SUPPLEMENTARY MATERIALS

for

[${ }^{18}$ F]fluoroethyltriazolyl monocyclam derivatives as imaging probes for the chemokine receptor CXCR4
Alejandro Amor-Coarasa, James M. Kelly, Pradeep K. Singh, Shashikanth Ponnala, Anastasia Nikolopoulou, Clarence Williams, Jr., Yogindra Vedvyas, Moonsoo M. Jin, J. David Warren, John W. Babich

Table of Contents

S001. XP Docking Scores for CXCR4 Binders 2
S002. Syntheses of Precursors and Standards 13
S003. Inhibition Binding Assays 36
S004. Saturating Binding Assays 37
S005. Internalization Experiments 39
S006. Tissue Biodistribution 40
S007. Correlation Between Docking Score and $\mathrm{IC}_{50} \quad 41$
S008. NMR Spectroscopic Data 42

S001. XP Docking Scores for CXCR4 Binders

Table S1. Fluorine-containing derivatives of AMD-3465. Docking score was determined in an extra precision screen against human CXCR4 (PDB ID: 3ODU) using Schrodinger. The highest docking score is reported for each compound.

Name	Compound	XP Docking Score
or No.	$(\mathrm{kcal} / \mathrm{mol})$	

1

2

3

4

5

6

7

8

-7.12

9

-6.85

11

1

-8.06

4

-7.79

1

2

3

4

5

6

7

8

-7.91

5

-5.67

S002. Syntheses of Precursors and Standards

General

All commercially available materials were used as received unless otherwise indicated. 4-(bromomethyl)-3-iodobenzoic acid [1] and 2-fluoroethyl azide [2] were synthesized according to literature procedures. All reactions were carried out under an atmosphere of argon in an oven-dried round bottom flask with magnetic stirring, unless otherwise noted. Reactions were monitored by UPLC. HPLC purifications were performed using a Waters AutoPure HPLC/MS system equipped with XBridge OBD prep C18 $5 \mu \mathrm{~m}(19 \times 150 \mathrm{~mm}$) column and SQD2 mass spectrometer. A 10-minute gradient of $5 \%-$ 95% acetonitrile (0.1% formic acid) in water (0.1% formic acid) was used as mobile phase. All NMR spectra were recorded on Bruker DRX- 500 spectrometer (500 MHz for ${ }^{1} \mathrm{H}$ and 125 MHz for ${ }^{13} \mathrm{C}$). Chemical shifts, δ, are reported in ppm, with the residual solvent resonance as internal standard. NMR data are reported as following: chemical shift (multiplicity $s=$ singlet; $d=$ doublet; $t=$ triplet; $q=q u a r t e t ; ~ m=$ multiplet; $\mathrm{br}=$ broad, coupling constant in Hz , and integration).

Figure S1. Synthesis of p-RPS-533 and RPS-533.
PKS8163: 4-(bromomethyl)-3-iodo-benzoic acid ($8.00 \mathrm{~g}, 23.5 \mathrm{mmol}$) was dissolved in methanol (50.0 mL) and $\mathrm{H}_{2} \mathrm{SO}_{4}(2.50 \mathrm{~mL}, 46.93 \mathrm{mmol})$ was added to the solution. The mixture was refluxed under overnight. The solvent was removed, and the mixture was purified by Combi-Flash (silica gel; slow 0-10\% ethyl acetate in hexanes gradient) to give product ($3.4 \mathrm{~g}, 54 \%$) as white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.51$ (d, J = 1.7 Hz, 1H), 7.99 (dd, J = 8.0, 1.7 Hz, 1H), $7.53(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H})$.

PKS8165: methyl 4-(bromomethyl)-3-iodo-benzoate (PKS8163; $547 \mathrm{mg}, 1.54 \mathrm{mmol}$) and triBoc-cyclam ($700 \mathrm{mg}, 1.40 \mathrm{mmol}$) were dissolved in DMF (4 mL). To the solution DIPEA ($490 \mu \mathrm{~L}, 2.80 \mathrm{mmol}$) and potassium iodide ($116 \mathrm{mg}, 700 \mu \mathrm{~mol}$) were added. The mixture was stirred at ambient temperature for 24 h . The reaction mixture was diluted with water and extracted twice with ethyl acetate, and the
combined organic layer was washed with brine, dried over anhydrous sodium sulfate and evaporated. The crude product was purified by Combi-Flash (silica gel; $0-70 \%$ gradient of ethyl acetate in hexanes) to give PKS8165 (1.05 g, 97\%) as a white solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.46(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.95$ $(\mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.41(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~s}, 2 \mathrm{H}), 3.50-3.21(\mathrm{~m}, 12 \mathrm{H}), 2.76-2.58(\mathrm{~m}, 2 \mathrm{H})$, $2.57-2.35(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.30(\mathrm{~m}, 27 \mathrm{H})$.

PKS8167: PKS8165 (925 mg, 1.19 mmol) was dissolved in dry toluene (6 mL) in an argon flushed 50 mL round bottom flask. The solution was cooled to $-78^{\circ} \mathrm{C}$ and diisobutylaluminium hydride (1.0 M in hexane, $2.97 \mathrm{mmol}, 3 \mathrm{~mL}$) was added dropwise. The reaction mixture was slowly warmed to $0^{\circ} \mathrm{C}$. Reaction was quenched with water $(200 \mu \mathrm{~L})$ and $1 \mathrm{~N} \mathrm{NaOH}(3 \mathrm{~mL})$ was added. The resulting mixture was diluted with ethyl acetate and stirred for 30 min . Then the mixture was filtered through Celite and evaporated. The crude product was purified by Combi-Flash to give PKS8167 (740 mg, 83\%) as a white solid. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.56(\mathrm{~s}$, $2 \mathrm{H}), 3.48-3.19(\mathrm{~m}, 12 \mathrm{H}), 2.76-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.54-2.34(\mathrm{~m}, 2 \mathrm{H}), 1.93-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.66(\mathrm{~m}$, 2H), 1.51-1.30 (m, 27H).

PKS8168: To a solution of PKS8167 ($717 \mathrm{mg}, 960 \mu \mathrm{~mol}$) in DCM (15 mL) was added manganese dioxide ($334 \mathrm{mg}, 3.84 \mathrm{mmol}$). The mixture was stirred at ambient temperature overnight and was then heated to reflux for 4 h . After completion of the reaction, the mixture was filtered through Celite, evaporated and dried under vacuum to give PKS8168 as a white solid ($695 \mathrm{mg}, 97 \%$) that was used without further purification. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.90(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, \mathrm{~J}=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 2 \mathrm{H}), 3.52-3.20(\mathrm{~m}, 12 \mathrm{H}), 2.78-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.60-2.36(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.81(\mathrm{~m}, 2 \mathrm{H})$, $1.77-1.66$ (m, 2H), $1.54-1.29$ (m, 27H).

PKS8169: A mixture of PKS8168 ($685 \mathrm{mg}, 920 \mu \mathrm{~mol}$) and 2-pyridylmethanamine ($100 \mu \mathrm{~L}, 966 \mu \mathrm{~mol}$) in DCM (10 mL) was stirred at ambient temperature for 2 h and then sodium triacetoxyborohydride (585 $\mathrm{mg}, 2.76 \mathrm{mmol}$) was added. The resulting mixture was stirred at ambient temperature for 4 h . Excess reagent was quenched with aqueous NaHCO_{3}, the layers were separated and the aqueous layer was extracted with dichloromethane. The combined organic layers were dried over anhydrous sodium sulfate and evaporated to give PKS8169 as a colorless gum (which turned into a fluffy solid under vacuum) that was used without further purification. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}^{2} \mathrm{~d}_{6}$) $\delta 8.50-8.46(\mathrm{~m}, 1 \mathrm{H}), 7.82(\mathrm{~d}, \mathrm{~J}=$ $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}$, $2 \mathrm{H}), 3.67(\mathrm{~s}, 2 \mathrm{H}), 3.51(\mathrm{~s}, 2 \mathrm{H}), 3.47-3.14(\mathrm{~m}, 12 \mathrm{H}), 2.62-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.46-2.28(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.72$ (m, 2H), 1.69-1.55 (m, 2H), 1.43-1.18 (m, 27H).

PKS8170: Di-tert-butyl dicarbonate ($364 \mu \mathrm{~L}, 1.58 \mathrm{mmol}$) was added to a solution of PKS8169 (663.0 mg , $792 \mu \mathrm{~mol}$) in DCM (10 mL). After stirring for 5 min , triethylamine ($329 \mu \mathrm{~L}, 2.38 \mathrm{mmol}$) was added and the reaction mixture was stirred at ambient temperature for 3 h . The solvent was evaporated, and the crude residue was purified by Combi-Flash (silica gel; 0-10 \% methanol in dichloromethane) to give PKS8170 as a white solid. ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, ~ D M S O-\mathrm{d}_{6}\right) ~ \delta 8.53-8.49(\mathrm{~m}, 1 \mathrm{H}), 7.78-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H})$, 7.35 (d, J = 7.1 Hz, 1H), 7.27 (dd, J = 7.5, 4.9 Hz, 1H), $7.25-7.15$ (m, 2H), $4.49-4.41$ (m, 2H), $4.41-4.32$
$(\mathrm{m}, 2 \mathrm{H}), 3.50(\mathrm{~s}, 2 \mathrm{H}), 3.46-3.09(\mathrm{~m}, 12 \mathrm{H}), 2.62-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.45-2.25(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.72(\mathrm{~m}, 2 \mathrm{H})$, $1.69-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.17(\mathrm{~m}, 36 \mathrm{H})$.
p-RPS-533: Ethynyl(trimethyl)silane ($91 \mu \mathrm{~L}, 640 \mu \mathrm{~mol}$) and triethyl amine (1.5 eq.) were added to a suspension of copper (I) iodide ($41 \mathrm{mg}, 214 \mu \mathrm{~mol}$) in THF (1 mL) and the mixture was stirred at ambient temperature for 1 h. In parallel, PKS8170 (200 mg, $213 \mu \mathrm{~mol}$), transdichlorobis(triphenylphosphine)palladium (II) ($74.9 \mathrm{mg}, 107 \mu \mathrm{~mol}$) and triethylamine (1.5 eq .) were dissolved in THF (2 mL) and stirred at ambient temperature for 1 h in a microwave vessel flushed with argon to give a yellow suspension. The copper acetylide solution was added to the microwave vessel to give a clear solution. The mixture was heated to $120^{\circ} \mathrm{C}$ under microwave for 1 h . The mixture was cooled, the solvent was evaporated, and the crude residue was purified by Combi-Flash (silica gel; 0-10\% gradient of methanol in dichloromethane) to give the silyl phenylacetylide ($130 \mathrm{mg}, 67 \%$) as a white solid. The solid ($125 \mathrm{mg}, 137 \mu \mathrm{~mol}$) was dissolved in THF (3 mL). The solution was cooled to $10^{\circ} \mathrm{C}$ and tetrabutylammonium fluoride (1.0 M in THF) ($138 \mu \mathrm{~mol}, 140 \mu \mathrm{~L}$) was added. The solution was warmed to ambient temperature and stirred for 1 h . The solvent was evaporated, and crude residue was purified by HPLC to give p-RPS-533 ($57 \mathrm{mg}, 50 \%$) as a white solid. ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 8.53-8.48(\mathrm{~m}$, $1 \mathrm{H}), 7.79-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.14(\mathrm{~m}, 4 \mathrm{H}), 4.46(\mathrm{~s}, 2 \mathrm{H}), 4.42-4.31(\mathrm{~m}, 3 \mathrm{H})$, $3.62(\mathrm{~s}, 2 \mathrm{H}), 3.44-3.07(\mathrm{~m}, 12 \mathrm{H}), 2.60-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.42-2.25(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.68-$ $1.53(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.17(\mathrm{~m}, 36 \mathrm{H})$.

RPS-533: Copper sulfate pentahydrate ($0.5 \mathrm{M}, 66 \mu \mathrm{~L}$) and sodium ascorbate ($1.5 \mathrm{M}, 22 \mu \mathrm{~L}$) were mixed under argon atmosphere and stirred for 20 min until the solution turned dark orange. In another round bottom flask p-RPS-533 ($14.0 \mathrm{mg}, 17 \mu \mathrm{~mol}$) and 1-azido-2-fluoro-ethane ($0.33 \mathrm{M}, 102 \mu \mathrm{~L}$) were dissolved in DMF (1 mL). To this mixture was added the $\mathrm{Cu}(\mathrm{I})$ reagent, and the resulting reaction was stirred at ambient temperature overnight. The mixture was diluted with dichloromethane and passed through a basic alumina plug. The filtrate was evaporated, and crude product was purified by HPLC to give a white solid ($8.7 \mathrm{mg}, 56 \%$). The solid ($6.0 \mathrm{mg}, 6.5 \mu \mathrm{~mol}$) was dissolved in DCM (0.5 mL) and the solution was cooled to $0{ }^{\circ} \mathrm{C}$. Trifluoroacetic acid (0.5 mL) was added to the solution and the mixture was slowly warmed to ambient temperature. After completion of reaction, excess solvent and TFA were evaporated and crude was purified by HPLC to give RPS-533 ($5.8 \mathrm{mg}, 74 \%$) as the TFA salt and a white solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 9.63(\mathrm{br}, 2 \mathrm{H}), 8.64(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~s}$, $1 \mathrm{H}), 7.57(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=7.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.98-4.92(\mathrm{~m}, 1 \mathrm{H}), 4.89$ - 4.83 (m, 2H), $4.83-4.78(\mathrm{~m}, 1 \mathrm{H}), 4.33(\mathrm{~s}, 2 \mathrm{H}), 4.30(\mathrm{~s}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 2 \mathrm{H}), 3.20-2.79(\mathrm{~m}, 14 \mathrm{H}), 2.65-$ $2.52(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.59(\mathrm{~m}, 4 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta-224.6(\mathrm{tt}, J=46.9,28.1 \mathrm{~Hz})$.

Figure S2. Synthesis of p-RPS-545 and RPS-545.
PKS8199: A mixture of PKS8168 ($206 \mathrm{mg}, 277 \mu \mathrm{~mol}$) and triBoc-cyclam ($138 \mathrm{mg}, 277 \mu \mathrm{~mol}$) in DCM (5 mL) was stirred at ambient temperature for 2 h and then sodium triacetoxyborohydride ($176 \mathrm{mg}, 830$ $\mu \mathrm{mol})$ was added. The mixture was stirred at ambient temperature overnight. Excess reagent was quenched with aqueous NaHCO_{3}, the layers were separated and the aqueous layer was extracted with dichloromethane. The combined organic layers were dried over anhydrous sodium sulfate and evaporated, and the crude residue was purified by Combi-Flash (silica gel; ethyl acetate in hexane) to give PKS8199 ($230 \mathrm{mg}, 67 \%$) as a colorless gum which turned into a fluffy solid under vacuum. ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d $_{6}$) $\delta 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~s}, 2 \mathrm{H}), 3.44(\mathrm{~s}$, $2 \mathrm{H}), 3.40-3.03(\mathrm{~m}, 24 \mathrm{H}), 2.63-2.56(\mathrm{~m}, 2 \mathrm{H}), 2.54-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.44-2.15(\mathrm{~m}, 4 \mathrm{H}), 1.92-1.71(\mathrm{~m}$, $4 \mathrm{H}), 1.61(\mathrm{~s}, 4 \mathrm{H}), 1.47-1.16(\mathrm{~m}, 54 \mathrm{H})$.

PKS8201: Ethynyl(trimethyl)silane ($52 \mu \mathrm{~L}, 366 \mu \mathrm{~mol}$) and triethyl amine (1.5 eq .) were added to a suspension of copper(I) iodide ($23 \mathrm{mg}, 122 \mu \mathrm{~mol}$) in THF (1 mL) under argon atmosphere and the mixture was stirred at ambient temperature for 1 h . PKS8199 ($150 \mathrm{mg}, 122 \mu \mathrm{~mol})$, transdichlorobis(triphenylphosphine)palladium (II) ($43 \mathrm{mg}, 61 \mu \mathrm{~mol}$) and triethylamine (1.5 eq.) were dissolved in THF (2 mL) and stirred at ambient temperature for 1 h in a microwave vessel flushed with argon to give a yellow suspension. The copper acetylide reagent was added to the microwave vessel to give a clear solution. The mixture was heated to $120^{\circ} \mathrm{C}$ under microwave for 1 h . The mixture was cooled, the solvent was evaporated, and the crude residue was purified by Combi-Flash (silica gel; 0-10\%
gradient of methanol in dichloromethane) to give PKS8201 (120 mg, 82\%). ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d ${ }_{6}$) $\delta 7.44-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 2 \mathrm{H}), 3.46(\mathrm{~s}, 2 \mathrm{H}), 3.39-2.97(\mathrm{~m}, 24 \mathrm{H})$, $2.64-2.52(\mathrm{~m}, 4 \mathrm{H}), 2.45-2.10(\mathrm{~m}, 4 \mathrm{H}), 1.79(\mathrm{~s}, 4 \mathrm{H}), 1.56(\mathrm{~s}, 4 \mathrm{H}), 1.47-1.17(\mathrm{~m}, 54 \mathrm{H}), 0.22(\mathrm{~d}, \mathrm{~J}=6.4$ $\mathrm{Hz}, 9 \mathrm{H})$.
p-RPS-545: PKS8201 ($120 \mathrm{mg}, 100 \mu \mathrm{~mol}$) was dissolved in THF (3 mL) and cooled to $10{ }^{\circ} \mathrm{C}$. Tetrabutylammonium fluoride (1.0 M in THF) ($100 \mu \mathrm{~L}, 100 \mu \mathrm{~mol}$) was added, and the solution was warmed to ambient temperature and stirred for 1 h . The solvent was evaporated, and the crude residue was purified by HPLC to give p-RPS-545 ($35 \mathrm{mg}, 31 \%$) as white solid. ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d d_{6}) $\delta 7.40$ $-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~s}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 2 \mathrm{H}), 3.47(\mathrm{~s}, 2 \mathrm{H}), 3.42-3.01(\mathrm{~m}, 24 \mathrm{H}), 2.63-$ $2.54(\mathrm{~m}, 2 \mathrm{H}), 2.54-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.18(\mathrm{~m}, 4 \mathrm{H}), 1.90-1.72(\mathrm{~m}, 4 \mathrm{H}), 1.69-1.51(\mathrm{~m}, 4 \mathrm{H}), 1.45-$ 1.19 ($\mathrm{m}, 54 \mathrm{H}$).

PKS8239: Copper sulfate pentahydrate ($0.5 \mathrm{M}, 35 \mu \mathrm{~L}$) and sodium ascorbate ($1.5 \mathrm{M}, 12 \mu \mathrm{~L}$) were mixed under an argon atmosphere and stirred for 20 min while the solution turned dark orange. In another round bottom flask p-RPS-545 ($9.8 \mathrm{mg}, 9 \mu \mathrm{~mol}$) and 1-azido-2-fluoro-ethane ($0.33 \mathrm{M}, 53 \mu \mathrm{~L}$) were dissolved in DMF (1 mL). The $\mathrm{Cu}(1)$ reagent was added to the mixture, resulting in a dull green color, and the reaction was stirred at ambient temperature overnight. The mixture was diluted with dichloromethane and passed through a basic alumina plug. The filtrate was evaporated, and crude residue was purified by HPLC to give PKS8239 (10 mg, 95\%) as a white solid. ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO$\left.\mathrm{d}_{6}\right) \delta 8.34(\mathrm{~s}, 1 \mathrm{H}), 7.56-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.97-4.89(\mathrm{~m}, 1 \mathrm{H}), 4.87-4.78(\mathrm{~m}, 2 \mathrm{H})$, $4.78-4.71(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 2 \mathrm{H}), 3.53(\mathrm{~s}, 2 \mathrm{H}), 3.48-3.02(\mathrm{~m}, 24 \mathrm{H}), 2.60-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.54-2.46(\mathrm{~m}$, $2 H), 2.39-2.17(m, 4 H), 1.88-1.69(m, 4 H), 1.67-1.49(m, 4 H), 1.45-1.13(m, 54 H)$.

RPS-545: PKS8239 ($10 \mathrm{mg}, 8 \mu \mathrm{~mol}$) was dissolved in DCM $(0.5 \mathrm{~mL})$ and the solution was cooled to $0^{\circ} \mathrm{C}$. Trifluoroacetic acid (0.5 mL) was added to the solution and the mixture was slowly warmed to ambient temperature. After completion of reaction, the excess solvent and TFA were evaporated and the crude residue was purified by HPLC to give RPS-545 ($9.6 \mathrm{mg}, 77 \%$) as the TFA salt and a colorless gum. ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d ${ }_{6}$) $\delta 8.48(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{br}, 6 \mathrm{H}), 4.99-4.76$ $(\mathrm{m}, 4 \mathrm{H}), 3.84(\mathrm{~s}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 2 \mathrm{H}), 3.20-2.92(\mathrm{~m}, 16 \mathrm{H}), 2.86-2.51(\mathrm{~m}, 16 \mathrm{H}), 2.00-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.84-$ 1.63 ($\mathrm{m}, 6 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, ~ D M S O-\mathrm{d}_{6}$) $\delta 145.9,134.7,133.6,131.4,131.1,130.8,130.0,124.4,81.9$ (d, $J=168.5 \mathrm{~Hz}$), $53.9,52.7,50.3(\mathrm{~d}, J=19.1 \mathrm{~Hz}$), 50.0, 49.7, 49.3, 48.4, 48.2, 47.7, 45.1, 44.9, 44.2, 44.1,

Figure S3. Synthesis of p-RPS-534 and RPS-534.
PKS8175: PKS8163 ($800 \mathrm{mg}, 2.25 \mathrm{mmol}$) and 2-pyridylmethanamine ($422 \mu \mathrm{~L}, 4.10 \mathrm{mmol}$) were dissolved in DMF (4 mL). To the solution were added Hünig's base ($716 \mu \mathrm{~L}, 4.10 \mathrm{mmol}$) and potassium iodide (170 $\mathrm{mg}, 1.02 \mathrm{mmol}$). The mixture was stirred at ambient temperature for 24 h , at which point di-tert-butyl dicarbonate ($1.41 \mathrm{~mL}, 6.15 \mathrm{mmol}$,) was added. The mixture was stirred for an additional 4 h before it was diluted with water and extracted twice with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous sodium sulfate and evaporated. The crude residue was purified by Combi-Flash (silica gel; 0-70\% gradient of ethyl acetate in hexanes) to give PKS8175 (950 mg, 96\%) as a colorless gum. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.52(\mathrm{~d}, \mathrm{~J}=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.45(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.03-7.93$ (m, 1H), $7.78-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.13(\mathrm{~m}, 3 \mathrm{H}), 4.74-4.45(\mathrm{~m}, 4 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H})$.

PKS8178: PKS8175 ($125 \mathrm{mg}, 259 \mu \mathrm{~mol}$) was dissolved in dry toluene (4 mL) in an argon flushed 25 mL round bottom flask. The solution was cooled to $-78^{\circ} \mathrm{C}$ and DIBAL-H (1 M in hexane) ($650 \mu \mathrm{~L}, 650 \mu \mathrm{~mol}$) was added dropwise. The reaction mixture was slowly warmed to $0^{\circ} \mathrm{C}$. The reaction was quenched with water $(200 \mu \mathrm{~L})$ and $1 \mathrm{~N} \mathrm{NaOH}(1 \mathrm{~mL})$, diluted with ethyl acetate and stirred for 30 min . Then the mixture was filtered through Celite and the filtrate was evaporated. The crude residue was purified by CombiFlash to give PKS8178 (96 mg, 81\%) as a white solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (rotamers) $\delta 8.56-8.47$
$(\mathrm{m}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{dt}, J=7.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.31(\mathrm{dd}, J=7.9$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 0.5 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 1.5 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 0.5 \mathrm{H}), 4.68-4.42(\mathrm{~m}, 6 \mathrm{H}), 1.42$ ($\mathrm{s}, 9 \mathrm{H}$).

PKS8179: To a solution of PKS8178 ($96 \mathrm{mg}, 211 \mu \mathrm{~mol}$) in DCM (5 mL) was added manganese dioxide (86 $\mathrm{mg}, 845 \mu \mathrm{~mol}, 85 \%$ purity). The mixture was stirred at ambient temperature for 24 h . The reaction was then filtered through Celite and evaporated to give PKS8179 ($87 \mathrm{mg}, 91 \%$) as a white solid that was used without further purification. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.91(\mathrm{~s}, 1 \mathrm{H}), 8.59-8.48(\mathrm{~m}, 1 \mathrm{H}), 8.29(\mathrm{~d}, \mathrm{~J}=1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.88-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.71(\mathrm{dt}, J=7.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.19$ - $7.13(\mathrm{~m}, 1 \mathrm{H}), 4.73-4.47(\mathrm{~m}, 4 \mathrm{H}), 1.44-1.39(\mathrm{~m}, 9 \mathrm{H})$.

PKS8181: A mixture of PKS8179 ($85 \mathrm{mg}, 188 \mu \mathrm{~mol}$) and triBoc-cyclam ($94 \mathrm{mg}, 188 \mu \mathrm{~mol}$) in DCM (4 mL) was stirred at ambient temperature for 2 h and then sodium triacetoxyborohydride ($120 \mathrm{mg}, 564 \mu \mathrm{~mol}$) was added. The resulting mixture was stirred at ambient temperature overnight. Excess reagent was quenched with aqueous NaHCO_{3}, the layers were separated and the aqueous layer was extracted with dichloromethane. The combined organic layers were dried over anhydrous sodium sulfate and evaporated, and the crude residue was purified by Combi-Flash (silica gel; ethyl acetate in hexane) to give PKS8181 ($140 \mathrm{mg}, 80 \%$) as a colorless gum which turned into a fluffy solid under vacuum. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.53(\mathrm{~d}, \mathrm{~J}=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.10(\mathrm{~m}, 3 \mathrm{H})$, $4.69-4.41(\mathrm{~m}, 6 \mathrm{H}), 3.58-3.04(\mathrm{~m}, 12 \mathrm{H}), 2.70-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 2 \mathrm{H}), 1.99-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{~s}$, 2H), 1.52-1.32 (m, 36H).

PKS8183: Ethynyl(trimethyl)silane ($25 \mathrm{mg}, 256 \mu \mathrm{~mol}$) and triethyl amine (1.5 eq .) were added to a suspension of copper iodide ($16 \mathrm{mg}, 85 \mu \mathrm{~mol}$) in THF (1 mL) under argon atmosphere and the mixture was stirred at ambient temperature for 1 h . In parallel, PKS8181 ($80 \mathrm{mg}, 85 \mu \mathrm{~mol}$), transdichlorobis(triphenylphosphine)palladium (II) ($30 \mathrm{mg}, 43 \mu \mathrm{~mol}$) and triethylamine (1.5 eq .) in THF (1 mL) were stirred at ambient temperature for 1 h in a microwave vessel flushed with argon to give a yellow suspension. The copper acetylide reagent was added to the microwave vessel to give a clear solution. The mixture was heated at $120^{\circ} \mathrm{C}$ under microwave for 1 h . The mixture was cooled, the solvent was evaporated, and the crude residue was purified by Combi-Flash (silica gel; 0-10\% gradient of methanol in dichloromethane) to give PKS8183 ($42 \mathrm{mg}, 54 \%$) as a white solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 8.50$ (d, J = $4.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.76(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.13(\mathrm{~m}, 4 \mathrm{H}), 4.68-4.33(\mathrm{~m}, 4 \mathrm{H}), 3.46(\mathrm{~s}$, $2 \mathrm{H}), 3.38-2.97(\mathrm{~m}, 12 \mathrm{H}), 2.60-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.38-2.17(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.50(\mathrm{~m}$, 2H), $1.45-1.20(\mathrm{~m}, 36 \mathrm{H}), 0.09(\mathrm{~s}, 9 \mathrm{H})$.
p-RPS-534: PKS8183 ($30 \mathrm{mg}, 33 \mu \mathrm{~mol}$) was dissolved in THF (2 mL) and cooled to $10{ }^{\circ} \mathrm{C}$. Then tetrabutylammonium fluoride (1.0 M in $\mathrm{THF}, 33 \mu \mathrm{~L}, 33 \mu \mathrm{~mol}$) was added, the solution was warmed to ambient temperature, and stirred for 1 h . The solvent was evaporated, and crude residue was purified by HPLC to give p-RPS-534 ($22.5 \mathrm{mg}, 81 \%$) as a white solid. ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 8.50(\mathrm{~d}, \mathrm{~J}=$ $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{dd}, J=7.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-$ $7.14(\mathrm{~m}, 2 \mathrm{H}), 4.68-4.36(\mathrm{~m}, 4 \mathrm{H}), 4.31(\mathrm{~s}, 1 \mathrm{H}), 3.47(\mathrm{~s}, 2 \mathrm{H}), 3.29-3.02(\mathrm{~m}, 12 \mathrm{H}), 2.54-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.38$ $-2.17(m, 2 H), 1.89-1.73(m, 2 H), 1.68-1.53(m, 2 H), 1.43-1.22(m, 36 H)$.

PKS8233: Copper sulfate pentahydrate ($0.5 \mathrm{M}, 18 \mu \mathrm{~L}$) and sodium ascorbate ($1.5 \mathrm{M}, 12 \mu \mathrm{~L}$) were mixed in an argon atmosphere and stirred for 20 min . The solution turned black and then brown. In another round bottom flask, p-RPS-534 ($7.4 \mathrm{mg}, 9 \mu \mathrm{~mol}$) and 1-azido-2-fluoro-ethane ($1.6 \mathrm{mg}, 18 \mu \mathrm{~mol}$) were dissolved in DMF (1 mL). To this mixture was added the $\mathrm{Cu}(\mathrm{I})$ reagent, resulting in a dull green solution. The reaction was stirred at ambient temperature overnight, diluted with dichloromethane and passed through a basic alumina plug. The filtrate was evaporated, and the crude residue was purified by HPLC to give PKS8233 ($5.8 \mathrm{mg}, 71 \%$) as a white solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, ~ D M S O-\mathrm{d}_{6}$) $\delta 8.45(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}$), $8.41-8.30(\mathrm{~m}, 1 \mathrm{H}), 7.76-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.20(\mathrm{~m}, 2 \mathrm{H})$, $7.17(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.94-4.86(\mathrm{~m}, 1 \mathrm{H}), 4.86-4.64(\mathrm{~m}, 5 \mathrm{H}), 4.45-4.30(\mathrm{~m}, 2 \mathrm{H}), 3.54(\mathrm{~s}, 2 \mathrm{H}), 3.54-$ 3.07 (m, 12H), $2.62-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.42-2.27(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.47-$ 1.13 (m, 36H).

RPS-534: PKS8233 ($5.8 \mathrm{mg}, 6 \mu \mathrm{~mol}$) was dissolved in DCM (0.5 mL) and the solution was cooled to $0^{\circ} \mathrm{C}$. Trifluoroacetic acid (0.5 mL) was added to the solution and the mixture was allowed to warm to ambient temperature slowly. After completion of reaction, excess solvent and TFA were evaporated and the crude residue was purified by HPLC to give RPS-534 ($3.2 \mathrm{mg}, 42 \%$) as a colorless gum. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, DMSO-d $\mathrm{d}_{6} \delta 9.67(\mathrm{br}, 2 \mathrm{H}), 8.72(\mathrm{~s}, 1 \mathrm{H}), 8.59(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42$ (dd, J = 7.6, $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.00-4.94$ $(\mathrm{m}, 1 \mathrm{H}), 4.90-4.84(\mathrm{~m}, 2 \mathrm{H}), 4.84-4.78(\mathrm{~m}, 1 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 2 \mathrm{H}), 3.20-3.07(\mathrm{~m}$, $6 \mathrm{H}), 3.05(\mathrm{t}, \mathrm{J}=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.85-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.75-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.68-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.62-2.54(\mathrm{~m}$, $2 \mathrm{H}), 2.04-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.65(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO-d $\left._{6}\right) \delta 151.8,149.1,145.9,137.4$, $137.2,132.7,130.6,130.5,130.0,128.0,124.3,123.7,123.3,81.8(\mathrm{~d}, \mathrm{~J}=168.2 \mathrm{~Hz}), 53.7,50.6$ ($\mathrm{d}, \mathrm{J}=19.1$ Hz), 49.8, 49.6,49.4, 48.8, 48.4, 47.7, 45.1, 44.2, 43.9, 43.7, 24.8, 22.0. ${ }^{19}$ F NMR (471 MHz , DMSO-d6) δ $224.8(\mathrm{tt}, J=46.8,27.8 \mathrm{~Hz})$.

Figure S4. Synthesis of p-RPS-547 and RPS-547.

PKS8204: A mixture of terephthalaldehyde ($134 \mathrm{mg}, 1.0 \mathrm{mmol}$) and triBoc-cyclam ($250 \mathrm{mg}, 500 \mu \mathrm{~mol}$) in DCM (10 mL) was stirred at ambient temperature for 2 h and then sodium triacetoxyborohydride (318 $\mathrm{mg}, 1.5 \mathrm{mmol}$) was added. The mixture was stirred overnight at ambient temperature. The reaction was quenched with aqueous NaHCO_{3}, the layers were separated and the aqueous layer was extracted with dichloromethane. The combined organic layers were dried over anhydrous sodium sulfate and evaporated. The crude residue was purified by Combi-Flash (silica gel; ethyl acetate in hexanes) to give PKS8204 (198 mg, 64\%) as a colorless gum, which turned into a fluffy solid under vacuum. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.98(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.60(\mathrm{~s}, 2 \mathrm{H}), 3.51-3.16(\mathrm{~m}$, $12 \mathrm{H}), 2.73-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.50-2.30(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.17(\mathrm{~m}$, 27H).
p-RPS-547: A mixture of PKS8204 ($90 \mathrm{mg}, 145 \mu \mathrm{~mol}$), propargyl amine ($12 \mu \mathrm{~L}, 189 \mu \mathrm{~mol}$) and acetic acid ($4.2 \mu \mathrm{~L}, 73 \mu \mathrm{~mol}$,) in DCM (4 mL) was stirred at ambient temperature for 2 h , then sodium triacetoxyborohydride ($37 \mathrm{mg}, 175 \mu \mathrm{~mol}$) was added. The mixture was stirred overnight at ambient temperature, but the reaction did not go to completion. Therefore additional propargyl amine ($12 \mu \mathrm{~L}$) and sodium triacetoxyborohydride (37 mg) were added and the mixture was stirred for an additional 24 h. The reaction was quenched with aqueous NaHCO_{3}, the layers were separated and the aqueous layer was extracted with dichloromethane. The combined organic layers were dried over anhydrous sodium sulfate and evaporated. The crude residue was purified by Combi-Flash (silica gel; ethyl acetate in hexane) and p-RPS-547 ($76 \mathrm{mg}, 79 \%$) was isolated as a colorless gum that turned into a fluffy solid under vacuum. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}_{-} \mathrm{d}_{6}$) $\delta 7.27-7.15(\mathrm{~m}, 4 \mathrm{H}), 3.70(\mathrm{~s}, 2 \mathrm{H}), 3.47(\mathrm{~s}, 2 \mathrm{H}), 3.30-3.09(\mathrm{~m}$, $14 \mathrm{H}), 3.06(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~s}, 1 \mathrm{H}), 2.45-2.18(\mathrm{~m}, 3 \mathrm{H}), 1.90-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.50(\mathrm{~m}, 2 \mathrm{H})$, 1.46-1.21 (m, 27H).

PKS8256: Copper sulfate pentahydrate ($0.5 \mathrm{M}, 91 \mu \mathrm{~L}$) and sodium ascorbate ($1.5 \mathrm{M}, 91 \mu \mathrm{~L}$) were mixed in an argon atmosphere and stirred for 20 min to afford a brown solution. In another round bottom flask p-RPS-547 ($15 \mathrm{mg}, 23 \mu \mathrm{~mol}$) and 1-azido-2-fluoro-ethane ($0.33 \mathrm{M}, 69 \mu \mathrm{~L}$) were dissolved in DMF (500 $\mu \mathrm{L}$). The $\mathrm{Cu}(\mathrm{I})$ reagent was added to the reaction mixture, resulting in a dull green color. The mixture was stirred at ambient temperature overnight. It was then diluted with dichloromethane and passed through a short plug of basic alumina. The filtrate was evaporated, and the crude residue was purified by HPLC to give PKS8256 ($12 \mathrm{mg}, 72 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 8.26$ (br, 1H), 7.98 ($\left.\mathrm{s}, 1 \mathrm{H}\right), 7.26(\mathrm{~d}, \mathrm{~J}=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.88-4.83(\mathrm{~m}, 1 \mathrm{H}), 4.78-4.74(\mathrm{~m}, 1 \mathrm{H}), 4.74-4.69(\mathrm{~m}, 1 \mathrm{H}), 4.68-4.63$ $(\mathrm{m}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 2 \mathrm{H}), 3.48(\mathrm{~s}, 2 \mathrm{H}), 3.54-3.44(\mathrm{~m}, 2 \mathrm{H}), 3.35-3.20(\mathrm{~m}, 8 \mathrm{H}), 3.20-3.08(\mathrm{~m}$, $2 \mathrm{H}), 2.56-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.38-2.20(\mathrm{~m}, 2 \mathrm{H}), 1.80(\mathrm{~s}, 2 \mathrm{H}), 1.60(\mathrm{~s}, 2 \mathrm{H}), 1.44-1.22(\mathrm{~m}, 27 \mathrm{H})$.

RPS-547: PKS8256 (12 mg, $16 \mu \mathrm{~mol}$) was dissolved in dichloromethane (0.5 mL) and the solution was cooled to $0^{\circ} \mathrm{C}$. Trifluoroacetic acid (0.5 mL) was added dropwise with constant stirring. The reaction mixture was slowly warmed to ambient temperature. After completion of the reaction, the solvents were evaporated and the crude residue was dried under vacuum and triturated with diethyl ether to give a white solid. The solid was purified by HPLC to give RPS-547 ($16 \mathrm{mg}, 98 \%$) as a colorless gum. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.17(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.89-4.86(\mathrm{~m}, 1 \mathrm{H}), 4.82$ - $4.79(\mathrm{~m}, 1 \mathrm{H}), 4.78-4.73(\mathrm{~m}, 2 \mathrm{H}), 4.40(\mathrm{~s}, 2 \mathrm{H}), 4.31(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 2 \mathrm{H}), 3.34-3.29(\mathrm{~m}, 2 \mathrm{H}), 3.26(\mathrm{t}, \mathrm{J}=$
$5.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.22-3.14(\mathrm{~m}, 4 \mathrm{H}), 3.03-2.91(\mathrm{~m}, 4 \mathrm{H}), 2.80-2.69(\mathrm{~m}, 4 \mathrm{H}), 2.14-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.85$ ($\mathrm{m}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 139.6,137.8,132.2,132.1,131.6,127.2,82.8(\mathrm{~d}, \mathrm{~J}=170.7 \mathrm{~Hz}$), $55.9,52.2,52.0(\mathrm{~d}, \mathrm{~J}=20.0 \mathrm{~Hz}), 51.7,51.3,50.4,50.3,47.3,46.9,45.9,45.8,42.4,26.0,23.5 .{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta-224.25$ (tt, $J=46.6,27.6 \mathrm{~Hz}$).

Figure S5. Synthesis of p-RPS-552 and RPS-552.
p-RPS-552: A mixture of PKS8204 ($63 \mathrm{mg}, 101 \mu \mathrm{~mol}$) 1-amino-3-butyne ($17 \mu \mathrm{~L}, 202 \mu \mathrm{~mol}$) and acetic acid $(3.0 \mu \mathrm{~L}, 51 \mu \mathrm{~mol}$) in dichloromethane (4 mL) was stirred at ambient temperature for 2 h and then sodium triacetoxyborohydride ($43 \mathrm{mg}, 202 \mu \mathrm{~mol}$) was added. The mixture was stirred at ambient temperature overnight. The reaction was quenched with aqueous NaHCO_{3}, the layers were separated and the aqueous layer was extracted with dichloromethane. The combined organic layers were dried over anhydrous sodium sulfate and evaporated, and the crude residue was purified by Combi-Flash (silica gel; ethyl acetate in hexane) to give p-RPS-552 ($64 \mathrm{mg}, 94 \%$) as a colorless gum which turned into a fluffy solid under vacuum. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 7.25(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.71$ $(\mathrm{s}, 2 \mathrm{H}), 3.47(\mathrm{~s}, 2 \mathrm{H}), 3.30-3.20(\mathrm{~m}, 10 \mathrm{H}), 3.20-3.07(\mathrm{~m}, 2 \mathrm{H}), 2.78(\mathrm{t}, \mathrm{J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}$, 2H), $2.56-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.39-2.16(\mathrm{~m}, 4 \mathrm{H}), 1.87-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.12(\mathrm{~m}$, 27H).

PKS8265: Copper sulfate pentahydrate ($0.5 \mathrm{M}, 200 \mu \mathrm{~L}$) and sodium ascorbate ($1.5 \mathrm{M}, 200 \mu \mathrm{~L}$) were mixed under an argon atmosphere and stirred for 20 min . The solution turned black and then brown. In another round bottom flask p-RPS-552 ($34 \mathrm{mg}, 50 \mu \mathrm{~mol}$) and 1-azido-2-fluoro-ethane ($0.33 \mathrm{M}, 303 \mu \mathrm{~L}$) were dissolved in DMF ($500 \mu \mathrm{~L}$). The $\mathrm{Cu}(\mathrm{I})$ reagent was added to the mixture, giving a dull green color. The mixture was stirred at ambient temperature overnight. It was then diluted with dichloromethane and passed through a short plug of basic alumina. The filtrate was evaporated, and the crude residue was purified by HPLC to give PKS8265 ($18 \mathrm{mg}, 47 \%$) as a colorless liquid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 8.01$ ($\mathrm{s}, 1 \mathrm{H}$), $7.42(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.89-4.82(\mathrm{~m}, 1 \mathrm{H}), 4.79-4.73(\mathrm{~m}, 1 \mathrm{H}), 4.73-$ $4.68(\mathrm{~m}, 1 \mathrm{H}), 4.68-4.62(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{~s}, 2 \mathrm{H}), 3.53(\mathrm{~s}, 2 \mathrm{H}), 3.43-3.06(\mathrm{~m}, 14 \mathrm{H}), 3.01(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $2.60-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.39-2.19(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.19(\mathrm{~m}, 27 \mathrm{H})$.

RPS-552: PKS8265 ($17 \mathrm{mg}, 22 \mu \mathrm{~mol}$) was dissolved in dichloromethane (0.5 mL) and the solution was cooled to $0{ }^{\circ} \mathrm{C}$. Trifluoroacetic acid (0.5 mL) was added to the solution and the mixture was slowly
warmed to ambient temperature. After completion of reaction, the solvents were evaporated and the crude residue was purified by HPLC to give RPS-552 ($16 \mathrm{mg}, 72 \%$) as a TFA salt and a colorless gum. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.86-4.82(\mathrm{~m}$, $1 \mathrm{H}), 4.78-4.72(\mathrm{~m}, 2 \mathrm{H}), 4.72-4.67(\mathrm{~m}, 1 \mathrm{H}), 4.30(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 2 \mathrm{H}), 3.40(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.34-3.24$ $(\mathrm{m}, 4 \mathrm{H}), 3.22-3.17(\mathrm{~m}, 4 \mathrm{H}), 3.15(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.05-2.92(\mathrm{~m}, 4 \mathrm{H}), 2.79-2.69(\mathrm{~m}, 4 \mathrm{H}), 2.14-2.03$ (m, 2H), $1.95-1.87(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CD 3 OD $) ~ \delta 144.1,137.8,132.3,132.1,131.5,124.8,82.8$ ($d, J=170.5 \mathrm{~Hz}$), $55.9,52.1,51.9(\mathrm{~d}, J=20.1 \mathrm{~Hz}), 51.8,51.6,50.1,50.0,47.5,47.2,46.8,45.9,45.6,25.9$, 23.5, 23.0. ${ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta-223.8(\mathrm{tt}, J=47.2,27.3 \mathrm{~Hz})$.

Figure S6. Synthesis of p-RPS-546 and RPS-546.
p-RPS-546: A mixture of 4-ethynylbenzaldehyde ($65 \mathrm{mg}, 500 \mu \mathrm{~mol}$) and triBoc-cyclam ($250 \mathrm{mg}, 500$ $\mu \mathrm{mol})$ in dichloromethane (4 mL) was stirred at ambient temperature for 2 h , and then sodium triacetoxyborohydride ($318 \mathrm{mg}, 1.5 \mathrm{mmol}$) was added. The mixture was stirred at ambient temperature overnight. The reaction was quenched with aqueous NaHCO_{3}, the layers were separated and the aqueous layer was extracted with dichloromethane. The combined organic layers were dried over anhydrous sodium sulfate and evaporated, and the crude residue was purified by Combi-Flash (silica gel; ethyl acetate in hexanes) to give p-RPS-546 ($185 \mathrm{mg} 60 \%$) as a white solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 7.38(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.12(\mathrm{~s}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 2 \mathrm{H}), 3.34-3.07(\mathrm{~m}, 12 \mathrm{H}), 2.58-$ $2.43(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.20(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.20(\mathrm{~m}, 27 \mathrm{H})$.

PKS8283: Copper sulfate pentahydrate ($0.5 \mathrm{M}, 163 \mu \mathrm{~L}$) and sodium ascorbate ($1.5 \mathrm{M}, 54 \mu \mathrm{~L}$) were mixed under an argon atmosphere and stirred for 20 min . The solution turned black and then brown. In another round bottom flask p-RPS-546 ($50 \mathrm{mg}, 81 \mu \mathrm{~mol}$) and 1-azido-2-fluoro-ethane ($0.33 \mathrm{M}, 246 \mu \mathrm{~L}$) were dissolved in DMF ($500 \mu \mathrm{~L}$). The $\mathrm{Cu}(\mathrm{I})$ reagent was added to the mixture. The solution turned dull green. Mixture was stirred at ambient temperature overnight. The mixture was diluted with dichloromethane and passed through a basic alumina plug. The filtrate was evaporated, and isolated crude was purified by HPLC to give product ($52.0 \mathrm{mg}, 91 \%$) as white solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86$ (s, 1H), 7.76 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.92-4.85(\mathrm{~m}, 1 \mathrm{H}), 4.82-4.73(\mathrm{~m}, 2 \mathrm{H}), 4.72-4.67(\mathrm{~m}, 1 \mathrm{H}), 3.55$ $(\mathrm{s}, 2 \mathrm{H}), 3.48-3.20(\mathrm{~m}, 12 \mathrm{H}), 2.71-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.48-2.30(\mathrm{~m}, 2 \mathrm{H}), 1.99-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.63(\mathrm{~m}$, $2 \mathrm{H}), 1.49-1.28(\mathrm{~m}, 27 \mathrm{H})$.

RPS-546: To a solution of PKS8283 ($50 \mathrm{mg}, 71 \mu \mathrm{~mol}$) in dichloromethane (1 mL), trifluoroacetic acid (1 mL) was added at $0^{\circ} \mathrm{C}$. The mixture was slowly warmed to ambient temperature and stirred at ambient temperature. After completion of reaction, the solvent was evaporated and the crude residue was purified by HPLC to give RPS-546 as a mixed TFA/formate salt ($30 \mathrm{mg}, 50 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.51(\mathrm{~s}, 1 \mathrm{H}$; formate), $8.40(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.93-4.90(\mathrm{~m}, 1 \mathrm{H})$, $4.82(\mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.79-4.74(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 2 \mathrm{H}), 3.25(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.23-3.18(\mathrm{~m}, 2 \mathrm{H}), 3.17$ - $3.10(\mathrm{~m}, 4 \mathrm{H}), 3.02-2.93(\mathrm{~m}, 4 \mathrm{H}), 2.84-2.74(\mathrm{~m}, 4 \mathrm{H}), 2.11-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.84(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 170.1$ (formate), 148.4, 137.1, 131.7, 131.6, 127.1, 123.1, 82.8 (d, J=170.7 Hz), 56.9, $53.2,52.0(\mathrm{~d}, \mathrm{~J}=20.2 \mathrm{~Hz}), 51.9,50.6,50.4,47.5,47.1,46.0,45.9,25.8,23.7 .{ }^{19} \mathrm{~F} \mathrm{NMR} \mathrm{(} 471 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta-224.3(\mathrm{tt}, J=46.9,27.1 \mathrm{~Hz})$.

References:

1. Shankar, S.; Vaidyanathan, G.; Affleck, D.; Welsh, P.C.; Zalutsky, M.R. N-Succinimidyl 3-[${ }^{[131}$]lodo-4phosphonomethylbenzoate ($\left[{ }^{[31} 1\right]$ SIPMB), a Negatively Charged Substituent-Bearing Acylation Agent for the Radioiodination of Peptides and mAbs. Bioconjugate Chem. 2003, 14, 331-341.
2. Boss, S.D.; Betzel, T.; Müller, C.; et al. Comparative Studies of Three Pairs of α - and γ-Conjugated Folic Acid Derivatives Labeled with Fluorine-18. Bioconjugate Chem. 2016, 27, 74-86.

Synthesis of Pentixafor

 $\mathrm{mL})$, THF (3.2 mL) and triethylamine ($4.17 \mathrm{~mL}, 30 \mathrm{mmol}$). The solution was cooled in an ice/water bath, and 2-nitrobenzenesulfonyl chloride ($2078 \mathrm{mg}, 12.6 \mathrm{mmol}$) was added in portions. The reaction mixture was stirred at room temperature for 18 h . It was concentrated in vacuo until approximately half of the original volume remained, then it was acidified with concentrated 1 M HCl to a pH of 3 , and extracted with $\mathrm{EtOAc}(3 \times 150 \mathrm{~mL})$. The organic layers were combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to yield $\mathbf{3}$ as a yellow solid, which was used in the next step without any further purification Yield $=3370 \mathrm{mg}, 81 \%$. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, Methanol-d4) $\delta 8.09$ (dd, J = 6.0, 3.3 Hz, 1H), 7.92-7.83 (m, 1H), $7.83-7.73(\mathrm{~m}, 2 \mathrm{H}), 3.94(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{t}, \mathrm{J}=6.8$ $\mathrm{Hz}, 2 \mathrm{H}), 1.83(\mathrm{dd}, \mathrm{J}=10.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 175.3,158.5,149.3,135.10,134.9,133.6,131.5,126.1,79.8,58.2,40.7,31.5,28.7$, 26.9. HRMS calc. for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{~S}$ [M+Na] ${ }^{+}: 440.1104$ Found: 440.1094.

Benzyl (R)-5-((tert-butoxycarbonyl)amino)-2-((2-nitrophenyl)sulfonamido)pentanoate (4): Benzyl alcohol $(972 \mathrm{mg}, 9 \mathrm{mmol})$ and DMAP $(0.0366 \mathrm{~g}, 0.3 \mathrm{mmol})$ were added to a solution of $3(1.25 \mathrm{~g}, 3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ and the mixture was cooled in an ice bath. Dicyclohexylcarbodiimide ($772 \mathrm{mg}, 3.75 \mathrm{mmol}$) was added and stirring was continued overnight, allowing the mixture to warm up to rt. The white solid was removed by vacuum filtration. The filtrate was concentrated and purified by Combi-Flash using EtOAc in hexane (25% to 100%) gave 4 as clear viscous liquid. Yield $=1.32 \mathrm{~g}, 87 \%{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{dd}, J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{dd}, J=7.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{dtd}, J=24.9,7.6,1.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.39-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 2 \mathrm{H}), 6.20(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.96-4.87(\mathrm{~m}, 2 \mathrm{H}), 4.24(\mathrm{td}, \mathrm{J}=8.6,4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.15(\mathrm{q}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.93$ (dddd, $J=14.2,9.8,6.7,4.9 \mathrm{~Hz}, 1 \mathrm{H}$), $1.81-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.61$ (tdd, $J=9.7,7.9,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.8,156.1,147.7,134.8,134.1,133.7$, 132.9, 130.4, 128.8, 128.7, 128.5, 125.8, 79.4, 67.5, 56.6, 39.7, 30.6, 28.5, 26.0. HRMS calc. for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 530.1573$ Found: 530.1559.

Benzyl (R)-
5-((tert-butoxycarbonyl)amino)-2-((N-methyl-2-nitrophenyl)sulfonamido)pentanoate (5): To an ice cold solution of solution of $4(1.04 \mathrm{~g}, 2 \mathrm{mmol})$ and triphenylphosphine ($786 \mathrm{mg}, 3 \mathrm{mmol}$) in THF (20 mL) was added diisopropyl azodicarboxylate (606 mg or $0.59 \mathrm{~mL}, 3 \mathrm{mmol}$) followed by $\mathrm{MeOH}(320 \mathrm{mg}$ or 0.4 mL , 10 mmol) and the resulting reaction mixture was stirred overnight at room temperature. The crude compound was purified by using Combi-Flash using EtOAc in hexane (10% to 50%) gave 5 as an amber colored liquid. Yield $=946 \mathrm{mg}, 71 \% .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.03(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.60(\mathrm{~m}$, $3 \mathrm{H}), 7.38-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.16(\mathrm{~m}, 2 \mathrm{H}), 5.03(\mathrm{~d}, \mathrm{~J}=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, \mathrm{~J}=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.70$ (dd, $J=10.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{td}, J=9.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.70(\mathrm{~m}, 1 \mathrm{H})$, 1.63 - 1.47 (m, 2H), 1.44 (s, 9H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 170.2,157.1,147.9,135.3,133.7,131.8$, $131.3,130.5,128.1,128.0,123.8,78.5,66.7,59.3,39.0,29.4,27.3,26.2,25.8$. HRMS calc. for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{~S}$ [M+Na] ${ }^{+}$: 544.1730 Found: 544.1719.

Benzyl (R)-5-((tert-butoxycarbonyl)amino)-2-(methylamino)pentanoate (6): To a stirred suspension of 5 $(1.042 \mathrm{~g}, 2 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(690 \mathrm{mg}, 5 \mathrm{mmol})$ in acetonitrile $(20 \mathrm{~mL})$ was added thiophenol $(2.2 \mathrm{~g}, 20$ mmol) at room temperature and stirred overnight. The reaction was filtered and the filter cake was washed with acetonitrile (5 mL) and the combined filtrates was evaporated to dryness. The viscous liquid thus obtained was dissolved in DCM and washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and dried in vacuo. Compound 6 was isolated as clear liquid and used without further purification. Yield $=550 \mathrm{mg}$, $82 \%{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.51-7.30(\mathrm{~m}, 5 \mathrm{H}), 5.33(\mathrm{~m}, 2 \mathrm{H}), 4.12(\mathrm{dd}, \mathrm{J}=7.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.05$ ($q, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.74(\mathrm{~s}, 3 \mathrm{H}), 1.95(\mathrm{~m}, 2 \mathrm{H}), 1.57(\mathrm{td}, J=12.2,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.43-1.25(\mathrm{~m}$, 1H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 169.7,158.6,136.2,129.9,129.9,129.8,129.8,80.1,69.4,61.6,40.30$, 32.1, 28.7, 27.4, 26.2. HRMS calc. for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 337.2127 Found: 337.2116.

Benzyl (R)-2-((R)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-3-(4-(tert-butoxy)phenyl)-N-methylpropanamido)-5-((tert-butoxycarbonyl)amino)pentanoate (8): To a solution of 6 ($336 \mathrm{mg}, 1 \mathrm{mmol}$) in DMF (5 mL) was added dropwise NHS ester $7(552 \mathrm{mg}, 1.2 \mathrm{mmol})$ in DMF (5 mL) at room temperature and the resulting mixture was stirred for 6 h under N_{2}. DMF was removed under reduced pressure and the resulting residue was dissolved in EtOAc, transferred to a separating funnel and washed successively with water and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude compound was purified by Combi-Flash using EtOAc in hexane (25% to 100%). Yield $=590 \mathrm{mg}, 76 \% .^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.56$ (dd, J=7.8, 3.2 Hz, 2H), 7.40 (t, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{qt}, J=7.9,4.2 \mathrm{~Hz}, 7 \mathrm{H}), 7.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H})$, $5.21-4.95(\mathrm{~m}, 3 \mathrm{H}), 4.92-4.81(\mathrm{~m}, 1 \mathrm{H}), 4.35(\mathrm{dd}, \mathrm{J}=10.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=10.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.16$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.15-2.87(\mathrm{~m}, 4 \mathrm{H}), 2.84(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{dtd}, J=14.6,9.9,4.9 \mathrm{~Hz}$, $1 \mathrm{H}), 1.43(\mathrm{~m}, 10 \mathrm{H}), 1.30(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.9,170.3$, $156.0,154.4,143.9,143.8,141.4,141.4,135.4,130.7,130.2,130.0,128.8,128.6,128.6,128.4,128.1$, $127.8,127.8,127.2,125.3,125.3,125.2,124.4,120.1,79.6,78.7,67.3,67.2,57.4,52.5,47.1,40.0,38.1$, 28.9, 28.4, 26.6, 25.5. HRMS calc. for $\mathrm{C}_{46} \mathrm{H}_{55} \mathrm{~N}_{3} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]^{+}: 778.4067$ Found: 778.4058.

(R)-2-((R)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-3-(4-(tert-butoxy)phenyl)-N-methylpropanamido)-5-((tert-butoxycarbonyl)amino)pentanoic acid (9): Compound 8 ($385 \mathrm{mg}, 0.5$ mmol) was dissolved in a mixture of MeOH and THF ($10 \mathrm{~mL}, 7: 4$). Then $10 \% \mathrm{Pd} / \mathrm{C}$ was added and the suspension was stirred under H_{2} balloon pressure for 3 h . The reaction mixture was filtered through Celite and the filter cake was washed with methanol ($3 \times 5 \mathrm{~mL}$). The filtrate was evaporated to afford compound 9 as white solid, which was used without any further purification. Yield $=309 \mathrm{mg}, 90 \%{ }^{1} \mathrm{H}$

NMR ($\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.79(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.31$ (td, $J=7.4,4.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.32-4.05$ $(\mathrm{m}, 3 \mathrm{H}), 3.03(\mathrm{dt}, \mathrm{J}=18.5,7.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}), 2.86(\mathrm{dd}, \mathrm{J}=9.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.38$ (s, 9H), $1.33(\mathrm{~m}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 174.7,174.1,173.9,158.4,158.0,155.3$, 145.2, 145.1, 142.6, 142.5, 133.4, 131.2, 131.0, 130.8, 128.7, 128.3, 128.3, 128.2, 128.1, 126.4, 126.2, $125.2,125.2,121.0,120.9279 .8,79.5,68.3,68.0,57.8,54.8,54.3,53.9,40.7,40.6,38.2,33.0,32.0,30.7$, 30.6, 30.4, 29.2, 29.1, 29.1, 28.8, 28.7, 27.4, 26.4. HRMS calc. for $\mathrm{C}_{39} \mathrm{H}_{49} \mathrm{~N}_{3} \mathrm{O}_{8}[\mathrm{M}+\mathrm{Na}]^{+}: 710.3417$ Found: 710.3392 .

Benzyl (S)-(2-((tert-butoxycarbonyl)amino)-3-(naphthalen-2-yl)propanoyl)glycinate (11): To a stirred mixture of 10 ($945 \mathrm{mg}, 3 \mathrm{mmol}$), benzyl glycinate ($594 \mathrm{mg}, 3.6 \mathrm{mmol}$) and HATU ($1.36 \mathrm{~g}, 3.6 \mathrm{mmol}$) in DMF (15 mL) was added DIPEA ($1.26 \mathrm{~mL}, 7.2 \mathrm{mmol}$) and the reaction was stirred at room temperature overnight under N_{2}. The solvent was removed under reduce pressure and the resulting residue was dissolved in EtOAc. The organic layers was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated and purified by Combi-Flash using EtOAc in hexane (10% to 100%). Yield $=360 \mathrm{mg}$, $78 \% .^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86-7.76(\mathrm{~m}, 3 \mathrm{H}), 7.68(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.42-$ $7.31(\mathrm{~m}, 6 \mathrm{H}), 6.48(\mathrm{t}, \mathrm{J}=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 1 \mathrm{H}), 4.59$ $-4.48(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{dd}, \mathrm{J}=18.3,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{dd}, \mathrm{J}=18.3,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.27$ (qd, J=14.2,6.4 Hz, 2 H), 1.39 ($\mathrm{s}, 9 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.6,169.3,135.2,134.2,133.6,132.6,128.7,128.6$, 128.5, 128.5, 128.1, 127.7, 127.7, 127.4, 126.2, 125.8, 80.5, 77.4, 77.1, 76.9, 67.3, 55.7, 41.4, 38.4, 28.3. HRMS calc. for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{H}[\mathrm{M}+\mathrm{Na}]^{+}: 485.2025$ Found: 485.2041 .

Benzyl (S)-(2-amino-3-(naphthalen-2-yl)propanoyl)glycinate hydrochloride (12): To a solution of compound 11 ($924 \mathrm{mg}, 2 \mathrm{mmol}$) in dioxane (10 mL) was added 4 M HCl in dioxane (10 mL) and the reaction was stirred at room temperature for 3 h . A white solid was formed during the reaction, and the
solid was isolated by filtration. The solid was washed with diethyl ether and used without any further purification. Yield $=732 \mathrm{mg}, 92 \% .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 9.14(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~s}, 3 \mathrm{H})$, $7.95-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.87-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.56-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{dd}, \mathrm{J}=8.4,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.43-7.33(\mathrm{~m}, 5 \mathrm{H}), 5.18(\mathrm{~s}, 2 \mathrm{H}), 4.23(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-3.99(\mathrm{~m}, 2 \mathrm{H}), 3.32(\mathrm{dd}, J=14.2,5.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.15$ (dd, $J=14.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}) $\delta \delta 169.2,168.7,135.8,133.0,132.4$, $132.2,128.4,128.3,128.2,128.1,128.0,127.6,127.5,126.1,125.8,66.1,53.3,40.8,40.0,39.8,39.6$, 39.5, 39.3, 39.1, 39.0, 37.1. HRMS calc. for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 363.1709$ Found: 363.1693.

Benzyl ((S)-2-((S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-5-(3-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentanamido)-3-(naphthalen-2-yl)propanoyl)glycinate (13): To a solution of 12 ($597 \mathrm{mg}, 1.5 \mathrm{mmol}$) in DMF (10 mL) was added dropwise Fmoc-Arg(Pbf)-NHS ester $(1.036 \mathrm{~g}, 1.6 \mathrm{mmol})$ in DMF (10 mL) and the reaction was stirred at room temperature 6 h under N_{2}. The solvent was removed under reduced pressure and the resulting residue was dissolved in EtOAc, transferred in to a separating funnel and washed successively with water and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude compound was purified by Combi-Flash using MeOH in DCM (1\% to 5\%). Yield = $590 \mathrm{mg}, 71 \% .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.80(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.64(\mathrm{~m}, 3 \mathrm{H}), 7.61(\mathrm{dd}, J=7.6,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-$ $7.36(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.22(\mathrm{~m}, 10 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 4.84-4.76(\mathrm{~m}, 1 \mathrm{H}), 4.38-4.26(\mathrm{~m}, 1 \mathrm{H}), 4.22(\mathrm{dd}, \mathrm{J}=$ $10.6,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.97-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=14.1$, $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{dd}, \mathrm{J}=14.1,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~s}, 2 \mathrm{H}), 2.83(\mathrm{~s}, 1 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H})$, $1.47(q, J=9.1,8.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 6 \mathrm{H}), 1.21(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 174.4$, 173.9, 171.0, 159.8, 158.6, 158.0, 145.3, 145.0, 142.6, 142.5, 139.4, 137.1, 135.9, 134.8, 134.4, 133.8, $133.5,129.5,129.3,129.2,129.0,128.8,128.7,128.6,128.5,128.4,128.1,127.0,126.5,126.2,126.0$, 120.9, 118.4, 87.6, 67.9, 56.5, 55.3, 43.9, 42.1, 38.5, 29.9, 28.6, 19.6, 18.4, 12.5. HRMS calc. for $\mathrm{C}_{56} \mathrm{H}_{60} \mathrm{~N}_{6} \mathrm{O}_{9} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 993.4221$ Found: 993.4213.

Benzyl
((S)-2-((S)-2-amino-5-(3-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl) sulfonyl)guanidino)pentanamido)-3-(naphthalen-2-yl)propanoyl)glycinate (14): Compound 13 (993 mg, $1 \mathrm{mmol})$ was dissolved in dry DCM (20 mL). To the solution was added piperdine (1 mL) and the reaction was stirred at room temperature for 3 h . The solvent was evaporated and the crude product was purified by Combi-Flash using MeOH in $\mathrm{DCM}(1 \%$ to $20 \%)$. Yield $=369 \mathrm{mg}, 48 \% .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ $7.78(\mathrm{t}, \mathrm{J}=8.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.21(\mathrm{~m}, 5 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 3.97(\mathrm{~d}, \mathrm{~J}=1.5$ $\mathrm{Hz}, 2 \mathrm{H}), 3.82(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.39-3.31(\mathrm{~m}, 1 \mathrm{H}), 3.10(\mathrm{~m}, 3 \mathrm{H}), 2.97(\mathrm{~s}, 2 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H})$, $2.06(\mathrm{~s}, 3 \mathrm{H}), 1.85(\mathrm{q}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.56(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 173.9,173.8$, $170.8,170.8,169.8,160.0,158.1,139.4,137.1,135.6,134.9,134.0,133.9,133.6,129.5,129.4,129.3$, 129.1, 128.9, 128.7, 128.6, 128.2, 127.1, 126.7, 126.1, 118.5, 87.7, 67.9, 56.0, 56.02, 53.7, 43.9, 42.2, 42.1, 38.9, 29.6, 28.6, 19.5, 18.3, 12.4. HRMS calc. for $\mathrm{C}_{41} \mathrm{H}_{50} \mathrm{~N}_{6} \mathrm{O}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 771.3540$ Found: 771.3527.
$9+14 \xrightarrow{\text { HATU, DMF }}$

Benzyl ((S)-2-((S)-2-((R)-2-((R)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-3-(4-(tert-butoxy)phenyl)-N-methylpropanamido)-5-((tert-butoxycarbonyl)amino)pentanamido)-5-(3-((2,2,4,6,7-pentamethyl-2,3-
dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentanamido)-3-(naphthalen-2-yl)propanoyl)glycinate (15): To a stirred mixture of $9(343 \mathrm{mg}, 0.5 \mathrm{mmol}), 14(385 \mathrm{mg}, 0.5 \mathrm{mmol})$ and HATU ($209 \mathrm{mg}, 0.55 \mathrm{mmol}$) in DMF (5 mL) was added DIPEA ($0.1 \mathrm{~mL}, 0.6 \mathrm{mmol}$) and the mixture was stirred at room temperature overnight under N_{2}. DMF was removed under reduced pressure and the resulting residue was dissolved in EtOAc, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude product was purified by Combi-Flash using MeOH in DCM (1% to 10%). Yield $=374 \mathrm{mg}, 52 \% .{ }^{1} \mathrm{H}$ NMR (500 MHz, CD 3 OD) $\delta 7.78-7.58(\mathrm{~m}, 7 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.31$ (ddt, J = 18.9, 14.8, 7.5 Hz, 13H), 7.10 (s, $1 \mathrm{H}), 6.84(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.11(\mathrm{q}, J=4.1,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.75(\mathrm{dd}, J=9.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{dd}, J=30.5$, $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-3.79(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 3.34(\mathrm{~s}, 2 \mathrm{H}), 3.20(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 5 \mathrm{H}), 3.13(\mathrm{t}, \mathrm{J}=$ $5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.94(\mathrm{~d}, \mathrm{~J}=25.5 \mathrm{~Hz}, 8 \mathrm{H}), 2.84(\mathrm{~s}, 4 \mathrm{H}), 2.70(\mathrm{~s}, 1 \mathrm{H}), 2.56(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.49(\mathrm{~d}, J=5.1 \mathrm{~Hz}$, $3 \mathrm{H}), 2.05(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.77(\mathrm{q}, \mathrm{J}=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.73-1.44(\mathrm{~m}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 6 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}), 1.35(\mathrm{~s}$, 9H). HRMS calc. for $\mathrm{C}_{80} \mathrm{H}_{97} \mathrm{~N}_{9} \mathrm{O}_{14} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 1440.6954$ Found: 1440.6943.

15

16

Benzyl((S)-2-((S)-2-((R)-2-((R)-2-amino-3-(4-(tert-butoxy)phenyl)-N-methylpropanamido)-5-((tert-butoxycarbonyl)amino)pentanamido)-5-(3-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentanamido)-3-(naphthalen-2-yl)propanoyl)glycinate (16): Compound 15 (359 $\mathrm{mg}, 0.25 \mathrm{mmol}$) was dissolved in dry DCM (5 mL). To the solution was added piperdine (0.4 mL) and the reaction was stirred at room temperature for 2.5 h . The solvent was evaporated and the crude product was purified by Combi-Flash using MeOH in DCM (1\% to 20\%). Yield = $121 \mathrm{mg}, 40 \%$. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.82-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.28(\mathrm{~m}, 8 \mathrm{H}), 7.22-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.03-6.92(\mathrm{~m}, 2 \mathrm{H}), 5.14(\mathrm{~d}, \mathrm{~J}=$ $29.8 \mathrm{~Hz}, 2 \mathrm{H}$), 4.81 (dd, $J=9.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 4.42 (ddd, $J=56.7,8.4,5.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.06-3.91(\mathrm{~m}, 2 \mathrm{H}), 3.20$ $-2.83(\mathrm{~m}, 9 \mathrm{H}), 2.65(\mathrm{~s}, 1 \mathrm{H}), 2.59(\mathrm{~s}, 1 \mathrm{H}), 2.53(\mathrm{~s}, 1 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 1.88-1.51(\mathrm{~m}, 5 \mathrm{H}), 1.44(\mathrm{~m}, 19 \mathrm{H}), 1.35$
(m, 10H). ${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO) δ 180.7, 180.5, 179.0, 178.7, 178.5, 166.9, 165.5, 165.0, 163.7, $146.7,145.2,144.5,142.3,141.2,140.9,139.6,138.2,137.8,137.6,137.5,137.4,137.4,137.2,137.0$, $136.8,136.9,135.2,134.8,133.7,133.2,125.7,95.7,95.7,87.4,87.3,86.9,75.4,75.3,65.0,63.0,61.6$, $60.7,51.9,50.1,47.4,45.0,39.6,39.3,37.9,37.7,37.7,37.6,35.5,34.8,28.4,27.0,21.7$. HRMS calc. for $\mathrm{C}_{65} \mathrm{H}_{87} \mathrm{~N}_{9} \mathrm{O}_{12} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 1218.6273$ Found: 1218.6267.

((S)-2-((S)-2-((R)-2-((R)-2-amino-3-(4-(tert-butoxy)phenyl)-N-methylpropanamido)-5-((tert-butoxycarbonyl)amino)pentanamido)-5-(3-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentanamido)-3-(naphthalen-2-yl)propanoyl)glycine (17): Compound 16 (244 mg, 0.2 mmol) was dissolved in a mixture of MeOH and THF ($10 \mathrm{~mL}, 7: 4$). Then $10 \% \mathrm{Pd} / \mathrm{C}$ was added and stirred under H_{2} Balloon pressure for 2 h . The reaction was filtered through Celite and the filter cake bed was washed with methanol ($3 \times 5 \mathrm{~mL}$). The filtrate was evaporated to afford compound $\mathbf{1 7}$ as a cream colored solid which was used without further purification. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right){ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} 500 \mathrm{MHz}$, Methanol- d_{4}) $\delta 7.78-7.59(\mathrm{~m}, 4 \mathrm{H}), 7.33(q d, J=8.3,3.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.10(\mathrm{dd}, J=17.5,8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.93$ (dd, $J=8.2,5.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.79-4.62(\mathrm{~m}, 1 \mathrm{H}), 4.43(\mathrm{dd}, J=8.2,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{dd}, J=8.5,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-$ $3.77(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.10-2.90(\mathrm{~m}, 8 \mathrm{H}), 2.80(\mathrm{dd}, \mathrm{J}=14.5,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{~s}, 2 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H})$, $2.47(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.79-1.45(\mathrm{~m}, 4 \mathrm{H}), 1.39(\mathrm{~m}, 8 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}), 1.34-1.31(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H})$, 1.27 ($\mathrm{m}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 172.2,171.2,170.4,169.3,157.1,155.0,134.4,133.5,132.4$, $129.8,128.8,127.7,127.6,127.3,127.2,127.1,125.6,125.2,124.3,124.2,114.7,86.3,78.6,78.4,59.3$, $57.1,54.2,52.8,52.1,48.4,42.5,40.4,39.2,37.8,35.5,30.2,29.0,27.8,27.8,27.4,27.4,27.3,26.0,24.7$, 18.2, 17.0, 11.1. HRMS calc. for $\mathrm{C}_{58} \mathrm{H}_{81} \mathrm{~N}_{9} \mathrm{O}_{12} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 1128.5804$ Found: 1128.5797.

Cyclo-(D-4-tert-butyl-Tyr-(α-methyl, δ-Boc-D-Orn-R-Nal-Pbf-G)) (18): To a solution of HATU (0.070 g, $0.062 \mathrm{mmol})$ in DMF (3 mL) under inert atmosphere was added a solution of $\mathbf{1 7}(0.140 \mathrm{~g}, 0.125 \mathrm{mmol})$ in DMF (2 mL) followed by slow addition of DIPEA ($35 \mu \mathrm{~L}$) in DMF (3 mL), and the resulting mixture was stirred for 1 h at room temperature. The DMF was removed under reduced pressure and the crude residue was re-dissolved in DMF (3 mL) and loaded onto a preparative HPLC column. Compound $\mathbf{1 8}$ was isolated using a linear gradient of $10-90 \% \mathrm{v} / \mathrm{v} \mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}+0.05 \%$ TFA between 0 to 40 min at a flow rate of $12 \mathrm{~mL} / \mathrm{min}$, followed by an isocratic method of $90 \% \mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}+0.05 \%$ TFA from 40 to 50 min and $12 \mathrm{~mL} / \mathrm{min}$. The fractions containing the product were collected and lyophilized in vacuo to afford 18 as a white powder. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.85-7.63(\mathrm{~m}, 3 \mathrm{H}), 7.59(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.28(\mathrm{~m}$, $3 \mathrm{H}), 7.15(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{dd}, \mathrm{J}=23.4,8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.02(\mathrm{~m}, 0.36 \mathrm{H}), 4.95-4.87(\mathrm{~m}, 1 \mathrm{H}), 4.77(\mathrm{dd}$, $J=11.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.44-4.17(\mathrm{~m}, 1 \mathrm{H}), 3.99-3.83(\mathrm{~m}, 0.48 \mathrm{H}), 3.64-3.35(\mathrm{~m}, 2 \mathrm{H}), 3.28-3.10(\mathrm{~m}, 2 \mathrm{H})$, $3.08-2.71(\mathrm{~m}, 9 \mathrm{H}), 2.65(\mathrm{~s}, 2 \mathrm{H}), 2.57(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.50(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.07(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 3 \mathrm{H})$, $1.89(\mathrm{~s}, 1 \mathrm{H}), 1.69-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{dd}, \mathrm{J}=17.1,10.2 \mathrm{~Hz}, 15 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}), 1.22-0.75(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 174.16,174.01,173.64,173.45,173.28,172.60,171.52,170.67,164.86$, $158.54,158.42,155.58,155.32,136.94,136.15,134.88,134.83,133.85,133.79,133.73,132.69,131.40$, 131.26, 131.10, 129.18, 129.07, 129.02, 128.99, 128.64, 128.52, 128.48, 128.43, 127.19, 127.12, 126.67, $126.55,126.21,125.62,125.53,125.24,118.66,87.78,80.10,79.95,79.84,79.56,66.63,61.90,57.45$, $57.20,53.23,51.97,44.51,43.95,43.90,43.84,41.23,40.72,39.51,38.89,37.96,37.12,36.94,36.54$, $31.65,31.12,30.83,30.22,29.26,29.23,29.16,28.87,28.85,28.83,28.68,28.66,28.65,28.22,27.76$, 27.72, 27.16, 26.34, 19.65, 19.63, 18.43, 12.56, 12.53. HRMS calc. for $\mathrm{C}_{58} \mathrm{H}_{79} \mathrm{~N}_{9} \mathrm{O}_{11} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 1132.5517$ Found: 1132.5519.

Cyclo(-D-Tyr-(α-methyl, δ-4-(tert-butyl-aminomethyl)-D-Orn-R-Nal-G)) (19): Compound 18 was dissolved in TFA, TIPS and $\mathrm{H}_{2} \mathrm{O}(95: 2.5: 2.5)$ and stirred at room temperature for 2 h . The solvents were removed under reduced pressure and the crude product was dried under high vacuum overnight. The amine salt (1 eq) was dissolved in DMF and DIPEA (10 eq) was added, followed by addition of 4-(Boc-amino methyl)benzoic acid NHS ester (2 eq). The resulting reaction mixture was stirred at room temperature for 2.5 h . The DMF was removed under reduced pressure and the crude product was re-dissolved in DMF $(3 \mathrm{~mL})$ and loaded onto a preparative HPLC column. The fractions containing compound 19 were collected and lyophilized in vacuo to afford 19 as a white powder and a mixture of rotomers. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.84-7.77(\mathrm{~m}, 5 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.37(\mathrm{~m}, 5 \mathrm{H}), 7.08$ (dd, J = 8.2, $4.8 \mathrm{~Hz}, 2 \mathrm{H}$), $6.72(\mathrm{dd}, \mathrm{J}=16.7,8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.07-4.89(\mathrm{~m}, 1 \mathrm{H}), 4.80-4.42(\mathrm{~m}, 1 \mathrm{H}), 4.35-4.22(\mathrm{~m}, 3 \mathrm{H}), 4.01-3.89$ $(\mathrm{m}, 1 \mathrm{H}), 3.66-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.36(\mathrm{~m}, 2 \mathrm{H}), 3.18(\mathrm{ddd}, J=33.6,13.5,8.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.99(\mathrm{~s}, 3 \mathrm{H}), 2.81$ (ddt, J = 12.6, 9.8, 4.6 Hz, 2H), $2.72(\mathrm{~m}, 3 \mathrm{H}), 2.09-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.61(\mathrm{~m}, 16.4,3 \mathrm{H}), 1.47(\mathrm{~m}, 11 \mathrm{H}), 1.34-$ $0.91(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 174.68,174.21,173.96,173.59,173.34,172.91,172.41$, $171.52,170.87,170.45,170.15,158.48,158.36,157.67,157.47,145.25,145.03,136.95,136.18,135.00$, $134.94,134.22,133.96,133.83,131.74,131.66,129.33,129.25,129.07,129.01,128.81,128.72,128.66$, $128.52,128.49,128.18,127.28,127.16,126.79,126.63,116.51,116.36,80.45,66.51,61.76,57.45$, 56.73, 55.99, 54.79, 53.41, 52.41, 44.73, 44.45, 43.84, 41.79, 41.42, 40.74, 39.98, 39.47, 38.65, 37.87, $37.20,36.66,30.65,30.46,29.32,28.80,27.82,27.63,26.45,25.96,25.91$. HRMS calc. for $\mathrm{C}_{49} \mathrm{H}_{62} \mathrm{~N}_{10} \mathrm{O} 9$ $[\mathrm{M}+\mathrm{H}]^{+}: 935.4779$ Found: 935.4774 .

Cyclo(-D-Tyr-(α-methyl, δ-4-(aminomethyl)benzoic acid, DOTA)-D-Orn-R-Nal-G) (1; pentixafor): Compound 19 was dissolved in $\mathrm{H}_{2} \mathrm{O}$, TIPS and TFA (2.5:2.5:95) and stirred at room temperature for 2 h . The solvents were removed under reduced pressure and the residue was dried overnight under high vacuum and used without further purification. To a mixture of amine (1 eq) and DIPEA (10 eq) in DMF was added DOTA-mono-NHS-tris(tBu ester) (2 eq) and the reaction was stirred for 2.5 h . The DMF was removed and the crude product was treated with $\mathrm{H}_{2} \mathrm{O}(0.025 \mathrm{~mL})$, TIPS (0.025 mL) and TFA (0.95 mL). The resulting mixture was stirred for 2 h . The DMF was removed under reduce pressure and the residue was re-dissolved in DMF (3 mL) and loaded onto a preparative HPLC column. The fractions containing 1 were collected and lyophilized in vacuo to afford pentixafor as a white powder. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.80(\mathrm{td}, \mathrm{J}=10.0,9.2,5.1 \mathrm{~Hz}, 5 \mathrm{H}$), $7.69(\mathrm{~s}, 1 \mathrm{H}), 7.44$ (qd, $J=7.1,6.4,1.9 \mathrm{~Hz}, 5 \mathrm{H}$), 7.07 (d, J = 8.0 Hz, 2H), 6.77-6.67 (m, 2H), 5.04-4.93(m, 1H), 4.47 (t, J = 9.0 Hz, 2H), 4.37-4.26(m, 1H), $4.06-3.51(\mathrm{~m}, 10 \mathrm{H}), 3.41$ (ddt, J = 28.9, 11.3, $6.5 \mathrm{~Hz}, 10 \mathrm{H}), 3.31-3.11(\mathrm{~m}, 11 \mathrm{H}), 3.00(\mathrm{~d}, \mathrm{~J}=14.3 \mathrm{~Hz}, 3 \mathrm{H})$, $2.85(\mathrm{~d}, \mathrm{~J}=28.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{~s}, 2 \mathrm{H}), 2.09-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.24(\mathrm{~m}, 2 \mathrm{H}), 1.21$ ($\mathrm{s}, 1 \mathrm{H}$) , 1.09 ($\mathrm{d}, \mathrm{J}=46.1 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 173.23,172.74,172.64,172.20,171.96$, $171.34,170.94,170.08,169.42,168.92,168.64,161.56,161.28,161.00,160.72,157.05,156.93,156.18$, $155.98,135.50,134.69,133.54,133.49,132.51,132.38,130.31,130.24,127.99,127.81,127.64,127.56$, $127.48,127.36,127.27,127.21,127.17,127.06,127.03,125.84,125.70,125.18,120.07,117.75,115.43$, $115.06,114.93,64.97,60.27,55.99,55.38,54.77,54.56,53.32,51.96,51.00,49.86,48.22,48.11,48.05$, $47.94,47.88,47.77,47.71,47.60,47.54,47.43,47.25,47.12,47.08,43.04,42.46,40.31,40.13,39.27$, 38.47, 37.99, 37.22, 36.35, 35.81, 35.16, 29.19, 29.12, 27.97, 26.41, 26.05, 25.79, 25.02, 24.56, 24.41. HRMS calc. for $\mathrm{C}_{60} \mathrm{H}_{80} \mathrm{~N}_{14} \mathrm{O}_{14}[\mathrm{M}+\mathrm{H}]^{+}: 1221.6052$ Found: 1221.6057.

S003. Inhibition Binding Assays

Figure S7. Determination of IC_{50} in a competition assay vs [${ }^{68} \mathrm{Ga}$]Pentixafor in PC3-CXCR4 cells. The concentration of $\left[{ }^{68} \mathrm{Ga}\right]$ Pentixafor was 100 nM .

S004. Saturation Binding Assays

Figure S8. Determination of dissociation constants (Kd) in PC3-CXCR4 cells. Radiolabeled ligands were added at a concentration of approximately 5 pM . A. Saturation binding curves plotted using nonlinear curve fit (one sit binding). B. Curves plotted using a Hill plot.
A.

B.

Table S2. Hill slopes determined from the competition assay vs $\left[{ }^{68} \mathrm{Ga}\right]$ Pentixafor in PC3-CXCR4 cells and the saturation binding assays in PC3-CXCR4 cells. Slopes are expressed as value \pm SD. AMD-3465 was not included in the saturation binding assays.

Compound	Hill Slope	
	Competitive Binding Experiment	Saturation Binding Experiment
AMD-3465	1.01 ± 0.30	n.d.
RPS-544	1.13 ± 0.47	1.06 ± 0.11
RPS-533	1.07 ± 0.36	1.12 ± 0.05
RPS-534	1.15 ± 0.34	1.05 ± 0.15
RPS-545	1.75 ± 0.33	2.01 ± 0.22
RPS-546	0.96 ± 0.10	0.98 ± 0.19
RPS-547	0.97 ± 0.14	1.03 ± 0.08
RPS-552	1.18 ± 0.07	0.93 ± 0.14

S005. Internalization Experiments

Figure S9. Internalization of [$\left.{ }^{18} \mathrm{~F}\right]$ RPS-534 and [$\left.{ }^{18} \mathrm{~F}\right]$ RPS-547 in PC3-CXCR4 cells. The ligands were incubated at $4^{\circ} \mathrm{C}$ or $37^{\circ} \mathrm{C}$ for the corresponding time. Surface-bound activity was removed by successive washes with 50 mM glycine ($\mathrm{pH}=2.8$), and internalized activity was collected by detaching the cells with 1 M NaOH .

S006. Tissue Biodistribution

Table S2. Table of tissue activity values from biodistribution studies conducted in male BALB/c mice bearing bilateral PC3-WT/PC3-CXCR4 tumors.

Tissue	RPS-533 1h p.i.	RPS-545 1h p.i.	RPS-534 1h p.i.	RPS-534 1h p.i. Blocked	RPS-534 2h p.i.
Blood	0.30 ± 0.06	0.20 ± 0.03	0.30 ± 0.08	0.26 ± 0.15	0.08 ± 0.02
Heart	0.57 ± 0.05	0.14 ± 0.02	0.25 ± 0.01	0.13 ± 0.04	0.14 ± 0.02
Lungs	0.60 ± 0.08	0.77 ± 0.01	1.01 ± 0.09	0.48 ± 0.08	0.59 ± 0.03
Liver	3.69 ± 0.21	23.90 ± 1.79	19.14 ± 0.42	12.01 ± 4.67	18.60 ± 1.74
Small Intestine	2.19 ± 0.05	0.32 ± 0.02	3.67 ± 0.44	5.35 ± 1.74	1.53 ± 0.25
Large Intestine	0.23 ± 0.02	0.08 ± 0.00	0.29 ± 0.06	0.40 ± 0.58	4.60 ± 0.57
Stomach	0.17 ± 0.04	0.09 ± 0.01	0.16 ± 0.03	0.14 ± 0.11	0.12 ± 0.05
Spleen	0.52 ± 0.02	4.70 ± 0.80	2.49 ± 0.04	0.12 ± 0.03	1.90 ± 0.23
Pancreas	0.44 ± 0.02	0.13 ± 0.02	0.28 ± 0.02	0.32 ± 0.01	0.18 ± 0.06
Kidneys	12.17 ± 0.78	3.04 ± 0.15	7.43 ± 0.96	5.10 ± 0.33	5.05 ± 0.80
Muscle	0.67 ± 0.08	0.12 ± 0.08	0.19 ± 0.03	0.17 ± 0.16	0.11 ± 0.03
Bone	1.22 ± 0.03	2.43 ± 0.20	1.44 ± 0.04	0.44 ± 0.15	1.26 ± 0.06
PC3-WT	0.91 ± 0.19	0.73 ± 0.06	2.85 ± 0.22	1.21 ± 0.47	1.66 ± 0.08
PC3-CXCR4	1.93 ± 0.18	1.41 ± 0.13	7.20 ± 0.30	2.01 ± 0.93	4.31 ± 0.47
Tissue	RPS-547 1h p.i.	RPS-547 1h p.i. Blocked	RPS-547 2h p.i.	RPS-552 1h p.i.	RPS-552 1h p.i. Blocked
Blood	0.28 ± 0.06	0.41 ± 0.40	0.08 ± 0.01	0.21 ± 0.07	0.27 ± 0.06
Heart	0.18 ± 0.04	0.14 ± 0.19	0.08 ± 0.01	0.13 ± 0.03	0.18 ± 0.08
Lungs	0.48 ± 0.05	0.35 ± 0.15	0.24 ± 0.02	0.50 ± 0.04	0.49 ± 0.09
Liver	6.59 ± 1.00	4.13 ± 0.50	5.18 ± 0.27	4.36 ± 0.24	3.15 ± 0.70
Small Intestine	0.95 ± 0.10	0.51 ± 0.18	0.80 ± 0.01	0.54 ± 0.06	0.80 ± 0.11
Large Intestine	0.20 ± 0.02	0.23 ± 0.06	0.19 ± 0.12	0.43 ± 0.10	0.22 ± 0.03
Stomach	0.17 ± 0.03	0.10 ± 0.03	0.11 ± 0.02	0.14 ± 0.07	0.20 ± 0.20
Spleen	0.53 ± 0.02	0.12 ± 0.03	0.36 ± 0.04	0.92 ± 0.08	0.70 ± 0.11
Pancreas	0.20 ± 0.01	0.22 ± 0.04	0.11 ± 0.00	0.26 ± 0.05	0.25 ± 0.04
Kidneys	10.73 ± 1.10	4.08 ± 1.10	5.60 ± 0.56	7.23 ± 2.66	4.41 ± 1.01
Muscle	0.14 ± 0.01	0.18 ± 0.35	0.09 ± 0.02	0.15 ± 0.04	0.45 ± 0.67
Bone	0.52 ± 0.04	0.22 ± 0.12	0.31 ± 0.02	0.64 ± 0.14	0.31 ± 0.07
PC3-WT	1.54 ± 0.18	0.86 ± 0.10	0.86 ± 0.13	1.00 ± 0.23	0.85 ± 0.21
PC3-CXCR4	3.09 ± 0.52	1.16 ± 0.12	2.02 ± 0.10	2.52 ± 0.11	1.20 ± 0.43

S007. Correlation Between Docking Score and IC_{50}

Figure S10. Linear plot of docking score and IC_{50}. Docking score was determined by an extra precision screen against human CXCR4 (PDB ID: 3ODU) using Schrodinger, and IC_{50} was determined by competitive binding assay vs. [${ }^{68} \mathrm{Ga}$]Pentixafor in PC3-CXCR4 cells.

S008. NMR Spectroscopic Data

NMR spectroscopic data are provided for the following compounds:

RPS-533 (1H, 13C, 19F)
RPS-545 (1H, 13C, 19F)
RPS-534 (1H, 13C, 19F)
RPS-547 (1H, 13C, 19F)
RPS-552 (1H, 13C, 19F)
RPS-546 (1H, 13C, 19F)
Pentixafor (1H, 13C)

