LDL-cholesterolemia
and atherosclerosis comparable to that found in humans [19,25,26].

Specifically, treated non-diabetic monkeys benefited from an increase of plasma HDL levels,
whose anti-atherogenic properties are widely demonstrated [45], while diabetic animals mainly
benefited from a decrease in LDL plasma levels that reached significant levels in only 2 weeks of
treatment. In a previous study, treating high-fat fed monkeys with etofibrate for 20 months lowered
LDL and demonstrated an anti-atherogenic effect [26]. In addition to lowering LDL, etofibrate has been
demonstrated to protect LDL against oxidation in human subjects, and thereby lower cardiovascular
risk in diabetic patients [46]. In a human study, Marnewick et al. demonstrated a decrease of 15% in
circulating LDL and an increase of 33% in HDL as well as redox status following consumption of six
cups of rooibos tea daily for six weeks [42]. These findings validate the relevance of this diet-induced
vervet monkey model in predicting treatment efficacy of human metabolic disease.

This remarkable ability of rooibos flavonoids to improve lipid profiles could play an important
role in cardiovascular protection of diabetic patients. In fact, it is known that the main pharmacological
approaches used in the primary and secondary prevention of cardiovascular diseases associated with
diabetic dyslipidemia aim to lower circulating LDL levels. In particular, 3-hydroxy-methylglutaryl
coenzyme A (HMG-CoA) reductases inhibitors, also known as statins, are the most common and
consolidated therapy used for this purpose. However, even though their efficiency to reduce
cardiovascular morbidity and mortality in diabetes has been widely demonstrated [47], statins can
cause adverse side effects. Primarily, they may promote hyperglycemia by increasing the calcium
concentration in pancreatic β islet cells, leading to a decrease in insulin release, or by decreasing
GLUT 4-mediated peripheral glucose uptake [48]. Secondarily, multiple studies have shown that
statins can decrease serum coenzyme Q10 levels [49], affecting an early step in the mevalonate
pathway. In fact, mevalonate is a common precursor for cholesterol and CoQ10 synthesis. CoQ10,
also known as ubiquinone, is an endogenous quinone with a key role in mitochondrial bioenergetics;
in its reduced form (ubiquinol), it represents one of the most important lipophilic antioxidants [50].
Observational studies have reported that plasma CoQ10 concentration is an independent predictor
of mortality in patients with congestive heart failure [51], whereby its decline associated with statin
therapy may be related not only to muscle disorders but also to increased risk of cardiovascular
diseases. These indications support the hypothesis that statins, while efficiently minimizing some CVD
related risk factors, may be detrimental to cardiovascular health in diabetic patients by promoting
hyperglycemia and decreasing CoQ10 biosynthesis.

In our study, while the treatment with 90 mg/day/kg of body weight of pharmaceutical grade
aspalathin-enriched green rooibos extract (Afriplex GRT) was effective in lowering serum LDL levels
in diabetic animals, no gross side effects described for statin treatment was observed. On the contrary,
no variation in terms of plasma CoQ10 normalized for cholesterol was observed during all experimental
phases in diabetic monkeys. This suggests that the LDL-lowering effect of aspalathin could be related
to its ability to modulate the mevalonate pathway differently from statins, or to affect other biochemical
mechanisms not affecting CoQ10 biosynthesis, therefore preserving its cardioprotective role.

In fact, several studies showed that some flavonoids directly affect cholesterol metabolism at
different steps: Curcumin is able to increase the excretion of bile acid by upregulating the expression of
cholesterol 7α-hydroxylase [52]; tocotrienols inhibit HMG-CoA reductase [53,54] similarly to statins;
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and flavonoids of green tea upregulate the LDL receptor [55,56]. Beltrán-Debón et al. [57] demonstrated
a hypolipidemic effect of rooibos in LDLr-/-mice fed a high-fat Western-type diet, but this effect was
stringently dependent on diet type. In these high-fat fed animals, rooibos extract significantly lowered
serum cholesterol, triglyceride and free fatty acid concentrations. However, mechanisms underlying
LDL-lowering effect of Afriplex GRT are not reported in literature.

Finally, in order to evaluate the antioxidant role of Afriplex GRT treatment, the plasma oxidative
status of CoQ10 was analyzed. In fact, several studies demonstrated that the reduced form of CoQ10,
a key and ubiquitous lipophilic antioxidant, could represent a sensitive marker of oxidative stress
in vivo [58–61]. At baseline, diabetic animals showed a higher—although not significant—percentage
of oxidized CoQ10 in comparison to non-diabetic monkeys. Only 2 weeks of treatment with Afriplex
GRT was sufficient to abolish this difference, significantly decreasing the percentage of oxidized CoQ10.
Remarkably, this antioxidant effect persisted after 4 weeks of wash-out. In line with the improvement
of plasma oxidative status, a slight, although not significant, decrease of circulating ox-LDL was
observed following treatment in the diabetic group, although after 4 weeks of wash-out these were
restored to baseline values. The significant correlation between the amount of circulating ox-LDL
and total LDL concentration observed in the diabetic population confirms, in a pro-oxidant condition
characterizing diabetic pathology, the high susceptibility of lipoproteins to oxidation and the relevance
of hypocholesterolemic therapy. However, the significant reverse correlation between circulating
ox-LDL and plasma CoQ10 levels detected in the same population suggests that CoQ10 could play an
important role in protecting LDL from oxidation, as is widely demonstrated in literature [62–65].

4. Material and Methods

4.1. Vervet Monkeys: Ethics

In-house bred vervet monkeys (Chlorocebus pygerythrus) were cared for and managed according to
the documented standard operating procedures of the Primate Unit and Animal Centre (PUDAC) of
the South African Medical Council, and according to the SAMRC Guidelines for the Use of Animals
in Research and Training, the National Code for Animal Use in Research, Education, Diagnosis and
Testing of Drugs and Related Substances in South Africa, and the Veterinary and Para-Veterinary
Professions Act of 1997. Ethical approval numbers 12/03 and 01/16 were obtained from the Ethics
Committee for Research on Animals (ECRA) of the South African Medical Research Council.

4.2. Aspalathin-Rich Green Rooibos Extract

In this study, a pharmaceutical certified grade, aspalathin-rich, unfermented rooibos (Afriplex
GRT™) extract produced by Afriplex Pharmaceuticals PTY (LTD) (Paarl, South Africa), product code:
CPE—03287, Batch Number: 730330, manufactured date: September 2015 and expiry date: August
2017, was used. The extract was previously chemically characterized for its phenolic content and was
shown to contain approximately 12% aspalathin [66]. The selected dose of 90 mg/kg BW was calculated
from a dose range (25–300 mg/kg) shown to be effective in rats and extrapolated to monkeys using the
method described by Reagan-Shaw et al. [67].

4.3. Experimental Design

Eight vervet monkeys (Chlorocebus pygerythrus) (4 male/4 female, age 18 ± 2, BMI 5.0 ± 0.3) on
a high-fat, diabetogenic diet (1527 kJ per monkey per day with 14% energy from protein, 43% from
fat derived from animal and plant sources (99 mg/day cholesterol with a polyunsaturated/saturated
[P/S] fat ratio of 0.3 and 43% from carbohydrates) for at least 5 years prior to selection and six normal
controls (4 male/2 female, age 16 ± 1, BMI 4.3 ± 0.3) fed a maize based control diet (1378 kJ per monkey
per day with 15% energy from protein, 5% fat as energy (19.7 mg/day cholesterol with a P/S fat ratio
of 3.40) and 80% from carbohydrate) were selected and maintained at the Primate Unit (PUDAC) of
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SAMRC. They had access to water ad lib via an automatic watering device. The respective diets were
continued for the duration of the study, including the wash-out period.

Both diabetic and non-diabetic monkeys were treated for four weeks with Afriplex GRT, fed orally
to the monkeys at a dose of 90 mg/kg BW with a 30 g bolus of maize three times daily, followed
by 1-month wash-out. Their demographic data are presented in Table 1. Blood was collected by
femoral venipuncture under ketamine anesthesia at 10 mg/kg body weight intramuscular injection
after overnight fasting of at least 14 h. Blood was collected at baseline (before treatment), and during
treatment at 2- and 4-weeks, and following a 4 weeks wash-out period. Analysis included the plasma
lipid profile, fasting plasma glucose and intravenous glucose tolerance test (IVGTT), glucose stimulated
insulin secretion test (GSIST), fasting glucagon levels, plasma CoQ10 levels, CoQ10 oxidative status
and oxidized-LDL levels.

Table 1. Demographic data of vervet monkeys.

Monkey Groups Gender Date of Birth
Age at Baseline

(years)
Body Weight During Study (kg)

Baseline 2 Weeks 4 Weeks Wash-Out

Non-diabetic

M268 Male 25-set-00 14 4.7 4.6 4.5 4.8

M1077 Male Wild caught Mature adult 4.9 4.9 4.8 5.0

M248 Male 18-set-99 16 4.4 4.3 4.3 4.4

M1068 Male Wild caught Mature adult 4.8 4.8 4.8 4.9

M205 Female 13-mag-98 17 3.3 3.3 3.3 3.3

M234 Female 14-apr-99 16 3.7 3.8 3.8 3.8

Diabetic

M49 Female 27-ago-90 25 3.6 3.6 3.6 3.5

M343 Male 21-mar-03 12 5.9 6.0 5.9 5.7

M281 Male 31-gen-01 14 5.5 5.7 6.1 5.7

M1083 Male 01-giu-99 16 6.1 6.3 6.5 6.2

M403 Female Wild caught Mature adult 5.2 5.2 5.3 5.3

M39 Female 19-ott-89 25 4.6 4.8 4.9 4.8

M238 Male 19-mag-99 16 5.1 5.0 5.1 5.3

M136 Female 01-feb-95 20 4.0 3.9 3.7 3.8

4.4. Lipid Profile

Lipid profiles, in terms of total cholesterol, LDL, HDL and triglyceride levels, were determined
in plasma by Pathcare Laboratories (N1 City, Cape Town, South Africa) using a Beckman AU5800
analyzer for lipid analyses. Specifically, an enzymatic method (using cholesterol esterase) was used
to determine cholesterol concentrations, a coupled enzymatic reaction (using ATP as an agent) was
used for triglyceride determination, an enzyme chromogen reaction was used for HDL determination,
and a cholesterol esterase/cholesterol oxidize method was used for LDL determination. Results are
expressed as mmol/L and as an LDL:HDL ratio.

4.5. Total Plasma CoQ10 Levels and Oxidative Status

CoQ10 content and its oxidized form in plasma were assayed by high performance liquid
chromatography (HPLC) with electro-chemical detector (ECD) by Shiseido Co. Ltd. (Tokyo, Japan) as
described by Orlando et al. [68]. Plasma levels of CoQ10 were normalized for total cholesterol, and
expressed as nmol of CoQ10/mmol of cholesterol, representing the CoQ10 in plasma mainly associated
with LDL. The oxidative status of CoQ10 was reported as percentage of oxidized CoQ10/total CoQ10.

4.6. Circulating Oxidized-LDL

Circulating oxidized-LDL (ox-LDL) was measured in plasma by a sandwich ELISA using mAb-4E6
as a specific monoclonal antibody. The assay was conducted according to the custom protocol (Oxidized
LDL ELISA kit, Mercodia, Sweden), and the results are expressed as U/L.
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4.7. Glycemic Responses

After drawing the baseline blood samples, 50% dextrose (750 mg/kg BW) was infused via the
saphenous vein. Blood samples for glucose were collected into sodium fluoride/potassium oxalate
tubes at 0, 5, 10, 15, 20, 40 and 60 min. To assess the glucose stimulated (GS)-insulin response, blood
samples were collected at 0, 5, 10, 15, 30 and 60 min into serum separating tubes (SST), and centrifuged
at 2000× g for 10 min in a refrigerated centrifuge after clotting for 30 min. Blood for assessing fasting
glucagon were collected into ethylenediaminetetraacetic acid (EDTA) tubes. Results are expressed as
area under curve (AUC) for IVGTT and GSIST, and as pg/mL for glucagon.

4.8. Statistical Analysis

For data analysis, mean value, standard deviation and standard error of means (SEM) were
calculated. All values were presented as means ± SEM. The normal distribution of the data was verified
using the Shapiro–Wilk test on the pooled data for each parameter. Homoscedasticity was verified
using the Bartlett test, thereby comparing the variance within each group. Both assumptions were
verified and therefore a parametric test statistical analysis of the data was performed. The significance
of differences between mean values obtained from both experimental groups and before and following
Afriplex GRT treatment were evaluated using one way ANOVA with Dunnett post hoc test if significant.
A p-value < 0.05 was considered statistically significant, and p < 0.01 was considered highly significant.
Pearson’s correlation coefficient was used to evaluate the correlations between ox-LDL and both LDL
and CoQ10/Chol plasma levels. Area under the curve values were calculated in GraphPad Prism
version 6 using the trapezoid rule.

5. Conclusions

In conclusion, the present study demonstrated that treatment of diabetic vervet monkeys with
90 mg/day/kg of body weight of pharmaceutical-grade aspalathin-enriched green rooibos extract
containing 12.8% aspalathin could counteract hyperglycemia, oxidative stress and dyslipidemia, which
represent the main cardiovascular risk factors in diabetic pathology. In addition, the cardioprotective
role of Afriplex GRT is emphasized by its ability to lower serum LDL levels, preserving CoQ10

biosynthesis and therefore maintaining its important cardiovascular role.
In light of these results, further studies are needed to investigate the mechanism by which

aspalathin lowers serum lipids, and to test its efficacy in association with statins for the purposes of
achieving a pharmacological target of plasma LDL at lower doses, thereby minimizing the potential
toxic side effects of these widely used drugs.
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