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Abstract: In this paper we review the current status of high-performance computing applications
in the general area of drug discovery. We provide an introduction to the methodologies applied at
atomic and molecular scales, followed by three specific examples of implementation of these tools.
The first example describes in silico modeling of the adsorption of small molecules to organic and
inorganic surfaces, which may be applied to drug delivery issues. The second example involves
DNA translocation through nanopores with major significance to DNA sequencing efforts. The final
example offers an overview of computer-aided drug design, with some illustrative examples of
its usefulness.
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1. Introduction to Molecular Modeling Methods

Computer experiments play an increasingly significant role in science today. The advent of
high-performance computing has enabled virtual experimentation in silico as a tool which allows for
interpolation between laboratory experiments and theory. Schulten introduced the term “computational
microscope” to describe the role of computational simulations in augmenting experimental research
when direct measurements are not possible. He believed that computational biophysics has progressed
to the point where it presents a realistic view of intra-cellular components, often at a resolution not
attainable through laboratory instruments, reaching atomic or even electronic dimensions [1]. Feynman
presciently stated in 1964: “Certainly no subject or field is making more progress on so many fronts
at the present moment than biology, and if we were to name the most powerful assumption of all,
which leads one on and on in an attempt to understand life, it is that all things are made of atoms,
and that everything that living things do can be understood in terms of the jigglings and wigglings
of atoms” [2]. Molecular dynamics (MD) is an important computational tool for understanding the
physical basis of the structure, the dynamic evolution of the system, and the function of biological
macromolecules. Fourteen years later, the first MD simulation of a biological macromolecule, namely,
Bovine pancreatic trypsin inhibitor (BPTI), was published [3]. Although the relatively accurate X-ray
structure of BPTI was available at the time, its physiological function was unknown.
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One of the most significant resources for MD simulations is the Research Collaboratory for
Structural Bioinformatics (RCSB, www.rcsb.org), which makes available 3D experimentally-determined
biological macromolecular structural data. The RCSB Protein Data Bank (PDB) is a worldwide repository
for processing and distribution of 3D structure data of macromolecules, such as proteins and nucleic
acids [4], and is an essential resource for biomolecular modeling. X-ray crystallography has made
the largest contribution to our understanding of protein structure. Crystallization for many proteins
(e.g., membrane proteins) is a difficult task that may require considerable effort. An important measure
of the accuracy of a crystallographic structure, meanwhile, is its resolution. Relaxing a protein structure
using molecular mechanics (MM) energy minimization methods reduces the energy of the protein
structure and leads to a subtly different structure in important ways. In high-resolution structures,
the only dynamic property that can be obtained is the isotropic temperature factor (B factor or Debye
factor). Nuclear magnetic resonance (NMR) is another method by which to determine the protein
structure. In NMR, the magnetic spin properties of atomic nuclei are used to build up a list of distance
constraints between atoms in an enzyme. This list is then used to build a model of the protein that shows
the location of each atom. A major advantage of NMR spectroscopy is that it provides information on
proteins in solution, as opposed to those forming a crystal. Direct determination of structure by NMR
is generally restricted to smaller proteins, typically under 20 kDa in molecular weight. High-resolution
X-ray powder diffraction has also been used to solve and refine protein structures [5]. This method
shares the advantage of not requiring a protein crystal. It should be noted that the structures obtained
from experiments require some post-processing to prepare them for simulations. Issues could be
encountered due to missing residues, atom clashes, crystallographic waters, and alternate locations
that should be resolved before MD simulations are performed. In structure preprocessing, missing
residues and missing atoms such as hydrogen are added, and atomic clashes are eliminated. Ionization,
protonation states, and tautomer states are assigned as well to ensure the best quality structure to start.

Quantum mechanics (QM) methods (e.g., ab initio molecular orbital or density functional theory
calculations) can be used to study reactions for molecular systems consisting of hundreds of atoms.
Biological systems are particularly challenging for ab initio quantum mechanics methods because of
their large sizes, yet first principles calculations can now tackle problems of great biological interest that
cannot be solved by other means. In this regard, a detailed atomistic investigation of a biological system
requires knowledge of its electronic structure. For instance, enzymatic reactions involve bond-forming
and bond-breaking, effects that need to be treated quantum-mechanically [1]. Quantum calculations
can provide useful models of transition states and reaction intermediates. Another example relates
to photoreceptors (such as rhodopsin [6–8] and involves excited states and the interaction between
the biomolecules and the electromagnetic field. QM-based approaches may also be instrumental in
correctly describing polarization effects (e.g., in ion channels [9]) as well as metallo-proteins, where
very subtle chemical phenomena (such as the fact that the metal ion ligand bond has a partially
covalent nature) play a vital role. Finally, QM calculations are useful in comparing different variety of
spectroscopic data, such as infrared spectroscopy (IR) [10,11], Raman [12,13] and NMR [14], which can
be obtained from the electronic structure calculations without additional empirical assumptions [15].
Direct applications of first principle approaches to the study of biomolecules are still restricted to
systems of up to a few hundred atoms, while the size and conformational complexity of biological
systems calls for methods capable of treating up to several 100,000 atoms over time scales of tens
of nanoseconds.

Hybrid quantum mechanics/molecular mechanics (QM/MM) simulations significantly expand
the scope of quantum mechanical calculations to much larger systems by partitioning the problem
into two parts, each of which is treated with different computational methods. The part of the system
directly participating in a given chemical reaction, such as catalysis, involves the active site, substrates,
and directly participating amino acid residues and is treated with a QM level simulation. The remaining
part of the enzyme, which does not participate directly in the reaction and typically encompasses a
much larger number of atoms, is simulated using molecular mechanics with a biomolecular force

www.rcsb.org


Molecules 2019, 24, 1693 3 of 30

field (FF). QM/MM methodologies can differ notably in terms of features, such as: (1) the type of
scheme used to calculate the QM/MM energy; (2) the different boundary regions chosen; (3) how the
interaction between the QM and MM region is investigated; (4) how an appropriate computational
method is selected; and (5) how the enzymatic reaction and the associated conformational flexibility
are tackled. There are advantages and disadvantages to these different QM/MM methods, largely
depending on the type of enzyme and reaction under study. The most common QM/MM methods are
Car–Parrinello/Molecular Mechanics MD [16], empirical valence bond (EVB) Method [17], the cluster
model [18], and QM/MM MD Methods.

MD uses Newton’s equations of motion to determine the net force and acceleration experienced
by each atom from which it simulates the time evolution of a set of interacting atoms. Each atom i at
position ri is treated as a point with a mass mi and a fixed charge, qi. The atomic coordinates evolve
according to the laws of Newtonian physics where Fi is the force exerted on the mass mi and ai is the
acceleration of it, i.e.:

Fi = miai (1)

⇓

Fi(t) = mi
d2ri(t)

dt2 (2)

Fi(t) can also be expressed as the gradient of the potential energy, where V is potential energy (i.e., FF).

Fi = −∇iV (3)

⇓

−∇iV = mi
d2ri(t)

dt2 (4)

The engine of an MD program, it should be noted, is its time integration algorithm. The most
popular integration methods for MD calculations are Verlet, velocity Verlet, and Leap-Frog
Algorithms [19]. In the Verlet algorithm, two third-order Taylor expansions are used for the positions
r(t), one forward and one backward in time. Denoting velocity as v, acceleration as a, and the third
derivative of r(t) with respect to t as b, we obtain the following expression:

r(t + ∆t) = r(t) + v(t) ∆t + (1/2)a(t)∆t2 + (1/6)b(t)∆t3 + O
(
∆t4

)
(5)

r(t− ∆t) = r(t) − v(t) ∆t + (1/2)a(t)∆t2
− (1/6)b(t)∆t3 + O

(
∆t4

)
(6)

Adding the two expressions gives:

r(t + ∆t) = 2r(t) − r(t− ∆t) + a(t) ∆t2 + O
(
∆t4

)
(7)

Accordingly, a(t) is the force divided by mass, such that:

a(t) = −(1/m) ∇V (r(t)) (8)

The time step used in MD calculations is approximately one order of magnitude smaller than the
fastest motion (hydrogen molecule’s bond vibration), which is about 10 femtoseconds (fs).

The result of an MD simulation is a trajectory in a 6N-dimensional phase space (3N positions
and 3N momenta). However, such a trajectory is usually not particularly relevant in and of itself.
MD is a statistical mechanics method and that generates a set of configurations distributed according
to some statistical distribution function, or also known as a statistical ensemble. Three different
ensembles are commonly used in MD simulations: the Microcanonical Ensemble (NVE), the Canonical
ensemble (NVT), and the Isotherma-isobaric ensemble (NPT). These ensembles are used during
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equilibration to achieve the desired temperature and pressure before changing to the constant-volume
or constant-energy ensemble when data collection starts. Here, N stands for the number of particles, E
for energy, V for volume, and P for pressure. Each of these denotes a value to be kept constant during
simulation. Consequently, measuring quantities in MD usually entails performing time averages of
physical properties over the system trajectory (averages over configurations). For instance, one can
define the instantaneous value of a generic physical property A at time t as:

A(t) = f (ri (t), . . . , rN(t), vi(t), . . . , vN(t)) (9)

We then obtain its average as:

〈A〉 =
1

NT

NT∑
t=1

A(t) (10)

where t is an index which runs over the time steps from 1 to the total number of steps, NT.
Sufficiently long simulation times ensure that the phase space will be well sampled, such

that the averaging process approximates the corresponding thermodynamic properties. The most
commonly measured properties are potential energy, kinetic energy, total energy, temperature, pressure,
and root-mean-square deviation (RMSD). RMSD is the measure of similarity between structures and
is found as the average distance between the atoms (usually the backbone atoms) of superimposed
proteins. Therefore, the lower RMSD is, the better the model will be in comparison to the target
structure. RMSD is found as:

RMSD =

√
1
N

N∑
i=1

δ2
i . (11)

where δi is the distance between atom, i, and a reference coordinate. This quantity is often calculated
for the backbone heavy atoms or in some cases just the Cα atoms.

The heart of any MD scheme is the FF used to analytically describe the atomistic interactions.
The atomic forces that govern molecular movement can be divided into those caused by interactions
between atoms that are chemically bonded and those caused by interactions between atoms that are
not bonded.

Etotal = Ebonded + Enonbonded (12)

Ebonded = Ebond + Eangle + Edihedral (13)

Enonbonded = Eelectrostatic + Evan der waals (14)

In other words, Force fields present the potential energy surface of the system represented by
a closed set of analytical potential energy functions. Since the kinetic energy in force fields is also
taken into account, the system is able to move across the energy barriers on the potential energy
surface, which implies substantial changes (e.g., conformational) during the simulation. The results of
simulations will be realistic only if the potential energy function mimics the forces experienced by the
‘real’ atoms.

An example of an equation used to approximate the atomic forces that govern molecular movement
is depicted in Figure 1.

In a typical FF, chemical bonds and atomic angles are modeled using simple springs (quadratic
energy functions) that do not allow bond breaking. The functional form for dihedral energy is highly
variable, so dihedral angles (that is, rotations about a bond) are modeled using a sinusoidal function
that approximates the energy differences between eclipsed and staggered conformations. Additional
improper torsional terms may be added to impose the planarity of aromatic rings, and “cross-terms”
may be used to describe coupling of different internal variables, such as angles and bond lengths.
Some FFs also include explicit terms for hydrogen bonds. Non-bonded forces arise due to van der
Waals interactions and are modeled using the Lennard–Jones potential, and charged (electrostatic)
interactions are modeled using Coulomb’s law.
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Figure 1. A typical force field (FF) model. Energy dependencies are related to (a) stretching or
compressing a bonded pair of atoms (modeled by a simple spring) (b) Increasing or decreasing the bond
angle (modeled by a simple spring) (c) dihedral angle rotations (modeled by a sinusoidal function)
(d) Van der Waals interactions (modeled by Lennard–Jones potential) and (e) Electrostatic interactions
(modeled by Coulomb’s law). (a–c) are caused by interactions between atoms that are chemically
bonded to one another while (c–e) are caused by interactions between atoms that are not bonded.

There are major limitations present in all FFs, one being the lack of polarizability, since each atom
is fixed, forbidding any change in polarizability over time. However, both non-bonded terms can be
scaled by a constant factor to account for electronic polarizability and produce better agreement with
experimental observations. Although polarizable FFs are very promising, they remain computationally
very expensive, with their use and parameterization being less user-friendly than that of their fixed
charge counterparts [20]. Another major limitation of FFs is that they cannot be used to study reactivity,
since bonds cannot be broken or formed during the simulation. To overcome this, the aforementioned
QM/MM methods can be employed. ReaxFF [21] is one of the emerging methods in the study
chemical reactivity using classical MD. ReaxFF enables chemical reactions to be studied through a
geometry-dependent parameterization of reactants and products. Since chemical reactions are not
permitted in simulations using conventional FFs, certain protonation and tautomeric states must be
assigned in advance to all system residues and maintained during the simulation.

FF parameters are determined from experiments in physics, chemistry, and/or electronic structure
calculations (using QM). A set of parameters is defined for different types of atoms, chemical bonds,
dihedral angles, and so on. For example, an FF would include distinct parameters for an oxygen atom
in a carbonyl functional group and in a hydroxyl group. A typical parameter set includes values for
atomic masses, van der Waals radii, and partial charges for individual atoms; equilibrium values of
bond lengths, bond angles, and dihedral angles for pairs, triplets, and quadruplets of bonded atoms;
and values corresponding to the effective spring constants for each potential. For example, a typical
FF for propane contains 10 bond-stretching terms, 18 angle-bending terms, eighteen tortional terms,
and 27 non-bonded interactions [22]. Some popular FFs used in classical MD simulations are AMBER,
CHARMM, and GROMACS.

Biologically relevant macromolecules, such as proteins, do not operate as static, isolated entities.
Contrarily, they are involved in numerous interactions with other species in such a highly specific
manner and recognition. Binding between two interacting systems has both enthalpic (∆H) and entropic
(-T∆S) components and is associated with a negative Gibbs free energy of binding (∆G = ∆H-T∆S),
which may have differing thermodynamic signatures, varying from enthalpy- to entropy-driven. Thus,
the understanding of the forces driving the recognition and interaction require a detailed description of
the binding thermodynamics, and a correlation of the thermodynamic parameters with the structures
of interacting partners [23]. More on free energy methods will be discussed in Section 4.

Length and Time Scale Limitations in Molecular Dynamics Simulations

Large system sizes and long timescales are two challenges frequently encountered in MD
simulation. Moreover, MD simulations are computationally demanding for two reasons. First, the force
calculation at each time step requires considerable computation. Second, the force calculation must be
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repeated many times. For example, to produce sufficient sampling to study folding, 1012 timesteps
are required to reach millisecond timescales. Individual steps are limited to a few femtoseconds
(fs ~10−15 s), so simulating a millisecond of physical time requires nearly one trillion timesteps. Most
biomolecular events of interest, such as protein folding, protein-drug binding, and major conformational
changes essential to protein function, typically take longer (microseconds to milliseconds) than the MD
timescales, thus limiting the applicability of these simulations. Spatiotemporal resolution of molecular
modeling techniques is illustrated in Figure 2.
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MD simulations have been performed on large macromolecular systems such as the ribosome [24,25]
or entire viral capsids of viruses such as satellite tobacco mosaic [26,27] and HIV1 [28]. Moreover,
protein folding simulations [29,30] and protein dynamics and functions [31] for smaller systems have
been simulated for 10–100 µs. The largest photosynthetic membrane simulation published thus far
is that of a 100-million-atom MD simulation of a chromatophore from Rb. sphaeroides [32]. Various
methods have been used to overcome the size and timescale limitations in MD. The coarse graining
(CG) method simplifies and accelerates MD simulations [33–36]. CG employs mesoscale models,
in which a group of atoms is treated as a single interaction site or a bead, this idea having been
introduced by Levitt and Warshel in the 1970s [37,38]. Enhanced sampling methods also address the
timescale issue, and these include Steered molecular dynamics (SMD), Umbrella sampling (US) [39],
and Metadynamics [40]. US [39] is one notable equilibrium-collective variable-based enhanced
sampling method, while SMD [41,42] and metadynamics [41] are the most popular nonequilibrium
ones [43]. SMD has been used to accelerate the biomolecular simulations by applying external forces.
It has been extensively used to calculate the potential of mean force along aquaporin channels. SMD
has also been used to mimic forces that naturally arise in the context of atomic force microscopy
(AFM) and optical tweezer experiments [44–49], and can be used to drag the ligand along the possible
pathways predicted from electrostatic surface potential in drug design simulations [43].

The US pioneered the use of enhanced sampling methods. An energy term or a bias potential,
mostly harmonic potential, is applied to the system along a reaction coordinate, and moves it from its
initial state to its final state by varying, for example, the forces, distances, and angles manipulated
in the simulation. MD, meanwhile, can be used to simulate the intermediate states. The weighted
histogram analysis method (WHAM) is the most popular postprocessing method, and it analyzes a
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series of umbrella sampling simulations [50]. WHAM is performed by unweighting and stitching
together the underlying free energy function, leading to a potential of mean force (PMF) reconstruction.
This methodology has been successfully applied to numerous drug discovery-relevant problems [51].

Metadynamics is a relatively new MD-enhanced sampling technique to efficiently sample the
phase space and map out the underlying free energy landscape as a function of collective variables.
Here, a history-dependent repulsive bias potential as a function of a set of collective variables is added
to the Hamiltonian of the system in order to push the system away from its local energy minima.
This can be achieved through the addition of a small Gaussian-shaped potential to the current bias
to encourage the system to explore the regions of the phase space that are otherwise not sampled by
conventional MD by escaping from a saddle point to a nearby local minimum, where the procedure is
repeated. When all minima are occupied with Gaussians, the system diffuses to a barrier-free state
along the collective variable, and the simulation can be stopped.

Finding a set of collective variables (coordination numbers, the number of hydrogen bonds,
relative molecule orientation/rotation and bond lengths, angles or torsions) is a challenging task in
Metadynamics simulations. Recently, metadynamics has been combined with docking calculations to
study a number of ligand–target complexes, demonstrating the power of this method to characterize
binding and unbinding paths, to treat conformation flexibility, and to compute free-energy profiles
without requiring an excessive computational cost [52].

Among other challenges in MD simulations, like other simulation techniques, is the heavy
computational time and production of the large data. The amount of data necessary to represent a rigid
biomolecule (~100Kb) can increase 5 orders of magnitude (~10Gb) when simulated. As simulations
have greatly increased in scale reaching cellular levels, the large amount of data generated by computer
simulations intrinsically presents big data challenges. System sizes between 50,000 and 1 M atoms
are common nowadays for simulations of single macromolecules or macromolecular complexes [53].
Recently, Molecular dynamics simulations have been extended to highly crowded heterogeneous
cellular systems (100 M atoms for the cytoplasm of a bacterial cell) and simulations of entire cells
in molecular detail will soon become reality [54]. The time scales covered by such simulations are
now routinely reaching 1 µs and in exceptional cases as much as 1 ms [55]. Depending on how often
coordinates are saved, this means that a single simulation may generate data on terabyte to petabyte
scales. The large amounts of data coupled with the high degree of complexity in many systems presents
formidable challenges in managing, analyzing, and interpreting such big data in comparison with
experiments that are being discussed. As traditional approaches to the analysis of simulations do not
scale well to highly complex systems of macromolecules, a greater emphasis on automated machine
learning and artificial intelligence will be required in the future [56,57]. On the other hand, the increased
capabilities and flexibility of recent modern graphics processing units (GPUs) hardware combined
with high level GPU programming languages such as CUDA and OpenCL has made computational
power accessible to computational community. Many molecular modeling applications are well suited
to GPUs since they adopt themselves to he design and implementation of data-parallel algorithms that
scale to hundreds of tightly coupled processing units. One of the most time consuming calculations
in a typical molecular dynamics simulation is the evaluation of forces between atoms that do not
share bonds. The high degree of parallelism capability of GPUs can attain performance levels twenty
times that of a single CPU core. The twenty-fold acceleration accessible by the GPU decreases the
runtime for the non-bonded force evaluations such that it can be overlapped with bonded forces and
PME long-range force calculations on the CPU. According to the latest Molecular dynamics GPU
benchmarking report provided by NAVIDA-Tesla (https://nvidianews.nvidia.com), compared to CPUs,
GPUs run common molecular dynamics, quantum chemistry, visualization, and docking applications
more than 5 times faster.

In the era of petascale computing, large-scale MD simulations are having a profound impact
in numerous and diverse scientific endeavors [58]. These have ranged from the treatment of
disease and development of drugs [59,60] to biotechnological applications such as the fabrication
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of novel biomaterials [61], DNA sequencing [62], and the creation of bio-based renewable energy
sources [63]. Two notable applications of biomolecular modeling have been in bionanotechnology
and structure-aided drug design fields. For bionanotechnology applications we discuss below two
rapidly developing computational areas: organic–inorganic interface simulations to design smart novel
materials, and modeling nanopores for DNA sequencing purposes.

2. Organic–Inorganic Interface Simulations for Smart Novel Material Discoveries

Hybrid organic-(bio)-inorganic materials play a major role in the development of advanced
functional nanomaterials with nanobiotechnological applications. The development of these
materials represents an emerging interdisciplinary topic at the interface of biology, material science,
and nanotechnology. It was Thompson, in his book, On Growth and Form [64], who first described
in detail the complex nature of inorganic crystal morphologies formed in association with living
organisms and the presence of a pre-existing template controlling the growth of inorganic material.
The mineralization process is usually controlled by biomacromolecules such as proteins and peptides,
and the resulting hybrid structures have a physiological function. Examples of naturally occurring
hybrid materials include seashells, bone, teeth, and cartilage. Adsorption and assembly of biomolecules
on material surfaces through interactions on a nanometric scale form the basis for the preparation of
bio-nanohybrid materials. The effects of selective adsorption of biomolecules in an active inorganic
material is of critical importance in many applications, motivating the development and optimization
of active surfaces for biosensors [65], bioactive nanoparticles [66], biocatalysis [67], bioanalytical
systems for diagnostics and detection [68], solar cells [69], and bioseparations. Biomaterials have been
designed for use in advanced drug delivery systems for over 60 years. Biomaterials for drug delivery
are engineered to protect and then release molecules at desired rates [70]. Drug delivery systems
has its own chemical, physical and morphological characteristics, and may have affinity for different
drugs polarities through chemical interactions (e.g., covalent bonds and hydrogen bonds) or physical
interactions (e.g., electrostatic and van der Waals interactions) [71]. All these factors influence the
interaction of nanocarriers with biological systems [72]. To achieve optimal outcomes in drug delivery
systems different parameters, such as the composition of the nanocarriers (e.g., organic, inorganic,
and hybrid materials) and the form in which drugs are associated with them (such as core–shell system
or matrix system) are also fundamental for understanding their drug delivery profile.

Current experimental methods are unable either to track the trajectory and follow the dynamics
of bio-material interactions at the picosecond scale or to observe the surface morphology and growth
at the nanoscale level. Computational modeling, however, has accelerated the discovery of hybrid
materials by providing in-depth understanding at the interface between organics and inorganics and
by reducing the experimental trials.

The rapidly growing interest in bio-material interfaces, particularly for bionanotechnology
applications, necessitates proteins or peptides designed to recognize the inorganic surface with high
specificity. Molecular modeling and simulation methods ranging from quantum mechanics, to atomistic,
and coarse-grained simulations have been employed to investigate protein–surface interactions at
different levels of time and length scales.

Penna and Biggs [73] offer up significant new molecular-level insight into the adsorption
mechanism by considering results from over 240 MD simulations of up to 100 ns length in which one
of two different peptides adsorb after starting from a distance beyond the range of the peptide-solid
surface interaction. They asserted that their proposed peptide adsorption mechanism at the molecular
level was generalizable for the case where the interaction between the surface and the solution above it
is strong, such as would occur for metal surfaces. They proposed a putative three-phase adsorption
mechanism as illustrated in Figure 3: (1) biased diffusion of protein or peptide from bulk solution
towards the interface; (2) ‘anchoring’ of the peptide or protein via a hydrophilic group of the peptide
to the second water layer (WL), which is adjacent to the solid surface; and finally (3) formation of the
fully adsorbed peptide, which occurs through a (‘lockdown’) process of stepwise rearrangement of
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the peptide that is initiated by the anchor group popping into the WL immediately adjacent to the
surface [74].Molecules 2019, 24, x FOR PEER REVIEW 9 of 30 
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Figure 3. This illustration shows the simulations of proteins adsorbed on different surfaces. [74].
The first step is the biased diffusion towards the interface. The second step is the ‘anchoring’ of the
peptide via a hydrophilic group of the peptide to the second water layer (WL) that occurs adjacent to
the solid surface and finally the third step is the formation of the fully adsorbed peptide through a
(‘lockdown’) process of stepwise rearrangement of the peptide that is initiated by the anchor group
popping into the WL immediately adjacent to the surface.

Simulating the interactions of peptide–inorganics requires a comprehensive understanding of
protein and the surface properties, such as surface morphology, size, shape, chemical composition,
and adsorption characteristics. Most commonly studied surfaces interacting with proteins and peptides
are metals and metal oxides due to their applications in nanobiotechnology. Peptide interactions with
metals have been extensively studied due to their inertness (e.g., noble metals) and various applications
in sensors, bioelectronic devices, medical implants, and catalysts. Exploiting the driving forces for
molecular recognition, crystal growth, and shape development promises to yield a useful strategy for
material design and performance predictions. Two examples of inorganic–organic models are shown
in Figure 4.
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Figure 4. Modeling of proteins on different surfaces (a) ab initio Quantum Mechanics (QM), Molecular
Dynamics (MD) and Brownian dynamics is used to study Ubiquitin-Au complex [75]. (b) The adsorption
of α-chymotrypsin and hen egg white lysozyme on amorphous silica is studied by means of MD
simulations in comparison with adsorption experiments. [76].

While atomistic simulations and FF parameters are well established for describing biomolecules
and inorganic materials, FF parameters of these simulations related to one side may not be applicable
for the other one, and they are likely to fail for the interfaces. Finding the right dataset to parameterize
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an FF for organic–inorganic hybrid systems is a challenging task, but it is necessary for geometry
optimization and quantitative calculation of system properties. Another significant challenge in
modeling of organic–inorganic interactions is the unavailability of FFs and software that adequately
describe the inorganic surface, the biomolecule, and the cross-terms. The INTERFACE FF [77] currently
includes the PCFF-INTERFACE, CHARMM-INTERFACE, and CVFF-INTERFACE distributions that
can be used with Discover, Forcite (Materials Studio), LAMMPS [78], and NAMD [79]. Alternative FFs
also include GOLP [80] and GOLP-CHARMM [81] FFs to account for polarizability. These models fail
when metal atoms are not fixed and thus they are mostly applicable to idealized surfaces.

A large number of computational studies have been performed on the interface of proteins/peptides
and metals such as Au(111), Au(100), Pd, Pt and Ni and Pd-Au bimetal [82–84]. Heinz et al.
optimized Lennard Jones (12-6 and 9-6) parameters for several face-centered cubic (fcc) metals such
as gold, palladium, and platinum and their interfaces with organic and inorganic molecules, water,
and biopolymers, and thereby achieved the ability to accurately reproduce densities, surface energies,
and interface energies. Furthermore, based on MD simulations and experimental results, it has been
concluded that the mechanism of adsorption conforms to soft epitaxy (a crystalline overlayer on
a crystalline substrate) for peptides on metal surfaces [85]; this mechanism is characterized by the
coordination of polarizable atoms (C, N, O) in peptides with epitaxial fcc, and epitaxial hexagonal
cubic packing (hcp) sites on the metal surface. Therefore, the molecular size and geometry, rather than
the specific chemistry, determine the adsorption energy. Independent of the type of metal, simulations
have shown a preference in adsorption of peptides on fcc(111) facets over (100) facets. This preference
can be explained in terms of the available fcc lattice cites above the metal surface. A hexagonal spacing
of ~ 1.6 A between available lattice spacing favors aromatic rings, while a quadratic spacing of ~2.8 A
prefers only small molecules such as water (see Figure 5a.). Large molecules, such as common sp2
(Arg, Trp, Gln, Tyr, Asn, and PPh3) and hybridized sp3 in peptides adsorb most strongly since they are
a very good fit to (111) metal surfaces, while short molecules with sp3 hybridized alkyl groups exhibit
the least attraction. The phenyl ring of hexagonal symmetry, for example, can best coordinate on (111)
surface (flat-on parallel conformation) rather than on (100) and (110) surfaces (tilted conformation).
The strength of adsorption of peptides on metal surfaces is a result of competition between small water
molecules with the peptides (see Figure 5b). Residues such as Phe, Arg, Tyr, Trp, His, and Asp (F, R, Y,
W, H, and D) that contribute to binding are in direct contact with the metal surfaces, and, in contrast,
less-binding residues are separated from the surface by one or two water layers, thus resulting in lower
adsorption energy.

According to simulations, the binding differential of the peptides to (111) and (100) facets in the
soft epitaxial adsorption can lead to the selective stabilization of crystal facets during nanoparticle
growth from seed crystals, while various phenylalanine containing peptides are employed as shape
directing templates for nanoparticles. It has been shown that the presence of the phenyl ring in
peptide sequences with and without F is sufficient as a molecular switch to convert cuboctahedral
or cubic nanocrystals into tetrahedral during the growth process [86]. In particular, decorated
metal nanoparticles have applications in biomining [87], cell targeting, imaging, and therapeutic
purposes [88,89]. Specific binding of peptides on graphene [90–94] has also been investigated both
computationally and experimentally. Graphene and Graphite surfaces are hydrophobic in nature,
which results in negative binding energy of peptides in aqueous solutions. Common residues with
higher affinity for graphene and graphite involve H, Y, W, and F, as well as amide groups in Q and
N [90–95]. The epitaxial interaction between graphite layers is expected to be weak (the cleavage energy
is only 190 mJ m−2). Therefore, the possibility of pi-stacking interactions contributes to moderate
adsorption of aromatic molecules.
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SiO2 [96–99] and TiO2 [100–102] have been widely studied due to their numerous potential
applications. Silica is a crucial component in drug carriers [103,104], catalyst support [105] and filler
in deformed modifier of polymer composites and hydrogels [106]], and is one of the most abundant
oxides on Earth. Developing FFs for the interface between silica and water is very challenging due
to the variety of the surface chemistry and the complex nature of the interface. Several FFs have
been developed for bulk silica [107,108], silicon oxides [109], and alpha-quartz [110]. Rimola et al.
developed FFsiOH FFs for both bulk and surface silica [111]. Ramakrishnan et al. parametrized
the existing CVFF FF with silicon parameters for n+silicon (1 0 0) surface [93,112], and studied the
specific binding of peptides selected by phage display on it. Strongly bonded peptides on n+ Si(100)
surface, meanwhile, have been identified as M, W, D, T, H, S, and R [93]. The surface chemistry of
the amorphous silica particles is, therefore, dependent on the surface topography; the distribution of
Q4, Q3, and Q2 environments; and the distribution of siloxane (Si–O–Si), silanol (Si–OH), and ionic
siloxide (Si–O–···Na+) groups.

Adsorption on oxide surfaces is governed by a different mechanism than are metals such as ion
pairing, hydrogen bonds, hydrophobic interactions, and conformational changes of peptides. It has
been shown that the ion pairing is the dominant mechanism of peptide binding when the surface
charge of silica is significant. A higher pH value in the solution results in a higher negative charge
density on the silica surface, and favors the adsorption toward positively-charged peptides, while it
weakens the attraction of negatively charged peptides and reduces the influence of hydrogen bonds
and hydrophobic interactions. pH has little effect on neutral peptides, which are not as strongly bound
by hydrogen bonds and hydrophobic interactions. Interfacial hydrogen bonds involve oxygen and
hydrogen atoms in silanol groups, siloxide ions, and lattice oxygen atoms on the silica surface in
contact with alcohol groups, backbone amide groups, and aromatic hetrocycles in peptides. Hydrogen
bonds play a primary role when the charge of the silica is zero for all peptides, and peptides with
cationic groups can predominantly adsorb to silica surface at any pH. In addition, Peptides containing
hydrophobic residues increasingly interact with the silica surface. Residues such as F, W, L, I, and V
can be effectively drawn to silica surfaces at lower pH, as well as to silica surfaces of lower area
density of silanol groups. The interaction of hydrophobic residues originates form depletion forces to
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avoid disruptions of the network of hydrogen bonds in the aqueous phase that would occur when
the hydrophobic residues remain immersed. As a result, there is no intrinsic attraction of these
groups to silica, and the driving force is rather the exclusion from water on less ionized silica surfaces.
On increasingly ionized silica substrates, hydrophobic groups do not approach the surface because
they would disrupt the hydration shells of siloxide ions and of cations in proximity of the surface.
Another contribution to the adsorption mechanism arises from the conformation preference of the
peptides on silica surfaces, especially for longer sequences of peptides. The effect of conformational
changes on the adsorption mechanism is more dominant in metal oxides compared to the metals as the
reduction in surface energy in metal oxides [113,114].

Titanium oxide (Titania) surfaces exhibit ionization of superficial terminal hydroxyl groups (Ti-oh)
similar to silica, and have exhibited similar mechanisms of molecular recognition and binding. Steered
MD simulations show that the ion pairing is the dominant binding mechanism between TiO- groups
and positively charged R and K residues in the sample peptide (RKLPDA). The free energy profile
of RKLPDA on an oxidized titanium surface has been calculated using metadynamics and replica
exchange with solution tempering (REST). The typical conformations for the peptide on the surface
involves flat as well as upright conformation with R and K residues bounded to the surface [61].
Furthermore, Monti et al. and Carravetta have parametrized the FF for the rutile TiO2(110) [101,115].

Computer simulation of material surfaces and interfaces is still in the early stages of development,
and most of the studies related to the interactions of surface and interface have been limited to
electrostatic and Van der Waals interactions. However, the interactions occurring at surfaces and
interfaces are not restricted to non-bonding interactions. These interactions constitute a complex
process including adsorption, diffusion, and even breaking or forming covalent bonds. Some specific
methods have been developed to meet such demands. ReaxFF, for instance, was developed to allow
molecular bonds to be broken and re-formed and covalent chemical reactions to take place in a
simulation without using quantum mechanics. [21,116], while the QM/MM method was developed to
meet the demands both of serving large simulation systems and ensuring high accuracy [117,118].

3. Modeling of Nanopores for DNA Sequencing Applications

DNA sequencing technology provides an opportunity to identify the genetic risk factors associated
with complex human diseases, and has the potential to establish a new era of personalized medicine in
medical research and health care. The chain-termination method, proposed by Sanger and Gilbert
in 1977 [119], was the first feasible method by which to detect nucleic acid sequences. However,
according to the National Human Genome Research Institute, it costs at least $10 million to sequence
the enormous amount of 3 billion base pairs of the DNA found in the genomes of humans using
Sanger-based sequencing. The growing need for faster and more cost-effective sequencing of the human
genome has created enthusiasm for the development of new technologies that surpass the conventional
Sanger chain-termination methods in terms of speed and economy. Nanopore sensors are promising
DNA sequencing technologies poised to meet this demand. The basic idea of using nanopores for
DNA sequencing was proposed by Church et al. in 1995 [120]. The basic idea is to disperse either
double-strand (dsDNA) or single-strand (ssDNA) in a salt solution and apply an electric field in order
to pass the DNA molecule through the pore. As the DNA translocates through the pore, the ionic flow
will be blocked. Therefore, by monitoring the changes in ionic current as a function of time, it should be
possible to determine which nucleotide or base is in the nanopore at the time. Despite multiple efforts
and some promising developments, though, several crucial issues in DNA nanopore sequencing, such
as the high speed of the translocation (temporal resolution) and the low single-nucleotide sensitivity
of the ionic current (spatial resolution), have not yet been fully resolved. Experimental challenges
encountered in DNA nanopore sequencing have stimulated significant computational studies to resolve
these experimental issues. The computational investigations can directly relate the microscopic state of
the system to the measured current, providing an important molecular picture of the mechanisms of
DNA sequence detection in a manner not attainable through experimentation. MD simulations also
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provide a means to study the translocation of biological molecules through nanoscale pores at levels of
detail that are difficult to achieve with experimental methods alone [121–125]. Biological, solid-state,
and the combination of both (hybrid) nanopores can be used for DNA sequencing. α-haemolysin
and Mycobacterium smegmatis porin A (MspA) membrane pores, it should be noted, were the first
biological pores to demonstrate the feasibility of DNA sequencing experimentally.

α-Hemolysin (α-HL) was the first and is most commonly used biological nanopore, representing
a remarkable value in the field of DNA sequencing. Several properties of this mushroom-shaped
heptamer make this membrane channel suitable for various biotechnological applications. First,
the structure of α-HL remains functionally stable at temperatures close to 100 ◦C [126] within a wide
pH range (pH 2–12) [126]. Furthermore, the inner diameter of the α-HL channel and the size of a
single-stranded DNA (ssDNA) molecule are very close in size (diameter ~ 1.3 nm), such that the α-HL
nanopore is able to discriminate single nucleotides using the ionic current inside the nanopore [127].
Since its transmembrane pore is open at normal conditions [128], α-hemolysin has the ability to
spontaneously bind to various biological or synthetic lipid bilayers [129], and does not require specific
ionic conditions. It has been experimentally observed that the interaction between ssDNA and the
α-HL pore channel depends strongly on the orientation of the ssDNA molecules with respect to the
pore. Remarkably, the voltage-free diffusion of the 3′-threaded DNA (in the trans-to-cis direction)
is two times slower than the corresponding 5′-threaded DNA having the same poly(dA) sequence.
All-atom molecular dynamics simulations of this system delineate a microscopic mechanism for the
asymmetric behavior. In a confining pore of biological protein, the ssDNA straightens and its bases tilt
toward the 5′ end, assuming an asymmetric conformation. Consequently, the bases of a 5′-threaded
DNA experience larger effective friction and forced reorientation that favors co-passing of ions. MD
simulation results denote that the translocation process through a narrow pore is more complicated
than previously believed and involves base tilting and stretching of ssDNA molecules inside the
confining pore. It is worth noting that MD simulations have been performed without any a priori
knowledge of the experimental data, (i.e., which orientation is faster or causes larger ion current
blockade) [130].

Another commonly used biological nanopore is MspA. It has been experimentally shown that DNA
strands immobilized inside the MspA pore produce ionic current blockades that permit identification
of a single nucleotide substitution in the DNA sequence [131](see Figure 6). However, with a high
transport velocity of the DNA within the nanopore, the ionic current cannot be used to distinguish
signals within noise. The Aksimentiev group investigated, through all atom molecular dynamics (MD)
simulations (~100 µs in total), the molecular origin of such extreme sensitivity of the ionic current to
the sequence and orientation of DNA strands. The constriction of this nanopore, they found, contains
positively asparagine substitutions. They performed several arginine mutations to examine the effect
of the positively-charged residues on the DNA transportation speed, discovering that additional
positively charged arginine substitutions near the constriction of MspA can cause a ~10- to 30-fold
reduction in DNA translocation speed due to continuous contact between the arginine substitution
and the DNA backbone, or due to base-stacking interactions while preserving the nucleotide-type
specificity of the ionic current blockades. These results reveal the importance of nanopore geometry
and charge location and may help to direct the modification of nanopores such as MspA to improve
their utility for nanopore sequencing and other nanopore technologies. The same group coupled a
MspA biological nanopore with a DNA processing enzyme, which opens the double-stranded DNA
helix and slowly ratchets one of its strands through the pore channel in order to reduce the speed of
DNA transportation through the MspA protein. Employing molecular dynamics simulations, they
found that the quantity of the displaced water from the nanopore by the DNA strand regulates the
nanopore ionic current, whereas the steric and base-stacking properties of the DNA nucleotides control
the amount of water displaced. Unexpectedly, they found the effective force on DNA in MspA to
undergo large fluctuations, which may produce insertion errors in the DNA sequence readout [132].
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Despite having shown much promise, the sensitivity of the lipid membrane used to fix biological
nanopores to the temperature, pH value, and salt concentration, and the applied bias have been
identified as major drawbacks with respect to the use of biological pores in practical applications.
For this reason, solid-state nanopores, fabricated in membrane materials such as SiO2, Si3N4, Al2O3,
and plastic have emerged as a promising alternative to biological nanopores [133–135], as they not
only are robust and durable within the given environment but also permit convenient, controllable,
and reproducible manipulation of physical and chemical properties of nanopores, in addition to
delivering the advantage of being readily integrated into semiconductor devices and chips.

There have been extensive studies conducted on double-stranded DNA (dsDNA) translocation [136–148],
single-stranded DNA (ssDNA) translocation [138,149], and protein translocation [150,151] through
solid-state pores. A wealth of interesting results have been obtained with respect to solid-state
nanopores, such as translocation time as a function of DNA length [137], salt dependence on ion
transport during DNA translocation [146,147,152], unzipping of DNA during translocation [141,153],
and discrimination of ssDNA and dsDNA based on pore diameter [138,154]. However, the thickness of
solid-state nanopores makes it difficult to detect individual base-specific modulation in ion currents as
multiple base pairs interact with the nanopore channel simultaneously [155]. Single-layer materials such
as graphene [133–135,156], MoS2 [157], and BN [138,158,159] nanopores have been used as an alternative
to conventional solid-state pores. A potential advantage of these ultrathin membranes is their thickness
(~0.3 nm, which is comparable with the height of the nucleotide), which improves spatial resolution
in sequencing measurements. Instead of actually building and testing the device experimentally,
molecular dynamics simulations can assist and enable a bottom-up design of two-dimensional material
nanopore devices by unveiling the atomic-level processes occurring during nanopore sensing.

Graphene is one of the most fascinating single-layer materials for DNA sequencing. It is
impermeable to ions, and, due to its strength, it can form a freestanding membrane, enabling the ideal
atomically thin membrane for nanopore measurements. Another important and advantageous property
of graphene is that it is electrically conductive, which opens up the possibility to monitor an in-plane
current through the membrane when the DNA molecule translocates. However, despite intensive
research efforts in this area, the identification of individual bases has not yet been achieved by graphene
nanopores, mainly because the speed of DNA translocation through the pore is too high to permit
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individual bases to be distinguished. Furthermore, the conformational fluctuations of DNA inside the
pore add significant noise to the measured signal. Computational simulations have been conducted to
investigate whether indeed DNA sequencing is possible with ionic current detection through graphene
nanopores. Sathe et al. studied the interaction of DNA with the pore while DNA translocates through
a graphene pore in order to evaluate the manner in which this affects the ionic current [160–162].
Initially, they found that poly(AT) and poly(GC) can be distinguished at a bias voltage of 1 V [160].
However, the simulations also exposed some complications with the approach, as they showed that the
bases move stochastically through the pore, leading to sequencing errors. Furthermore, the blockage
in the current was predicted to be highly dependent on the local conformation of the DNA bases
inside the pore, resulting in a strong overlap of the current blockades for the different bases [160,161].
Interestingly, hydrophobic adhesion of bases to the graphene surface right next to the pore was found
to considerably reduce the possible single-stranded DNA conformations, leading to a reduction in
the translocation speed of the DNA through the nanopore [161]. These simulations suggested that
a three-layer graphene sheet produces the best ‘stepwise’ translocation pattern, such that collective
binding and unbinding of the bases on both sides of the membranes is possible, while fluctuations in
the DNA base conformations inside the pore are minimized [161].

Recently, quantum mechanics Green’s function-based transport calculations were used to calculate
the transverse electronic conductance of the graphene sheet while the stretched ssDNA are translocating
through the pore to record the intrinsic stepwise DNA motion (see Figure 7). The measurement
scheme described paves the way to enhance the signal-to-noise ratio, not only by slowing the DNA
translocation to provide sufficient time for base recognition, but also by stabilizing single DNA bases
and thereby reducing thermal noise [163].
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(a) Schematic of ssDNA and a graphene nanopore, and (b) Transverse calculated sheet current through
graphene shown together with the number of permeated nucleotides during ssDNA translocation [163].

To overcome the limitations of biological and solid state nanopores, it has been proposed to
combine the best properties from both types of nanopores [164,165], leading to next-generation hybrid
nanopores. The idea is to attach specific biological recognition groups inside the solid-state nanopores.
This should substantially improve the chemical specificity, while still maintaining mechanical and
chemical stability. Several hybrid nanopores have been created [164–167]; however, there are no reports
in the literature of their having been used in DNA sequencing.

In summary, nanopore-based DNA sequencing offers an inexpensive, reliable technology which
could thrust genomics into personal medicine and open a new frontier in gene detection. Instead of
physically building and testing the DNA sequencing device experimentally, with the associated cost,
molecular dynamics simulations can be employed to build a bottom-up design of biological or material
nanopore devices. Simulation unveils the atomic-level processes occurring during nanopore sensing,
guiding experiments to overcome significant challenges in the effort to reach single-base resolution,
given the fast translocation times, the conformational fluctuations, the stochastic translocation of the
bases, and the high noise levels. To address the abovementioned challenges, alternative materials
can be used for nanopore structures because we can evidently not change the properties of the DNA.
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Furthermore, the nanopore geometry (pore diameter and charge on the pore surface) can greatly
modulate the drag forces, something that is not considered in most simulations. In addition, the error
rate of DNA sequencing has not been assessed in most computational studies since the read lengths of
the DNA molecules used in these studies have been very short. All these issues need to be attended in
the future.

4. Computer-Aided Drug Design

One notable application of biomolecular modeling is Computer-Aided Drug Design (CADD).
Drug discovery begins with target and lead discovery, followed by lead optimization and pre-clinical
in vitro and in vivo studies to identify the best candidate compounds that satisfy the main criteria
for drug development. [8] Drug design using in silico methods is cost-effective compared to in vivo
and in vitro methods and it may also reduce the time it takes for a drug to reach the market. In this
regard, an article in the October 5, 1981, issue of Fortune, entitled the “Next Industrial Revolution:
Designing Drugs by Computer at Merck” (Van Drie, 2007 [168]), is sometimes referred to as heralding
the inception of the field of computer-aided drug design (CADD).

CADD methods can be broadly classified into two groups, namely, ligand-based (LB) and
structure-based (SB) drug discovery (see Figure 8). When the target structure is not experimentally
determined (via X-ray Crystallography or NMR) or when it is found to be challenging to predict a
structure using homology modeling or ab initio methods, ligand-based approaches are often used
as an alternative. Also, LBDD methods can be performed even if the target structure is available.
These methods, however, rely on information about known actives. Molecular similarity approaches,
QSAR (quantitative structure–activity relationship) modeling, and pharmacophore modeling are some
popular LBDD approaches. In LBDD molecular similarity approaches, common structural features
of ligands (fingerprints) that bind to a target are used to carry out the screening [169]. The similarity
search approach allows for the representation of a molecule in such a way that it can be effectively
compared against other molecules [170]. Another notable approach is the quantitative structure–activity
relationship (QSAR), which models the relationship between the structural features of the ligands that
bind to a target and the corresponding biological activity effect [171]. Another field gaining ground in
the area of computational ligand-based drug discovery is pharmacophore modeling, where common
structural features of ligands that bind to a target are used to carry out the screening [172]. The 3D
structure of various drug molecules, it should be noted, is now available in several large databases
such as NIH [173], ZINC [174,175], and DrugBank [176].

In SBDD methods, the 3D structure of the target (protein receptors, enzymes) is known and
can usually be obtained by X-ray crystallography or NMR experiments as mentioned above. If the
crystal structure of the target is not known, then homology modeling can be used to build the 3D
structure of the target. Knowing the target structure makes it possible to exploit effective tools such as
structure-based virtual screening and direct docking methods on targets and possible drug molecules.
In structure-based virtual screening, large databases of chemical structures are searched in order to
identify the potential drug candidates that are most likely to bind to a drug target. In this process,
the drug candidate will be docked into a protein target, and a scoring function will be applied to
estimate the probability that the drug candidate will bind to the protein target with high affinity [177].
Geometry-based binding site identification algorithms can be used to predict the binding pocket sites
of the protein. Binding pocket sites indicate the location where small molecules can bind to target
structures, which are associated with diseases. In this regard the high affinity drug candidates are
called “hits”. Molecular docking is a method that can predict the preferred orientation of one molecule
(ligand) to a second (receptor, protein) when they bind and form a stable complex structure [178]. De
novo ligand design is another method that makes it possible to build up ligand molecules that are
drug-like within the constraints of the binding pocket by assembling small pieces in a stepwise manner
with much less search space having to be explored. The biochemical and organic model builder (BOMB)
program, as a de novo ligand design method, can be used to design ligands that bind to the target
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without using ligand databases by adding substituents into a core structure of ligand molecules [179].
Inhibitors for E. coli RNS polymerase, for instance, have been designed using this method [180].

Molecules 2019, 24, x FOR PEER REVIEW 17 of 30 

 

ligands that bind to the target without using ligand databases by adding substituents into a core 
structure of ligand molecules [179]. Inhibitors for E. coli RNS polymerase, for instance, have been 
designed using this method [180].  

 
Figure 8. Schematic representation of a Computer-Aided Drug Design (CADD) pipeline whose 
methods are mainly classified into structure-based and ligand-based methods. Hits are identified, 
filtered, and optimized to obtain potential drug candidates to be experimentally tested [52]. 

High affinity hit molecules that have passed through the hit-to-lead optimization process are 
called leads. During lead optimization, the effectiveness of hits obtained is augmented to reach the 
desired affinity, drug safety, and absorption, distribution, metabolism, and excretion/elimination 
(ADME) properties. For more precise results, the affinity of hit molecules to targets can be evaluated 
by computing various estimates of binding free energies. The outcome selected lead molecules are 
tested in vitro for their activity. Lead optimisation is, by its very nature, an iterative process whereby 
the information between In vitro verification and lead optimization is interchanged, leading to 
candidate drug. This narrows down the drug candidates and allows experimentalists to focus their 
resources on examining compounds likely to have a given activity of interest.  

Structure-based virtual screening processes are fast but are associated with an underlying 
problem, which is the plasticity of the target. In most cases the flexibility of the target molecules is 
limited or ignored. MD simulations are frequently used in drug design processes, and can be used to 
generate multiple receptor conformations for virtual screening purposes. Multiple snapshots can be 
extracted from MD trajectory as a different conformation variant of the binding pocket 
representative. MD can also be used as a post-docking tool to validate and/or refine docking 
solutions. In this case, MD is able to distinguish the bad docking poses from meaningful ones. First, 
the complex ligand-receptor structure is not stable and the ligand may even leave the binding site. In 
this regard, RMSD analysis can be used to check the stability of the ligand-receptor structure. MD in 
explicit solvent, meanwhile, can take into account the presence of structural water molecules within 
the binding site, which is important for correctly predicting ligand binding [181]. MD simulation is 
also an important tool in identifying the drug binding pathway for a number of reasons; first, insight 
into the binding pathway is crucial in gaining a thorough understanding of ligand binding kinetics 
[182]. Second, it is important for investigation of non-active site mutations which could possibly 

Computer Aided Drug Discovery 
(CADD) 

Target Identification 

Structure Based (SB) 

Structure 
Preparation 

High-throughput 
Docking 

Hits 

De novo Ligand 
Design 

Ligand Based 
(LB) 

QSAR Pharmacophore 
mapping 

Hits 

Hit-to-lead 
Optimization 

Lead 
Optimization 

In Vitro 
Verification 

Drug 
Candidates 

Similarity 
Searches 

Figure 8. Schematic representation of a Computer-Aided Drug Design (CADD) pipeline whose methods
are mainly classified into structure-based and ligand-based methods. Hits are identified, filtered, and
optimized to obtain potential drug candidates to be experimentally tested [52].

High affinity hit molecules that have passed through the hit-to-lead optimization process are
called leads. During lead optimization, the effectiveness of hits obtained is augmented to reach the
desired affinity, drug safety, and absorption, distribution, metabolism, and excretion/elimination
(ADME) properties. For more precise results, the affinity of hit molecules to targets can be evaluated by
computing various estimates of binding free energies. The outcome selected lead molecules are tested
in vitro for their activity. Lead optimisation is, by its very nature, an iterative process whereby the
information between In vitro verification and lead optimization is interchanged, leading to candidate
drug. This narrows down the drug candidates and allows experimentalists to focus their resources on
examining compounds likely to have a given activity of interest.

Structure-based virtual screening processes are fast but are associated with an underlying problem,
which is the plasticity of the target. In most cases the flexibility of the target molecules is limited or
ignored. MD simulations are frequently used in drug design processes, and can be used to generate
multiple receptor conformations for virtual screening purposes. Multiple snapshots can be extracted
from MD trajectory as a different conformation variant of the binding pocket representative. MD can
also be used as a post-docking tool to validate and/or refine docking solutions. In this case, MD is
able to distinguish the bad docking poses from meaningful ones. First, the complex ligand-receptor
structure is not stable and the ligand may even leave the binding site. In this regard, RMSD analysis
can be used to check the stability of the ligand-receptor structure. MD in explicit solvent, meanwhile,
can take into account the presence of structural water molecules within the binding site, which is
important for correctly predicting ligand binding [181]. MD simulation is also an important tool
in identifying the drug binding pathway for a number of reasons; first, insight into the binding
pathway is crucial in gaining a thorough understanding of ligand binding kinetics [182]. Second, it is
important for investigation of non-active site mutations which could possibly prevent drugs from
entering binding sites by rupturing the structure of the binding pathway. Finally, the intermediate
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states in the pathway of a ligand may themselves be additional binding sites to be considered in drug
development. [183]. Enhanced sampling methods are often coupled to MD simulations to expedite the
drug-binding processes and to extract useful thermodynamic and kinetic data. A number of techniques
have been developed in this regard, among them free energy perturbation (FEP), umbrella sampling,
SMD, and metadynamics, all of which have been briefly described above.

One of the thermodynamic observables that can be computed from MD trajectory is free energy.
Given that the free energy of a system is a function of its state, the free energy difference found
between the initial and final (binding/unbinding) states is independent of the path taken between
them. Differences in binding energies can be evaluated by different methods. Free energy perturbation
and thermodynamic integration are among the most popular free energy methods [184–186]. Relative
binding affinity of a drug-target system can be calculated using a technique called “alchemical
transformation”, although in drug design they are known as “free energy perturbation” (FEP)
methods [187].

Alchemical methods calculate the work needed to move a system from one state to another
through unphysical pathways. Alchemical methods are based on a non-physical thermodynamic cycle,
where the binding free energy is computed as the sum of multiple steps during which the ligand
is “inserted” or “removed” from different environments, such as bound and unbound states. FEP
methods can be used to investigate the effect of a change of the system (e.g., an amino acid mutation or
a ligand modification) on binding free energy by applying perturbations to see if the binding affinity is
improved or diminished. The relative binding free energy, it should be noted, is an indirect measure of
drug potency upon the chemical change. A typical thermodynamic cycle used to calculate relative
binding free energy employing FEP method is shown in Figure 9.
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Figure 9. Schematic representation of a thermodynamic cycle to calculate the relative binding free
energy upon a ligand modification. The binding free energy of the ligand or protein in state A (∆G1)
and that in state B (∆G2) are the physical binding processes that need to be determined, whereas (∆G3)
and (∆G4) (the vertical legs) indicate the unphysical transformation of ligand A (yellow) to ligand B
(green). However, (∆G3) and (∆G4) values are more accessible to the free energy perturbation methods.
According to the conservation of energy, we can derive (∆∆G = ∆G2 − ∆G1 = ∆G4 − ∆G3).

FEP/MD has been successfully employed to predict the stereoselective binding of a potent modified
peptide inhibitor to the HIV-1 protease [188], with the results demonstrating that the theoretical model
developed can be used reliably for the prediction of relative binding affinities and should be a useful
tool for the design of feasible anti-AIDS therapeutics. Interestingly, the design of HIV-1 inhibitors has
emerged as an excellent testing ground for the FEP methodology in general.
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The thermodynamic integration (TI) method is an alternative to the FEP method for calculating the
difference in free energy between two thermodynamic states which differ from one another according
to their intermolecular or intramolecular interaction potentials. In this case, the interaction potential
can be expressed as a function of a coupling parameter, λ, that determines the state of the system.
The free energy difference of two states is then calculated by integrating the derivative of potential
energy over all coupling parameters related to a series of unphysical intermediate states [189].

Absolute binding free energies, it should be noted, have been calculated with alchemical methods
for a few protein–ligand systems (see Figure 10 for details). One of the most studied macromolecular
systems has been the engineered binding pocket of T4 lysozyme. Mobley et al. studied the binding
of thirteen single-ring fragment-like ligands to a L99A hydrophobic T4 lysozyme cavity mutant.
The computed absolute binding free energies were found to have an RMS error of 1.9 kcal/mol relative
to previously determined experimental values.

1 
 

 

 

 

 

Figure 10. Scheme of the alchemical thermodynamic cycle used to obtain the absolute binding free
energies. The restraints are represented as a lock fastening the ligand to the protein. The interacting
ligand is depicted in color while the non-interacting one is transparent. The light-blue background
represents the water environment. (A) Starting from the top-left corner, the interacting ligand (in color)
is transformed to a non-interacting ligand (transparent) where its electrostatic and vdw interactions
are switched off, releasing the term ∆Gsolvelec+vdw. (B) Then a set of restraints is added to the
non-interacting ligand, delivering the term, ∆Gsolvrestr, which is computed analytically using the
protocol proposed by Boresch [190]. (C) This state is equivalent to having the non-interacting ligand
restrained within the protein cavity. Here the restraint is still on in order to prevent the ligand
leaving the binding pocket when the interactions are scaled to zero. (D) To bring back the restrained
non-interacting ligand in complex with protein to the interaction mode, the charges are turned back
on by switching the vdW and electrostatic interactions on (∆Gprotelec+vdw). Finally, the restraints
between the fully interacting ligand in complex with protein are eliminated. To calculate the absolute
binding free energies (∆Gbind) we sum up the energies of a series of intermediate simulations in a
closed cycle. The standard state correction (∆G = 0) is usually added to this contribution.
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In the past, applications of free energy simulations were typically limited to a very handful
number of ligands that were analyzed after the experimental work. In this respect, all reports describe
work that has been carried out in a retrospective manner, where ligand affinities are known and the
binding conformations have usually been determined by X-ray crystallography. While retrospective
studies often report good results (successful examples), the applicability of free-energy simulations
to prospective work has been limited due to the lack of large-scale validation coupled with the
technical challenges traditionally associated. Fortunately, in recent years more prospective free energy
simulations (in some cases, combined with retrospective studies) have been published by different
groups such as Janssen Pharmaceuticals [191–193], Jorgensen lab [179,194–199], Lovering et al. at
Pfizer [200] and researches at Schrodinger and their academic collaborators [201,202] demonstrating
the robustness and broad range of applicability of this approach, which can be used to drive decisions
in virtual screening and lead optimization stages of drug discovery. For further reading, we refer the
interested readers to other excellent recent review papers [203,204] on free energy methods.

Although recent results from MD-based drug discovery studies are very encouraging, it ought
to be borne in mind that there are still major challenges to be overcome in order to strengthen the
impact of MD-based methods on drug design. Further improvement in the current FFs is required
to order to achieve more accurate simulations. To date in silico drug design methods have been of
vast importance in target identification and in prediction of novel drugs. In conclusion, the fusion
of genomics, bioinformatics, and computational power could do wonders in improving the success
of computer-aided drug design strategies, assisting in identification of new targets, determination of
their structures, and the forming of a quantitative picture of the interactions between macromolecule
and the ligands. Computational methods have provided a powerful toolbox for target identification,
discovery, and optimization of drug candidate molecules. Information technologies coupled with
statistics and chemoinformatic tools, in turn, shed light on disease mechanisms and phenotypes,
revealing potential drug targets to be further validated by high throughput screening technologies.
Consecutively, multiple methods allow for the prediction and characterization of binding sites through
study of the dynamic nature of drug targets, identifying and optimizing new active molecular entities.
Today, large databases of commercially available compounds together with ligand chemical space
exploration offer drug discovery scientists an enormous volume of data with which to work. Different
methods based on readily available information on the biological system under study are evolving to
assist with the manipulation and processing of this data. Moreover, integration of ‘-omics’ technologies
and databases may facilitate the identification of novel drug targets or the design of network-based
multi-target drugs. Structure- and ligand-based methods are the most commonly used methods
within the drug discovery field; however, combinatorial techniques such as proteochemometrics are
gaining prominence.

In future, after the completion of human genome project, pharmacogenomics, which evaluates
the effect of genes and their polymorphism on drug response will revolutionize the drug discovery
and development process based on the evaluation of the different genetic markers. Furthermore,
medicine will be smarter, safer, more personalized and more efficacious based on pharmacogenomics
approaches [205]. Another promising example in drug discovery is that deep learning methods
will become a major computer-aided drug design (CADD) approach in the near future. Although
machine-learning approaches (e.g., QSAR) in modeling studies are more popular, machine intelligence
approaches has been replaced with the deep learning in recent years since it can deal with complex
tasks based on large, heterogeneous, and high-dimensional data sets without the need for human
input [206]. Also, an emerging paradigm in modern drug discovery is of the Poly pharmacology, which
is the design or use of pharmaceutical agents that act on multiple targets or disease pathways. It is
generally thought that complex diseases (ie. Cancer) may require complex therapeutic approaches.
Therefore, polypharmacology suggests that more effective drugs can be developed by specifically
modulating multiple targets. The computational strategies plays an important role in its progress [207].
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5. Conclusions

Large-scale MD simulation of biomolecules and biomacromolecules is an interesting and rapidly
developing area that is contributing increasingly to fundamental understanding of living organisms.
In the era of petascale computing today, large-scale MD simulations are having a profound impact
on numerous diverse scientific endeavors, from biotechnological applications such as the fabrication
of novel smart biomaterials, to DNA sequencing and the treatment of disease and development of
drugs. Although several challenges lie ahead with regard to the improvement of the molecular FF
and sampling of the conformational space, considering the success of these applications thus far,
there is little doubt that large-scale molecular dynamics simulations will play an even more crucial and
expanding role in future work in this area.

The use of computational modeling to complement experiments is helping to bridge the gap
between atomic-level properties with whole-organism function, an endeavor which cannot be
accomplished by either approach alone. A combination of multiple computational techniques,
covering a vast range of time and size scale, is optimal for efficiently capturing information across
biological scales.
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