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Abstract: The performance of quantitative structure–activity relationship (QSAR) models largely
depends on the relevance of the selected molecular representation used as input data matrices.
This work presents a thorough comparative analysis of two main categories of molecular
representations (vector space and metric space) for fitting robust machine learning models in
QSAR problems. For the assessment of these methods, seven different molecular representations
that included RDKit descriptors, five different fingerprints types (MACCS, PubChem, FP2-based,
Atom Pair, and ECFP4), and a graph matching approach (non-contiguous atom matching structure
similarity; NAMS) in both vector space and metric space, were subjected to state-of-art machine
learning methods that included different dimensionality reduction methods (feature selection and
linear dimensionality reduction). Five distinct QSAR data sets were used for direct assessment and
analysis. Results show that, in general, metric-space and vector-space representations are able to
produce equivalent models, but there are significant differences between individual approaches.
The NAMS-based similarity approach consistently outperformed most fingerprint representations in
model quality, closely followed by Atom Pair fingerprints. To further verify these findings, the metric
space-based models were fitted to the same data sets with the closest neighbors removed. These latter
results further strengthened the above conclusions. The metric space graph-based approach appeared
significantly superior to the other representations, albeit at a significant computational cost.

Keywords: QSAR modeling; non-contiguous atom matching structure similarity—NAMS; metric
space; vector space; PCA; feature selection; random forest; support vector machines

1. Introduction

In the past 50 years, quantitative structure–activity relationship (QSAR) has become a powerful
tool for drug design and discovery. The underlying principle in QSAR modeling is the assumption
that molecular structure information is sufficient to model and predict biological or pharmacological
activity. Hence, in QSAR studies, different molecular representations have been used to describe the
information encoded in molecular structures so as to predict the quantitative relationships between
biological activity (response-variable) and structural information (predictors) [1–5].

The performance of QSAR models for the accurate characterization of biological
molecular properties largely depends on the relevance of the selected molecular representation.
Such representations can be divided into two broad categories of methods, namely, vector space
and metric space representations [6]. A vector space or linear space representation occurs when
the set of modeling instances is represented as a vector, with its characteristics measured relative to
some reference frame and thus having a notion of magnitude and direction from the origin. In most
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QSAR modeling studies, vector space is the most common representation used, where each chemical
structure is translated using a set of molecular descriptors. This is generally referred to as the “chemical
feature space”, which represents different structural characteristics/properties [5,7,8]. Nevertheless,
vector space-based QSAR modeling has two major modeling issues. The first is the determination
of the set of features capable of structural representation and, the second is the identification of the
subset of features that, more significantly, are able to predict the desired property [9–13]. Metric space
representation, on the other hand, is built on the principle of measured distances between a set of
instances that we want to model. As sometimes it is difficult to identify specific features of a real world
entity such as a molecule, oftentimes it is easier to quantify its distance or similarity to other instances.
A typical case for using metric space representations is in protein functional annotation; while it is quite
hard to define a set of features that characterize a protein, the similarity between proteins (whether
structural or sequence-based) is commonly used to assign its function, as it is known that above a
given similarity threshold, proteins maintain their function [14,15]. In in silico screening, the similarity
principle leads to the simplest database screening methods. If a seed molecule has been experimentally
determined as active, the first approach to find other actives is to identify similar molecules, as the
probability of finding other actives increases with proximity to the base molecule [16,17]. QSAR metric
space modeling is also hampered by two different issues. In the first place, we need to determine
how to measure similarity between molecules—for which there are currently several and conflicting
approaches—and secondly, it is necessary to compute the distance of each molecule to all the molecules
in the training sets, which may entail difficult computational problems. Distance matrices, as they are
quadratic to the number of instances of the data set, add difficulties to the modeling effort and do not
scale well, even with the increased computational power available today. Any vector space is a metric
space, as it is possible to compute the distances between instances using any common distance metric
such as the Euclidean distance. There are some data sets for which no vector representation is known
(e.g., proteins); however, it is possible to compute their distance. Thus, all vector spaces are metric
spaces, but the reverse is not true (Figure 1).

Figure 1. Vector space vs. metric space.

1.1. Molecular Similarity and Metric Space Representation

Molecular similarity largely depends upon an appropriate combination of two basic components
including (a) a molecular structural representation to find the overlapping or similar features and
(b) a similarity function/coefficient to quantify the similarity [18–26]. By far, the most commonly
used structural representation for comparing molecules is the use of two-dimensional (2D) molecular
fingerprints. Fingerprints are a sort of binary fragment descriptor, where each bit represents the
hashing product of the possible chemical fragments of a molecule. There are currently several widely
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used fingerprints that differ in the form that a molecule is decomposed, the size of the representation,
and the hashing algorithm [27]. Some other descriptor-independent methods are also available
for molecular similarity comparisons, including molecular graph matching approaches [28–31].
To quantify molecular similarity, the most common method used is the Tanimoto (Jaccard) similarity
coefficient [32,33]; however, there are many other similarity/distance methods [20,25,26,33,34].
The one-complement D of the Tanimoto/Jaccard coefficient, where D = 1 − J, has been proven
to be a real metric, satisfying all the known properties of distance measures [35]. In comparison
to vector space-based methods, there is limited research reported in the literature exploring the
quantitative relationship between computed molecular similarity and activity in QSAR/QSPR
modeling [7,16,19,36–45].

1.2. Metric Spaces vs. Vector Spaces

With all of the aforementioned concerns, the main question that we want to address in this study is
whether a metric space or a vector space modeling approach outperforms the other in QSAR regression
problems. Therefore, in this work, we have carried out a comparative analysis of molecular structural
representation using some of the most commonly used vector and metric space-based methodologies
and compare the results. Overall, we seek to answer the following four questions:

• Is metric space representation as good as the most common vector space-based approaches?
• Which similarity representation carries the maximum chemical/structural information content to

establish the best relationship between structural similarity and activity?
• How effective is the reduction of dimensionality of the feature space with principal components

by the replacement of explicit descriptors/fingerprints in QSAR modeling?
• Is there any one molecular structure representation method that is generally better than the others?

To accomplish these goals, the following work was performed: Five distinct data sets with distinct
modelability characteristics were selected and curated from ChEMBL23. Several modeling efforts were
then systematically applied to all selected data sets, namely (i) a typical vector space representation of
molecules was performed by using an extensive set of chemical descriptors then used for model fitting
in a QSAR optimization framework that includes automated data processing, descriptors/fingerprints
computation, and feature selection; (ii) similarity matrices were computed for all data sets using
a variety of methods (five fingerprint-based and one graph-based), and these similarity matrices
were then used for modeling by using their principal components as model components; (iii) the
fingerprint-based representations, as they actually also represent molecular features, were further
used in a vector-based model, using the same linear dimensionality reduction method. For all three
different modeling choices, the number of features (or principal components) used in each model was
selected by using five-fold cross-validation, and each final model was assessed against an independent
validation set randomly selected from the initial data set and which was never used in any step of the
model-fitting phase.

2. Methodology

2.1. Overview of the Methodology

We collected and curated the molecular data for each biological target from ChEMBL23 [46],
then all molecules of each data set were represented using different fingerprint models and molecular
descriptors and separated into different modeling problems. To perform all of the analyses, each data
set was initially randomly split into training and independent validation sets (IVSs), the former used
for training and model selection, and the latter for the final evaluation of the model. A state-of-the-art
QSAR modeling approach [47] was used to build a predictive model using an optimized feature
selection procedure. The other models investigated with the same data sets required first the
computation of five different fingerprint sets. These were used for additional vector space modeling
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and for the computation of similarity matrices between all molecules of each data set. Additionally,
one graph-based structural similarity (NAMS) approach was used to make one further similarity matrix
for metric-space modeling. Principal component analysis (PCA). was applied to both the similarity
matrices and the bare fingerprints so as to create and evaluate models by iteratively increasing the
number of principal components. The predictive performance of all data representations was assessed
using the IVSs, which were never used during feature/PC selection (Figure 2). The details of each step
of the followed methodology are covered in the following sections.

Figure 2. Quantitative structure–activity relationship (QSAR) modeling methods.

2.2. Vector Space Representation

In a vector space, each molecule is represented by using a feature vector that contains several
molecular properties (descriptors) or structural features represented using a binary array of fixed size
(fingerprints) [27,48].

2.2.1. Descriptor-Based Representations

Molecular descriptors aim to selectively describe the information encoded in the structure [48].
Some molecular descriptors are derived with mathematical formulae obtained from chemical graph
theory, information theory, and quantum mechanics, among other methods, that directly illustrate
some relevant features of the molecules [48,49]. Molecular descriptors can be divided into four
broader categories: constitutional (1D), topological (2D), geometrical (3D), and physico-chemical
properties-based (4D) descriptors [48,50]. 2D descriptors are the most commonly used types
of descriptors.

2.2.2. Fingerprint-Based Representations

Another well-known molecular representation is molecular fingerprints, which are fixed-length
bit-strings where each bit encodes a fragment or characteristic of a given molecule [27].
Molecular fingerprints are often very different in length and complexity, ranging from 2D/simple
representations of relevant structural features to 3D/complicated pharmacophore arrangements. Thus,
many types of fingerprints have been generated with different settings (generation method, length,
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size of patterns, and number of bits activated by each pattern, etc.) and are further deployed as
descriptors for predictive modeling to estimate biological activities [12,27,51–54].

In principle, 3D representation should have higher information content than 2D, but surprisingly,
higher complexity is often more error-prone and less robust in performance [26,55–58]. 2D fingerprints
can encode different structural information, for example, molecular fragments and structural patterns,
topological pathways through compounds, or topological atom environments either as bit strings
or feature sets. Numerous software packages have been developed to generate several types of
fingerprint for drug discovery applications [54]. Moreover, the basic principle of fingerprints generating
algorithms and their comparative performance in a variety of QSAR problems has been extensively
studied [8,26,54,59]. The preferred molecular fingerprints can be grouped into the following three
classes:

• Topological/path-based fingerprints (e.g., Daylight-like RDkit [27,60] and Atom Pair [61]) capture
the paths between atom types by describing their different combinations and always assign the
same bit’s position to the same substructures within the compared molecules, which sometimes
results in bit collisions but is also useful for clustering compounds.

• Circular fingerprints (e.g., ECFP [62]) record circular atom environments that grow radially from
the central atom connections. In topological and circular fingerprints, an individual bit has no
definite meaning.

• Structural keys fingerprints (e.g., MACCS [63], PubChem [64]), where each specific bit position
represents the presence (1) or absence (0) of predefined functional groups, substructure motifs,
or fragments.

2D fingerprints can easily be calculated by specialized, open-source, and readily available
software packages (e.g., OpenBabel [65] or RDkit [60]). 2D fingerprint-based similarity analysis
is the most widely used methodology in ligand-based virtual screening, clustering, and diversity
analysis [24,26,59,66,67].

2.3. Metric Space Representation

A molecule in metric space is defined only as its relation (distance or similarity) to all other
molecules in the data set. Technically, a metric space is computed using distances between all the
elements of a data set, creating a distance matrix which can then be used in a variety of modeling
techniques such as hierarchical agglomerative clustering or k-nearest neighbours models [68,69].
There is a variety of ways to transform similarities into distances [16,54]; however, as all the
methodologies for comparing molecules produce similarity matrices, it was deemed unnecessary to
transform the similarities into distances and we instead use similarity matrices directly for modeling,
as this extra transformation would introduce one further step in the data preparation procedure with
no clear advantage.

In descriptor-independent methods, graph matching approaches have been used. In these
methods, graph theory is used to represent molecules as labeled graphs whose vertices correspond to
the atoms and whose edges correspond to the covalent bonds. Several techniques, each with some
advantages and limitations, are available to compare labeled graphs [29]. In the descriptor-independent
methods, many advancements have been introduced to improve the sensitivity of graph matching
methodology and obtain consistent and reliable molecular similarity results. One of these methods is
non-contiguous atom matching structural similarity (NAMS), which has shown modeling advantages
over other structural methods [28], although the computational cost of its application can be high.

2.3.1. Fingerprint-Based Similarity

Many types of 2D and 3D molecular fingerprints have been generated to code chemical
structures/properties into bit-string representations [20,70,71]. Molecular fingerprint representation
allows for an easy comparison of molecules by identifying and quantifying the amount of overlapping
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elements between them. The applications of molecular fingerprints has been broadly reviewed and
used in the literature [22,54,70,72]. There is a large variety of similarity and distance functions that
have been introduced and return a molecular similarity score [54,59]. In cheminformatics, the prevalent
approach is the use of the Tanimoto coefficient (Tc) over molecular fingerprints [26,33]. In the case of
2D fingerprint comparison, for binary vectors of fingerprints representing two molecules A and B,
Tc is defined as

Tc(A, B) =
A ∩ B
A ∪ B

=
c

a + b− c
. (1)

In Equation (1), a corresponds to the number of bits set to 1 in molecule A, b is the number of bits
set to 1 in molecule B, while c is the number of common set bits in both molecules. 1− Tc is an actual
distance measure, encompassing all four property distance measures referred to above.

2.3.2. NAMS-Based Similarity

NAMS is a graph matching algorithm that uses a new atom alignment method to quantify
the structural similarity between compared molecules [28]. NAMS breaks complex molecular
structures into simpler parts to reduce molecules to atom–bond–atom structures and calculates a
global structural similarity score from the best optimal alignment between the atoms of compared
molecules. This algorithm has shown a higher discriminant power for biological activity than other
structural or graph matching approaches. One of the reasons is that the applied atom matching
methodology is able to consider important characteristics of atoms and bonds such as chirality and
double bond stereo-isomerism that are oftentimes ignored in other approaches.

Given the structural representation of any two molecules, NAMS is able to compute its similarity
score. NAMS can be fine-tuned with several parameters that allow users fo increase the importance of
any specific molecular characteristics (atom or bond similarities and atomic characteristics like atom
stereo-isomerism or double bond cis-trans isomerisms). Changing the parameters will change the
resulting molecular similarities, but the overall results of comparing large and diverse data sets are not
very much changed. For the current work, only the parameters were used.

2.4. Model Building

In QSAR modeling, the most well-known machine learning approaches include neural
networks (ANN), support vector machines (SVM), decision trees, random forests (RF), and k-nearest
neighbours [73,74]. In the last few years, RF [75] and SVM [76], two non-linear supervised learning
methods, have become the most prevalent algorithms in QSAR studies [75,77–82]. One of the biggest
advantages of SVM is its ability to deal with high dimensional and duplicated data with a lower risk
of model overfitting [79–82], while, on the other hand, RF are considered specially robust in complex
situations of high dimensional QSAR/QSPR data sets [75,77,78]. Hence, RF and SVM are the basic
algorithms used in the learning phase of the current work.

As stated, some of the most prevalent issues in QSAR modeling approaches are variable
redundancy or collinearity, with complex correlation patterns between descriptors or the presence of
irrelevant features in the data set, which may reduce the quality of the produced models. These are
consequences of the high dimensionality of such problems. Such issues are aggravated by the fact
that in QSAR studies, there are oftentimes many more predictors than the number of actual instances
to fit [9–13], which will make it more difficult to find adequately fitting models. Several approaches
have been followed in the literature to solve the descriptor selection problem in QSAR modeling
[73,77,83–85]. These approaches can be roughly divided into two different categories: feature reduction
and feature selection. In feature reduction, the main purpose is to algebraically combine sets of features
into statistically independent new components. There are several methods that purport to accomplish
these goals, among which is principal component analysis (PCA) and singular value decomposition or
kernel PCA [86]. PCA is by far the most commonly used method in feature reduction, while kernel
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based PCA is beginning to get some traction in the literature [87]. Feature selection, on the other hand,
is a more complex problem, and in essence can be summarized as finding and selecting the smallest set
of features that are capable of producing the best model. Methods to address this problem include the
identification of linear correlations between all variables, bootstrapping methods capable of deciding
which variables have the highest impact on model quality, or the use of optimization meta-heuristics
like genetic algorithms [73,77,83–85].

In this work, we used two of the most common methods for feature reduction. PCA was used with
the metric space data produced from the similarity matrices and fingerprint data, while random forests
were used to identify the most relevant features capable of producing the highest-scoring models.

2.4.1. Feature Reduction with PCA

Principal component analysis (PCA) is a linear reduction method used to calculate the most
meaningful basis on which to re-express high dimensional data into a reduced space. However,
PCA is a useful tool in QSAR modeling to deal with the problem of high data dimensionality and
collinearity [4,68]. In typical QSAR studies, PCA is used to analyze the original data matrix in which
molecules are represented by several types of predictor variables (molecular descriptors/fingerprints).
PCA performs dimensionality reduction by transforming original descriptors’ space into linear
orthogonal combinations of original variables named principal components (PCs). The generated
PCs are uncorrelated and always ranked according to the decreasing data variance of the original
variables [68]. As the first components contain the highest amount of data variance, models can be fit
to data by gradually incrementing the components in the model. A first model will use only the first
component, a second model will use the first two components, and so on, and which of these models
with reduced dimensions is capable of producing the least amount of error in k-fold cross-validation is
evaluated. Since each PC is an independent source of the original data variance, PCs have been used
as a model input mainly when high data dimensionality is a big issue, and most models are sensitive
to the number of variables used [68]. Several studies in the literature apply PCA for dimensionality
reduction in QSPR/QSAR problems [4,88–90].

In this study, we performed PCA in both vector space representations (descriptor and fingerprint
data matrices) and metric space representations (fingerprint-based similarity data matrices and
NAMS-based similarity data metric). The generated PCs were used to build QSAR models with
dimensionality reduction (DR). We compared the predictive performance of QSAR models generated
by the reduced dimensionality of metric space with typical PCA-based QSAR models where vector
space is reduced by PCA.

2.4.2. Feature Selection with Random Forests

A random forest (RF) is an ensemble supervised nonlinear machine learning algorithm for
classification or regression [75]. This algorithm generates a set of weakly independent decision trees
that are built using randomly selected subsets of the data. Each generated tree is produced by randomly
selecting a set of predictors from the full set and by sampling with replacement instances from the
same data pool. This will create a set of randomly generated trees (a forest), each one created from
different data and variable partitions. The RF algorithm then uses a consensus voting procedure to
combine the predictions from all randomly generated weak models and make more robust predictions.
One of the consequences of this bootstrap procedure is that it is possible to assess the power that each
variable has in the final predictions. The trees that include such variables will typically have higher
prediction power, and as such, it is possible to rank each variable in terms of its overall importance to
the model quality. Many studies showed that RFs’ voting procedure can be used for feature selection
by ranking and selecting each variable according to its importance in RF models [77,85,91]. In this
ensemble method, each variable’s importance score is calculated using several variable importance (VI)
measures. In regression problems, an increase in the mean squared error of a tree is one of the widely
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used VI measures, which explains how much prediction error increases with the random permutation
of any given variable while keeping all others unchanged in a node of a tree [75,85,91,92].

In this work, we followed the random forest (RF)-based feature selection method [77] to rank
features in a high dimensional vector space according to their importance score. These are then later
used in the feedforward feature selection procedure (Figure 2).

2.4.3. Support Vector Machine

An SVM [76] is a supervised machine learning algorithm that has been widely used for
classification and regression-based data analysis in many fields, including QSAR studies [77,79–82].
For a given set of data instances, a discriminative SVM algorithm focuses on the identification of
support vectors (data instances) to draw a decision hyperplane in a high dimensional space that
best separates data instances with maximum margins. SVM uses different kernel functions for data
transformation in a new hyperplane; these can be linear, radial basis functions, sigmoid, or polynomial,
which are generally considered good choices for a majority of problems. The discovery of support
vectors greatly depends on the selected kernel function. In contrast to other methodologies where there
is a learning phase that heuristically searches thorough the multidimensional feature space, in SVM
learning this search procedure is a mathematical optimization procedure, and it is guaranteed that an
optimal solution can be found in polynomial time. This also implies that, as no random component is
involved, the same solution model will be produced for each model. In this work, we used SVM in the
process of feedforward feature selection where PCs from vector/metric reduced dimensionality space
and RF importance score-based ranked variables from features/vector space were stepwise subjected
to the SVM, and final QSAR models were developed with an optimized set of selected dimensions
(Figure 2). In the current work, the radial basis function was selected for all problems.

2.4.4. Model Evaluation and External Validation

N-fold cross-validation or model internal validation is the simplest approach, where the training
data set is randomly divided into a number (N) of folds (parts), and each part is used as an external
set for the validation of the predictive model, which was fitted by using the remaining compounds
in the other N − 1 partitions. Cross-validation is essential to optimize modeling parameters and
variable selection, and to verify the internal predictive power and robustness of the QSAR model [89].
In our analysis, we performed N-fold cross-validation to find an optimized number of most relevant
variables (variable/PCs selection). For this purpose, a feedforward approach was used to generate
estimation models by sequentially adding the RF importance score-based ranked variables (more
relevant to least significant) and PCs extracted from vector and metric spaces as an input in the
SVM algorithm. The internal predictive performance of each model was assessed by computing the
percentage of variance explained (PVE) and root mean squared error (RMSE) of each predictive model
in cross-validation [93]. As the cross-validation may result in a different number of best-performing
variables for different folds, an average of the PVE score was recorded across all folds each time.
Finally, the set of dimensions that led to the smallest average predictive error score in all folds was
considered as the selected number of descriptors/fingerprints/PCs. After performing all of this feature
optimization, the whole training data set was reused to develop a model with the selected features to
perform a blind external prediction using the independent validation set.

3. Data

We tested the proposed QSAR modeling methodology on five data sets for common human
biological targets, retrieved from ChEMBL23 [46]. These were selected independently of any previous
hypothesis (Table 1). We used an automated QSAR modeling workflow [47] to collect and curate data
for each selected target. The bioactivity data of the selected targets was retrieved using the UniProt
accession number (Table 1).
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Table 1. Data set description.

Uniprot ID. Gene Name Target Protein Name
Associated

Bioactivities
(Y)

Total Number of
Observations
(N-Processed)

P35367 HRH1 Histamine H1 receptor Ki 1222

Q99720 SIGMAR1 Sigma non-opioid intracellular
receptor 1 Ki 226

Q12809 HERG Potassium voltage-gated channel
subfamily H member 2 Ki 1481

P35462 DRD3 D(3) dopamine receptor Ki 2902

P28223 HTR2A 5-hydroxytryptamine receptor 2A Ki 2088

Moreover, missing data, salt groups, and mixtures (e.g., in unconnected molecules, smaller
fragments were excluded) were removed. In duplicated data, if more than one record was present for
the same compound, the one kept would be its most recent measurement, according to the publication
year. All data sets feature Ki as the bioactivity measure. However, the logarithm of Ki is more typically
used for modeling and makes more biological sense. Also, to encompass several problems of the more
extreme values, it was decided to clamp the values between an interval so that very weak or possibly
inactive molecules receive the same low score, while it is oftentimes unnecessary to discriminate results
with Ki ≤ 1 nM, as these are very active molecules. Thus, the following expression (Equation (2)) was
used for all data sets to transform Ki into spKi (scaled and clamped pKi):

spKi =


0, if Ki ≥ 10,000 nM,
4−log10(Ki)

4 , if 1 nM < Ki < 10,000 nM,

1, if Ki ≤ 1 nM

(2)

spKi values are thus clamped between 0 and 1, the most active compounds having values closer
or equal to 1, and the lesser active or inactives will have values of zero. This clamping assumes that Ki
values below 1 nM are considered extremely active compounds, while molecules with Ki values above
10,000 nM are considered very weak or inactive.

Data Preparation for Vector and Metric Space Representations

For each data set, molecules were represented in metric and in vector spaces by using three
different approaches: (a) common vector space methods using molecular descriptors or fingerprints,
named vector space with FS (feature selection); (b) principal components over the similarity matrices,
categorized as PCA on metric space; and (c) principal components over molecular descriptors and
fingerprints placed in vector space, or DR (PCA) (Figure 2).

For vector space representation, we used 1348 descriptors (2D and 3D) calculated for each selected
data set with the RDKit [60] toolkit (Table S1). Separate modeling efforts were performed by testing
five different types of fingerprints separately, including ECFP6 (circular), PubChem (substructure keys)
computed using the CDK [94] toolkit, MACCS (substructure keys), RDkit (path-based), and Atom
Pair (path-based) generated using RDKit [60]. The data preparation for principal component over
metric space representation involved the computation of the similarity matrices between all elements
of the training set and computing the distances of the IVS to those of the training set. Using the
Tanimoto index, similarity matrices were obtained for each of the five fingerprints by adding the
NAMS graph-based molecular matching algorithm. Models generated using dimensionality reduction
of metric and vector spaces were named “optimized number of PC models” (OPC-models), as the
procedure emphasizes selecting the best number of PCs, capable of producing more reliable models.
Predictive models built using vector space with FS were named SF-models (model having the selected
number of features) (Figure 2).
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Thus, a total of eighteen different molecular representations were used in this study and served
as input data to a machine learning algorithm for the generation of ninety regression models for five
selected QSAR problems.

4. Results

4.1. Implementation of Analysis

All molecular descriptors and fingerprints used in this study were calculated using CDK [94]
and RDKit [60] built-in nodes of the open-source data-mining framework KNIME (version 3.2) [95].
All analyses were performed using R (version 3.4.4) [96] on a desktop workstation powered by a
6th-generation Core i7 Processor (3.41 GHz) with 16 GB RAM. Package e1071 [97] was used for the
SVM algorithm and an R library, randomForest [98], for RF. Both SVM and RF algorithms were
implemented with the default parameters. The R package factoextra was used for dimension reduction
using PCA [99]. It is noteworthy that in the PCA-based QSAR modeling, orthogonal projections/PCs
for test sets in N-fold and IVS were calculated by using R’s PCA predict() function .

4.2. Results of Generated Models

OPC-models and SF-models were fitted with the training data sets of all selected targets. For all
data sets, the training data was used to evaluate and select the model that was able to produce the
smallest RMSE or PVE (ratio of the variance explained). Typically, this involved selecting models with
a reduced number of features or PCs (Table S2 and Figure S1). The final models after feature selection
were validated using the same IVS for each problem set (Table S3).

The first aspect that stands out from these results is that the most relevant factor for explaining
model quality is the nature of the data itself. The predictive performance of QSAR models highly
depends upon different characteristics of the data set (e.g., size, chemical diversity, and presence of
activity cliffs) [100–106]. As an example, the HERG data set can easily be seen as a difficult problem,
independently of the approach followed to model it (Figure 3). On the other hand, the human Histidine
Receptor 1 (HRH1) generally appears as more easily modelable, while the remaining three problems
(SIGMAR1, DRD3, and HTR2A) show intermediate modelability characteristics. Secondly, with some
relevant cases noted below, no single method uniformly performs better than the others, and each
method’s performance seems to be heavily dependent upon the data set characteristics.

To have a more encompassing view of the produced results, we performed a Friedman ranked
test [107]; this is a non-parametric test used to assess different treatments applied to different test
situations, as is the current case. In the present situation, a modeling approach is considered a treatment,
which is evaluated by its results for the different data sets. Each model is then ranked according to
its performance, where the best models have a lower rank and vice versa. The Friedman test is then
able to evaluate each performance according to its rank in all data sets, thus effectively providing a
performance value for each modeling approach. Another advantage of the Friedman test is that it
allows for a post hoc analysis that is able to better qualify the differences verified between treatments,
for instance, by grouping similar models with similar performance values. For each modeling data set,
the rank in PVE of each modeling approach was calculated in R’s agricolae package (Figure 4) [108].
The test results showed that there were significant differences between treatments, with a Chi-squared
test of 38.44 with 17 degrees of freedom giving a p-value of 2.2× 10−3, which strongly suggests that
there are statistically significant differences between the different modeling approaches.
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Figure 3. Comparisons of QSAR models’ predictive performance using independent validation sets
(IVSs). PVE: percentage of variance explained by the model.

Figure 4. Friedman test results and interquartile ranges of tested models.

The post hoc analysis of the Friedman test allows groupings of statistically indistinct treatments
under the same grouping [107]. A treatment can belong to several groups. Figure 4 indicates to
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which groups each model belongs. The significance level used was 0.05, meaning that the model
groupings are correct with at least 95% confidence. It can clearly be seen only the models that belong to
grouping e—the one with model rankings consistently lower (thus indicating higher quality modeling
approaches)—are NAMS metric space PCA and Atom Pair fingerprints with classical feature selection.
Moreover, it can be observed that the use of RDkit fingerprints and molecular descriptors, both with
metric space representation and PCA dimensionality reduction, consistently appear in the highest
positions (worst models).

We further dissected these individualized results according to the four major questions that were
the main objectives of our analysis. These questions are addressed one by one in the following sections.

4.2.1. Is Metric Space Representation as Good as the Most Common Vector Space-Based Approaches?

To answer this question, the results of all three different approaches (simple feature selection and
PCA dimensionality reduction in both vector spaces and metric spaces) were analyzed. A comparison
of OPC-models generated using PCA on metric and vector spaces and SF-models built using vector
spaces with FS showed that the predictive performance of each QSAR model was influenced by the
selected type of molecular structural representation (Figure 5), which was expected and consistent
with the literature [50,103,109]. We performed a similar analysis using the Friedman test over the ranks
of the median values of each data modeling approach from the explained variance (PVE) of the fitted
models using each respective IVS (Figure 5).

Figure 5. (A) Boxplots of the three modeling approaches grouped by the different data sets; (B) groups
and interquartile ranges of the medians of tested models from the Friedman test post hoc analysis.

Feature selection over vector spaces has proven to be the most globally reliably modeling approach
and appears to be significantly better relative to the use of PCA on the same data. Metric space PCA
appears as somewhere in between, closer to the feature selection approach. The Friedman test for
this data yielded a Chi-squared value of 6.0, which corresponded to a p-value of 0.049, just below
the 0.05 threshold. With such results, it is fair to conclude that the usage of metric space data
may compromise the quality of the models produced when comparing results to traditional vector
space feature selection models, yet it clearly outperforms vector space PCA-based approaches. It is
nonetheless striking that the highest-ranking method in the overall assessment is NAMS, a metric
space-based approach, which may allow us to suggest that the other methods of calculating molecular
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similarities may be responsible for this decreased performance and may not be as adequate to compute
molecular distances.

4.2.2. Which Similarity Representation Carries the Maximum Chemical/Structural Information
Content to Establish the Best Relationship between Local Similarities and Activity?

To analyze which similarity representation contributed more significantly to reliable predictive
modeling, the overall performance of OPC-models generated using six similarity data matrices (NAMS,
ECFP6, RDkit, Atom Pair, MACCS, and PubChem-based similarities) was evaluated again using the
Friedman test (Figure 6). The ranking of each metric space-based approach was assessed for each
data set and the overall quality of each model quantified through the use of the Friedman test and
respective post hoc analyses. For the present case, NAMS clearly emerges as the best approach,
followed closely by Atom Pair and ECFP6 fingerprints, the former appearing in the same group as
NAMS. The Chi-squared test for the metric space-based approaches ranked comparison was 15.2 with
5 degrees of freedom, which corresponds to a p-value of 9.5× 10−3. Thus, test results again suggest
that NAMS molecular similarity is able to more reliably capture important structural information,
which eventually generates a better quantitative relationship between local similarities and compound
activity.

Figure 6. Overall performance of similarity representation using PCA on metric space-based QSAR
modeling approach.

4.2.3. How Effective Is Using a Reduced Dimensionality of the Metric/Vector Space with Principal
Components, Replacing Explicit Descriptors/Fingerprints, in QSAR Modeling?

This question can actually be answered by observing the previous results. It seems clear that
when directly comparing PCA to direct feature selection (Figure 5), the latter produces markedly better
results, which strongly suggests that the dimensionality reduction achieved with PCA is a poor proxy
for a better structured search for the most relevant descriptors in a modeling problem. Nonetheless,
using PCs from the similarity matrix allows us to capture the same information available from vector
space modeling. These results also highlight the capability of fingerprints to produce high quality
models without the need for other chemical descriptors. Furthermore, the fingerprint-generating
method appears critical for producing the most reliable models. As is clear from the above results,
Atom Pair and ECFP6 fingerprints appear as the best fingerprint-based similarity approaches, while the
RDkit and PubChem fingerprints consistently lag behind all other models.
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4.2.4. Is There Any Solution That Is Globally Better on a Variety of Difficult Problems?

From the above results, it is clear that there is no one single best approach for dealing with complex
QSAR problems. Although metric space-based NAMS and Atom Pair come out in first place most of
the time, they are not consistent for all data sets. For instance, Atom Pair fingerprint representation
performs poorly for the HTR2A model, while NAMS does not appear on top for the DRD3 data
set. Similarly, as mentioned above, there does not appear to be any intrinsic advantage in changing
from a fingerprint vector space-based approach to similarity-based metric space modeling. The most
consistent result was that the use of PCA with descriptor data was generally a poor modeling approach.
PCA can nonetheless be used with distance matrices to capture reliable information for modeling.

5. Discussion

Many studies have demonstrated that the selection of molecular structural representation
has a larger impact on the predictability of QSAR models than the choice of model optimization
methods [8,26,54,59,67,109,110]. Our results confirm these findings further, suggesting that reduced
metric space representation using NAMS-based similarity and Atom Pair fingerprints with feature
selection are the methods that more consistently address a variety of modeling problems.

Nonetheless, one further concern over such studies is how much novel information is actually
being discovered from the models, as it is a known fact that similar molecules tend to have similar
biological properties. Therefore, a distinct possibility is that the use of similarity matrices for inference
may be result in reliable predictions only when molecules very similar to the training data set are
present. Thus, one further test for these modeling approaches is to understand how reliable these
methods are for making models where all very similar molecules have been removed and no molecule,
either in the training set or the IVS, has a high similarity to any other. This would allow the evaluation
of the capability of each approach to make inferences when very diverse compounds are fed into
the model. Therefore, to check the robustness of the tested methodologies, the five data sets were
manipulated by converting them into harder problems with only structurally diverse molecules,
making certain that no molecules within a given similarity threshold are present in each data set.
Accordingly, five new data sets were created based on the initial ones but where no molecule was
present if it was similar, within a given threshold, to others already present. As different similarity
methods produce different scores for the same molecules, the thresholds were adjusted for each
similarity method to make sure that the model would be trained with a similar number of instances
(Table 2). This complementary analysis obviously relates only to metric space modeling, thus the
following results will only focus on this modeling approach.

Table 2. Data size before and after removing nearest neighbors. Thr—similarity threshold; N—new
data set size.

Target Protein Name
Data Size without Removing

Nearest Neighbors

NAMS ECFP6 RDkit Atom Pair MACCS Pubchem

Thr N Thr N Thr N Thr N Thr N Thr N

Histamine H1 receptor (HRH1) 1222 0.80 379 0.55 378 0.80 371 0.67 376 0.84 379 0.87 391

Sigma non-opioid intracellular
receptor 1 (Sigma1R) 226 0.87 312 0.61 310 0.89 305 0.75 309 0.92 311 0.94 321

Potassium voltage-gated channel
subfamily H member 2 (HERG) 1481 0.80 397 0.54 394 0.82 392 0.69 395 0.83 395 0.86 403

D(3) dopamine receptor (DRD3) 2902 0.80 478 0.52 481 0.77 470 0.67 480 0.87 484 0.86 484

5-hydroxytryptamine receptor
2A (HTR2A) 2088 0.80 432 0.47 432 0.78 424 0.63 426 0.83 429 0.85 437

After removing the nearest neighbors, all data sets were again randomly split into training and
independent validation sets, and the same data processing procedures were repeated for these new,
more challenging data sets. Moreover, the same modeling principles were repeated by training the
models with the training set while simultaneously selecting the best feature set and finally validating
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the best model with the corresponding IVS. The overall performance of the same models using these
new data sets was assessed. Because the number of instances present in all new problems is different,
both RMSE and PVE were used to adequately assess each model’s performance (Figure 7).

Figure 7. Overall performance of metric space representation after removing nearest neighbors in a
PCA on metric space-based QSAR modeling approach.

As can be seen, with such hampered data the performance of QSAR models has naturally dropped,
leading to a decrease in PVE ranging from 0.15 to 0.52 (Figure 7A). This finding is consistent with the
literature [8] in that similar molecules present in models tend to inflate result statistics. It can also now
promptly be seen that the differences between the different models are now amplified, and it is clearly
easier to visually identify which approaches distinguish themselves from all others. Nonetheless,
the overall model ranking was not significantly changed. Thus, NAMS similarity representation was,
for these data sets, clearly the highest-performing model, achieving the lowest RMSE scores in all
cases. Using the Friedman interquartile range graph (Figure 7B) performance scores for both Atom
Pair and ECPF6 are dependent on the use of PVE or RMSE. All other fingerprint approaches were not
up to the referred methods used in these more difficult challenges. The Friedman test for the PVE had
a Chi-squared value of 21.1, with a p-value of 7.8× 10−10.
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Computation Time

The execution time of QSAR models built from reduced dimensionality of metric space ranged
between 60.61 and 48.88 min and for vector space, 52.53 to 15.34 min, whereas vector space with FS
computational time ranged between 860 min (DRD3) and 17 min (Sigma1R). A comparative analysis
of computational time showed that reduced dimensionality significantly reduced the complexity of
the problem at hand and that computational time cost also decreased.

Computation time is an important issue when comparing different modeling approaches,
especially when the use of metric space methods is being evaluated, as the use of a full similarity matrix
is required for each data set. Furthermore, metric space modeling requires that one of the steps for
inference is that the distance of each new molecule to all of the molecules in the training set is assessed.
This is not typically a problem for academic studies but may put a large computational burden
for actual screening efforts when several millions of molecules are being evaluated. This problem is
aggravated in the case of the specific non-fingerprint approach we tested (NAMS). Although apparently
able to produce a more accurate distance, which translates into better prediction models overall, it does
so at a much higher computational cost. With current common hardware, the average computational
cost to compute the similarity of two molecules is 12 ms, which for many problems may be too high for
many problems. As an example, computing the similarity of one new molecule to a training set of 1000
molecules will require 12 s. Such computational costs (although the problem is trivially parallelizable)
may involve unacceptable computational costs for very large data sets.

6. Conclusions

In this study, we compared different molecular representation approaches for input into QSAR
machine learning methods. These approaches were divided into vector space- and metric space-based,
with each molecule being represented as a vector of different characteristics in the former, and with
a molecule being represented by its distance or similarity to others of known activity in the latter.
We have tested five different fingerprint types (RDKit-FP2-based, MACCS, PubChem, Atom Pair,
and Morgan’s ECFP6) both as vectors of descriptors and, in metric space approaches, with Tanimoto
scores computed for similarity. One exclusively vector space approach was also tested, where common
chemical descriptors were computed and used in vector space modeling, as well as a pure metric
space method with a molecular graph-based similarity (NAMS). We also tested whether it was more
adequate to use dimensionality reduction methods (as with PCA) or a more computer-intensive feature
selection procedure. These representation and dimensionality reduction methods were tested over five
different data sets of different modelabilities and analyzed by the Friedman test for ranking models.
Results showed that the choice of molecular representation to compute molecular similarity is more
important than the modeling approach followed, thus certain methods produced consistently better
results. ECFP6 and Atom Pair fingerprints were clearly the best approaches for modeling in vector
spaces, surpassing all other methods. Classic molecular descriptors did not show any advantage for
any of the data sets in this study. Regarding dimensionality reduction methods, the use of principal
components appeared to be inferior to the use of random forest-based feature selection. The former
method, albeit faster to process, generally produced results not on par with the latter.

In this study, metric space modeling by itself did not appear clearly superior to a vector
space-based approach and, for the same representation, using fingerprints as descriptors tended
to produce better results than using molecular distances from those same fingerprints. However,
when using metric space representations, the differences between similarity methods become even
more clear, with NAMS and Atom Pair fingerprints appearing objectively better than all other
representations. When verifying whether metric space-based representations can be used for more
remote inferences where the chemical space is evaluated in regions distant from the training data,
the above conclusions regarding metric space modeling appear to have been amplified, and a larger
distance between similarity methods was observed, with NAMS and Atom Pair fingerprints appearing
clearly separated from the others.
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Finally, metric space-based methods are more computationally expensive, requiring the
computation of molecular similarity to every instance of the training set for each new molecule. This is
a particularly severe cost for the graph-based similarity algorithm used (NAMS), and computation cost
is a serious factor that may hamper its applicability in a real world virtual screening approach,
despite overall being the method that is more consistently capable of producing high-quality
QSAR models.

Supplementary Materials: The following are available online, Supplementary data (Additional file 1) contains
three supplementary tables including: Table S1: List of RDkit 2D and 3D descriptors, Table S2: 5-fold
cross-validation results, Table S3: External validation results, Figure S1: Selection of optimized number of
PCs: PVE vs. number of PCs plot from PCA on metric space.
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